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Abstract

Human visual/spatial problem solving often requires both global and local information to be processed. But the relationship between
those two kinds of information and the way in which they interact with one another during problem solving has not been thoroughly
discussed. In the particular setting of solving the traveling salesman problem (TSP), we investigated into the relative roles of global and
local information processing. An experiment was conducted to measure the importance of global information and the possible con-
straints of global information processing on search. A model was built to simulate human TSP performance and was used to investigate
further the relationship between global information processing and local information processing. Our model was compared with the
human data we collected and with other models of human TSP solving.
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1. Introduction

Visual/spatial information in the world exists at many
grain-sizes. One strategy for studying visual/spatial process-
ing is to focus on a particular grain-size. But, as suggested
by Gestalt psychologists, information processing at one
grain-size is often influenced by more global patterns
(gestalts) at the next grain size up. From an information
processing perspective, core questions about global-local
information interactions concern storage and processing
limitations: (a) how can global patterns be stored efficiently
to effectively influence processing of local information?, and
(b) how can global patterns be constructed without first
invoking complex or large scale local pattern processes?

In this paper, we test two broad predictions about the
nature of global information that is stored and used to
influence local information. The first prediction is that
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global information consists of low spatial frequency
information because it is easily processed in peripheral
vision and because it contains few bits of information
that are processed quickly. This prediction is in contrast
to global models that use contour information or isolated
feature maps, which can contain many, many bits of
information.

The second prediction is that the stored information
must be sufficient to usefully guide local search. In other
words, the global information must be generally effective
for reducing the scope of local search throughout visual
problem solving. This prediction is in contrast to models
that emphasize contour maps because the contour provides
guidance for only the points near the contour rather than
generally throughout local search.

We examine these hypotheses in the context of the trav-
eling salesman problem because it is a well-studied problem
that highlights the importance of integrating global visual/
spatial information into local search.

The (Euclidean) traveling salesman problem (ETSP) is
to find a path of minimum Euclidean distance between
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points in a plane, which includes each point exactly once
and returns to its starting point. As a NP-hard combina-
tory optimization problem, the traveling salesman problem
(TSP) is believed to be “intractable’ in computer science
for large inputs as long as exact optimal path is concerned.

Recently there has been some interest in the traveling
salesman problem in cognitive science because humans
are able to easily find near-optimal solutions of small size
ETSP with little apparent effort (MacGregor & Ormerod,
1996). This result seems to be contradictory with the gen-
eral assumption that a large problem space implies a diffi-
cult problem (Newell & Simon, 1972), since even a small
size (n<30) ETSP has a huge problem space. Simple
trial-and-error search in the original problem space could
not explain human performance on this problem.

Several hypotheses have been proposed to account for
the human strategy on TSP solving from either a quantita-
tive explanation (MacGregor & Ormerod, 1996; Victers,
Lee, Dry, & Hughes, 2003; Van Rooij, Stege, & Schact-
man, 2003) or qualitative modeling perspective (Best,
2005; Graham, Joshi, & Pizlo, 2000; MacGregor, Ormerod,
& Chronicle, 2000). Although different explanations and
models use different measures and heuristics, the global
information processing vs. local information processing
has been one of the central issues under discussion.

Ormerod and Chronicle (1999) first provided support
for the hypothesis that human cognition is capable of per-
ceiving and utilizing global information in the identifica-
tion of TSP solutions. MacGregor et al. (2000) then
proposed a model using the convex hull as the global infor-
mation and developing a TSP path from it, where the con-
vex hull is the smallest convex containing all the points in
it. In the model by Graham et al. (2000), several layers of
global information are perceived and developed in a cas-
cade to approximate the final solution, which they called
them a pyramid.

By contrast, Van Rooij et al. (2003) argued that purely
local search based on a nearest neighbor approach could
help to form some kind of global clustering information
by eliminating the majority of potential intersections. How-
ever, some recent studies by Best (2005) suggest that after a
global information-processing phase, human participants
only perform local search in the rest of the TSP solving
procedure.

Two important questions about global information used
in human TSP solving remained unaddressed. First, what
kind of global information is perceived and utilized? Sec-
ond, how important is the global information? To answer
those questions, we conducted an experiment, built a
model, and evaluate the fit to human data of this model
against other models.

2. Previous models of TSP

We begin by considering the rest of models previously
proposed for human performance on the TSP.

2.1. Nearest neighbor

The most basic model of TSP is the nearest neighbor
model (Rosenkrantz, Stearns, & Lewis, 1977) in which
the problem solver always selects the closest next point to
the current point, i.e., simply following a hill-climbing heu-
ristic. The model is elegant in that it only assumes a single
heuristic that is already known to be part of the human
information-processing repertoire (Newell & Simon,
1972). However the model makes no use at all of global
information and tends to produce solutions that are not
as good as those found by humans (Ormerod & Chronicle,
1999).

2.2. Convex hull

The next simplest model of TSP is the convex hull model
(Golden, Bodin, Doyle, & Stewart, 1980), which assumes
that people compute a traversal around the perimeter
points, including inner points opportunistically along the
way using a minimal insertion rule. The global information
used by this model is the Convex Hull contour, which may
be rather complex, and thus require significant working
memory. The minimal insertion rule is applied globally at
each point in time during path computation, and points
are added that cause the smallest increase in total path
length. It is somewhat implausible that people would be
able to compute these minimal insertions (a local process-
ing task) at the global level.

2.3. Sequential convex hull model

MacGregor et al. (2000) adapted the convex hull model
to more plausible incremental local search version of the
convex hull model. In support of this adaptation, they
found that humans perform better on problems with fewer
interior points within the convex hull (MacGregor & Orm-
erod, 1996). Second, their experiments provided support
for their hypothesis that human participants are sensitive
to global information (Ormerod & Chronicle, 1999). We
would call this model the sequential convex hull model.
The outline of the model is as follows (MacGregor et al.,
2000):

1. Sketch the connections between adjacent boundary
points of the convex hull.

2. Select a starting point and a direction randomly.

3. If the starting point is on the boundary, the starting
node is the current node. The arc connecting the current
node to the adjacent boundary node in the direction of
travel is referred to as the current arc. Proceed immedi-
ately to Step 4. If the starting point is not on the bound-
ary, apply the insertion rule to find the closest arc on the
boundary. Connect the starting point to the end node of
the closest arc, which is in the direction of travel. This
node becomes the current node.
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4. Apply the insertion criterion to identify which uncon-
nected interior point is closest to the current arc.
Apply the insertion criterion to check whether the
closest node is closer to any other arc. If not, pro-
ceed to Step 5. If it is, move to the end node of
the current arc. This becomes the current node.
Repeat Step 4.

5. Insert the closest node. The connection between the cur-
rent node and the newly inserted node becomes the cur-
rent arc. Retaining the current node, return to Step 4
and repeat Steps 4 and 5 until a complete tour is
obtained.

2.4. Pyramid model

Graham et al.’s model (2000) of traveling salesman
problem was inspired by a hierarchical architecture of
human visual and spatial perception. Their model first
Gaussian-blurs the original set of points into a variety of
degrees and stores those blurred images in different layers
of hierarchy with the most blurred image on the top. The
more blurred images serve as the global information for
the less blurred images. Each layer directly guides the next
layer below it each time the model develops a node into the
path. So layers in the hierarchy change in a repeatedly cas-
caded process. The pyramid model computes TSP solutions
in the following steps:

1. Gaussian-blur the original n-points TSP image into
k — 1 different degrees and store them in a k-layer
pyramid with the original TSP image on the bottom
and the most blurred image on the top.

2. Calculate L, modes of the image in each layer i.
Consider those modes in each layer as nodes in a
reduce-sized TSP problem. The top layer has 3 nodes
and the bottom layer has n nodes. Layer k has ;; nodes.
(The parameter b is the reduction ratio. Bottom layer is

layer 1.)
3. Layer n (top layer) has 3 nodes and forms a unique
tour.

4. Generate a tour of the TSP in each layer by inserting
them into the tour on the previously higher layer with
the following rules: (a) Sort the intensity level of the
mode locations in each layer. (b) Insert these modes
into the tour in descending order of their intensity, so
as to produce the minimum increase in tour length.
Repeat Step 4 until the algorithm generates a tour in
the bottom layer.

2.5. Globalllocal TSP solver

In the global/local TSP solver (Best, 2004), global infor-
mation-processing and local information-processing phases
are clearly separated. The outline of the GL-TSP solver is
as follows.

2.5.1. Global information-processing phase

Using the CODE theory of human perceptual clustering
(Compton & Logan, 1993; Van Oeffelen & Vos, 1982) by
setting a threshold parameter, a certain number of clusters
of points were generated. Global planned path among clus-
ters is calculated using the convex hull heuristic.

2.5.2. Local information-processing phase

Starting from the current point, the next point to visit on
the exact path is chosen from the current cluster by using a
6-points look-ahead rule and the global planned path as
constraints.

The global information posited by this model is much
smaller in size than that posited by the convex hull models.

In all but the nearest neighbor model, some kind of glo-
bal information processing was engaged and extracted glo-
bal information was used to guide the local search. The
sequential convex hull model used the convex hull and con-
vex contour; the pyramid model used layers of pyramid;
the GL-TSP solver used the clustering result and planned
path between clusters. So what kind of global information
is perceived and utilized by human cognition, due to its
own constraints? How important is the global information?
To answer those questions we did the following
experiment.

3. Experiment
3.1. Method

3.1.1. Participants
Twenty eight graduate students participated in the
experiment.

3.1.2. Materials and methods

The materials were 20 TSPs. Ten are real world prob-
lems borrowed from TSPLIB (http://www.iwr.uni-heidel-
berg.de/groups/comopt/software/TSPLIB95/) ranging in
size from 16 points to 100 points. Those real world prob-
lems are generally more structured. An example would be
the cities on a map where they tend to form some dense
clusters (Fig. 1a). The remaining 10 were randomly pre-
generated according to a uniform distribution ranging
from 10 to 80 points. Fig. 1b shows an example of ran-
domly generated TSP. Note that all participants saw the
exact same 20 TSP problems but in a random order, which
allows us to examine how well the models predict the per-
formance on particular TSP problems rather than just gen-
eral trends for the effect of number of points.

The problems were displayed in an 800 * 800 pixels win-
dow on a 17-in. computer screen with resolution
1440 * 900 pixels. Participants sit about 17-20in. away
from the computer screen. So all the problem lies in the
human visual field with maximum angle of 10-13°. Partic-
ipants were asked to find the shortest possible path and
indicate the path using mouse-clicks. The program
recorded all the click data. Participants were randomly
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Fig. 1. Examples of a natural TSP (right) and a random TSP (left).

assigned into one of the following three groups. The groups
were designed to examine the influence of the global and
local information.

3.1.3. Control (10 participants)

Each participant was asked to solve the TSP problems
while all point locations remained on the screen
throughout.

3.1.4. Global preview (9 participants)

Each participant was asked to solve the same TSPs as in
the control condition, with three distinct phases for each
TSP.

1. The full TSP is shown, but paths cannot yet be clicked.
Each participant was given a pen and a piece of paper to
draw the global information they would need in the later
phases. Participants were also asked to pick a start point
to begin their TSP trip (Fig. 2a).

2. The TSP problem points were clustered into 5-12
clusters using a K-Means algorithm (MacQueen,
1967). The k-means centroids (geometric centers) were
displayed as larger dots. Participants were asked to pick
a path through just the centroids to determine the order
in which the clusters show up in phase 3 (Fig. 2b).

3. All points were hidden. Then subsets of points were pre-
sented one cluster at a time, and participants had to pick
a path through all the points within a cluster. When all
the points in the current cluster were visited, the next
cluster of points would become visible (Fig. 2c¢).

3.1.5. No global preview (9 participants)

This condition was identical to the Global Preview con-
dition in that only one cluster worth of points is shown at a
time during the path selection process (i.e., phase 3), except
that participants did not first see the full set of points (i.e.,
phases 1 and 2 were skipped). So there was no global infor-
mation available during any part of the process.

The No Global Preview vs. Global Preview comparison
tests the effect of access to global information on local
search quality, and whether the global information can fit
in working memory (as opposed to it being important that
global information be externally available). If those two
conditions do not differ in solution performance, then the
control condition assesses whether even continuously avail-
able global information is helpful. If the Global Preview
and No Global Preview conditions do differ, then the Con-
trol condition assesses whether to what extent continuously
available global information further shapes local search.

Fig. 2. Illustrations of Global Preview condition phase 1, 2, 3 (left, mid, right).
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Finally, the Control condition also provides baseline TSP
problem solving data against which the computational
models can be compared.

After each participant finished all 20 TSPs, there was a
post-experiment measurement on how fast the participant
clicked the mouse. This step involved re-presenting all 20
TSPs, but instead of finding the shortest path, participants
were asked to click through all the points as fast as possible
in an arbitrary order. From this data, we will estimate par-
ticipants’ thinking time by subtracting mouse-clicking time
from solution time.

3.2. Results and discussion

Accuracy and reaction time were calculated as our mea-
surements of performance. Accuracy was calculated as the
ratio of participant path length over the optimal path
length. Reaction time was calculated as difference between
the time to finish the TSP and the time to click through all
the points. So accuracy is a number larger than 1. The clo-
ser the value is to 1, the better the performance is. The reac-
tion time is an approximation of participant thinking time.

ANOVAs on accuracy and reaction time revealed signif-
icant effect on both accuracy (p <.0001) and on reaction
time (p = .0001). But the condition effect of reaction time
(f=9.0) is much weaker than that of accuracy
(f=172.1), while they have the same degree of freedom.
The control group had the best accuracy (X = 1.05) but
highest RT (X = 76 s). The global preview group had mid-
dle levels on both (accuracy = 1.11, RT = 54 s). The No
Global preview group had the worst accuracy (X = 1.16)
but fastest RT (X =42s). Post-hoc Tukey comparisons
found significant pair-wise difference between all groups
on accuracy (p <.0001). That the control condition is sig-
nificantly slower than the no global preview condition
(p <.0001) and the global preview condition (p = .0074)
suggests that processing global information does take time.
That the condition effects are very strong on accuracy
(f=172.1) and much weaker on RT (f'=9.0) suggest that
a simple speed-accuracy tradeoff could not explain the
overall condition effect.

As it can be seen in Fig. 3, the accuracy of each group
slowly goes up (less accurate) when the size of the problem
goes up. The accuracy of control condition fits well to a lin-
ear trend (R? = .689). The accuracies of the other two con-
ditions basically follow linear trends (R®=.33 and .21).
The control group has the highest accuracy performance.
This result is consistent with our hypothesis that human
participants utilized both global information and local
information to solve the problem. The control group has
all points visible during the entire problem solving proce-
dure; the points on the screen appear to help them to retain
the global information through some kind of active mem-
ory during the solution process.

The global preview group has better accuracy than the
group w/o global preview. This result confirmed the impor-
tance of global information in the human TSP solving pro-
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Fig. 3. Mean accuracy of each individual problem within each condition.

cedure. A typical example of the scratch notes of
participants in the global preview group is in Fig. 4. Not
all participants sketched a Spline-curve. Some participants
just recorded the relative position of each cluster and some
just left the scratch paper blank. But when connections
between clusters were drawn, they tended to resemble
splines.

In sum, it appears that global information stored only
mentally does help local search. Global information pre-
sented throughout problem solving helps even more. Thus,
global information computed in global preview condition,
either slightly exceeds capacity limits, and/or is not stored
with the same fidelity as global information that is sup-
ported with continual visual input. One could interpret
the results as a support that human TSP problem solving
relies heavily on compact global representations suggested
by the notes of global preview condition. However, one

—

i
4

c o /

Fig. 4. A typical scratch note from a participant in the group with global
preview.
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Fig. 5. Effects of problem size on accuracy separately for random and
natural problems.

could also argue that human TSP may use elaborate global
information that is dependent upon constant peripheral
visual input, since control condition has better accuracy
than global preview condition. So the question is whether
the recorded global information in global preview condi-
tion is close to the one used in control condition or it’s only
an abstract of it. Precise modeling of the exact human data
in the control condition may help to resolve this.

3.2.1. Natural vs. random

We used two categories of traveling salesman problems
in our experiment. Ten problems were randomly generated
according to uniform distribution (random problems). The
other 10 were borrowed from TSPLIB (natural problems),
most of which are data collected from real world (such as
cities in a country, etc.).

The overall accuracy performance of the control group
between natural problems and random problems is the
only significant difference we found (p <.001). There is
no significant difference between natural points and ran-
dom points on the other two groups’ accuracy (p > .5) or
RT (p > .8) values.

The control group has better accuracy on random prob-
lems than natural problems and there is an interaction with
number of points (Fig. 5). For the natural TSP problems,
the accuracy value (the larger the worse) was higher than
random problems for small problem size. As problem size
increases, accuracy value of natural problem increases at
a slower rate than that of random problem. That this effect
only appeared in the control group suggests that the added
structure contained in natural problems is subtle and not
easily stored in working memory.

4. TSP global vs. local information processing

Having conducted an experiment to test the role of glo-
bal information in TSP performance, we now turn to a
more detailed theoretical examination of global vs. local
information processing in TSP models. More advanced
existing TSP models used a certain kind of global informa-
tion to guide their local information processing. In the
sequential convex hull model, the local information pro-
cessing of individual nodes relies on the global information

of the convex hull contour developed through Step 1 to
Step 3 and the previous iterations of Steps 4 and 5. In
the pyramid model, the global information is contained
in all layers of the pyramid except the bottom layer where
the exact node locations are stored. The top-to-bottom cas-
cade iteration of the pyramid model is to specify the global
information layer by layer until a tour of the original TSP
is constructed on the bottom.

A recent study provided support for the hypothesis that
separated processing phases of global and local informa-
tion are an important characteristic of human TSP solving
(Best, 2005). This naturally leads to the question of what
kind of global information is used in the global informa-
tion-processing phase? There are several criterions that glo-
bal information should meet:

1. The global information should be sufficient to guide the
local search. It should remain fixed or change only
locally in the local search phase.Since the global infor-
mation processing and local information processing
are in two separate phases, the global information is
basically fixed after the global information-processing
phase. Therefore, the global information should be suf-
ficient to guide the local information processing. Local
information processing should only help to maintain
or slightly change the local part of the global
information.

2. The global information should be compact in size to fit
well in  active human  visual/spatial model
representations.

Since the global information is processed during the first
several seconds of the problem solving procedure, it should
be compact in size. Also it should have the form of the rep-
resentation that fits human working memory well, so that it
would remain in the working memory during the local
information-processing phase.

In the model developed by MacGregor et al. (2000), the
convex hull contour serves as the global information. In the
global information-processing phase, the original convex
hull is perceived as the global information. But this convex
hull does not contain enough information to guide each
local search, so the convex hull contour is modified each
time in the local search phase. The modification of the con-
tour could change it a lot. Before connecting to the next
node, the model would need to generate some number of
temporary edges that constitute the temporary state of
the convex hull contour. Those temporary edges are invis-
ible to human participants, so they have to be stored in
visual/spatial working memory. But sometimes the number
of temporary edges could be quite large and keeping all
those edges in visual/spatial working memory may not be
feasible. So the convex hull itself does not fit to our crite-
rion of sufficiency, and the convex hull contour does not
fit to our criterion of compactness.

Fig. 6 visualizes the convex hull contour used by the
sequential convex hull model as the global information in
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Fig. 6. The global information used by the sequential convex hull model.

some steps of the model execution. Fig. 6a shows the con-
vex hull of this simple artificial TSP. The rectangle resem-
bles the convex hulls. Now suppose the model chooses the
lower-right corner as the starting point and picks counter-
clockwise as the direction to travel. Fig. 6b describes the
convex contour after the first iteration of the model when
a node is inserted into the contour using the cheapest inser-
tion criterion. Correspondingly, Fig. 6c¢ is the convex con-
tour after the third iteration and Fig. 6d is the convex
contour after the seventh iteration. Notice the model has
to keep all those dashed lines in working memory, since
none of those edges has been actually drawn at this stage.

ds00

0 100 200 300 400 500 600 bSOOO 100 200 300 400 500 600

There could be a larger number of them in a more compli-
cated problem.

In the model developed by Graham et al. (2000), the
upper part of the “pyramid” (all the layers except the base
layer) serves as the global information. Since the upper part
of the pyramid may contain many layers and those layers
need to be retrieved and manipulated during problem solv-
ing process, this might be too much information for human
working memory to carry. So the pyramid does not fit well
to the second criterion of global information.

Fig. 7 illustrates the solution process of the Pyramid
model. Fig. 7a—e visualizes the global information kept in
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Fig. 7. Global information in different layers of the pyramid. Adapted from Graham et al. (2000).
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Fig. 8. Global information used by GL-TSP solver. Adapted from Best
(2004).

various layers of the pyramid and how they were developed
in a cascaded manner. In each of those figures, the empty
dots and the lines connecting them are actually invisible
to human subject and needs to be loaded in spatial/visual
working memory until the contour in the adjacent lower
layer is developed. So the amount of global information
could be quite large and hard to be kept in verbal or visual
working memory (Cowan, 2001; Pylyshyn, 1989).

In the GL-TSP solver, the global information is the clus-
tering results and the global planned path. Fig. 8 shows
that the global information the GL-TSP solver generated
on a particular TSP problem after its global information-
processing phase. The clustering information is three
dimensional with lighter gray represents higher z-coordi-
nate. Although the GL-TSP solver successfully character-
ized the separated global local information processing, its
global information may be too much to carry in human
spatial/visual working memory during the entire solution
procedure (Cowan, 2001; Pylyshyn, 1989).

5. K-Means TSP model

Based on this theoretical analysis and observations of
human behavior in the global preview condition, we pro-
pose a new model for TSP problem solving.

Our K-Means TSP model is based on the following
three steps:

1. Clusters are identified.

In this step, points are grouped according to visual den-
sity. Points constructing a higher visual density are more
likely to be grouped together.

Our model approximates this clustering identification
process using a K-Means clustering algorithm, because
it is available in standard software packages. The K-
Means clustering algorithm clusters N data points into
K disjoint subsets S; containing N; data points so as to
minimize the sum of squares criterion:

K
2

J= § |xn_uj|a
1

j=1 neSs;

where x,, is a vector representing the nth point and p,, is
the geometric centroid of the points in S;. Now the ori-
ginal problem is reduced to the problem to find the
shortest path among all y,,.

2. A sketch of the path is conceived.
Here by sketch of the path, we mean the path visiting all
the groups and returning to the starting group. Using
this strategy, human cognition reduces the original
problem to a main problem of much smaller size with
simple sub-problems. Here we use a Spline-curve of all
the centroids to model this sketched path.

3. Connect all the points along the sketched path.
We model this step using a projection rule. We project
all the points to nearest point on the Spline-curve. Then
we construct the final solution by connecting all the
points in the same order as their projection on the
Spline-curve.

Steps 1 and 2 of our model are the global information
processing part, and Step 3 is the local information pro-
cessing part. The global information perceived in Steps 1
and 2 will guide the local information processing in Step
3. The Spline-curve is the global information developed
after Steps 1 and 2. The clusters and centroids are no
longer needed after the Spline-curve is sketched. So in the
local search phase, the cluster and centroids information
can be discarded, since the Spline-curve itself is enough
to guide the local information processing in Step 3.

The Spline-curve plotted fits both of our criteria for glo-
bal information. First, it is sufficient to guide the local
search in the third step of the model, where the model only
need to project the points onto their nearest curve. Second,
because clustering result and centroids information can be
discarded after Step 2, the Spline-curve itself is compact in
size and has a visual representation that may fit well to
human visual/spatial working memory capacity.

Our hypothesis is that there are some visual operators
for human cognition that enable it to do the first two steps
within a near constant time and the third step in a linear
time. Fig. 9 illustrates the three steps of our model when
solving a 70-points TSP.

5.1. Model simulation

We used a fixed the k-means centroids in the upper
right plot set of 20 problems across participants in our
experiment. The negative consequence of this experimen-
tal design choice is that we do not have a pure estimate
of the effect of problem size because of the small idiosyn-
crasies of our chosen problems. However, the positive
consequence is that we have enough data for each exact
problem to evaluate how well each model can explain
performance on those particular problems, in trends
across problems and exact fit to problem performance.
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Fig. 9. Three steps of the Kmeans-TSP model on solving a 70 points TSP. “+” indicate the locations of the Kmeans centroids in the upper right plot.

The number of clusters is the only parameter setting in
this model. In our simulation we set it to
#Clusters = 2 x \/#points. This setting was based on
the intuition that we do not want points to be too far
away from its cluster centriod to avoid too much error.
If recursion has to happen for large TSPs, we want the
depth of recursion to be no more than one. In order to
draw the Spline-curve around all the centroids in step
two of the model, we need a TSP path around all cent-
roids. In our simulation we used a recursive call to our
model until the size of the problem is below 6, when
we can easily use an exhaustive search function to find
the shortest path around the remaining points. For our
current set of problems, the depth of recursive calls is
at most two. Since the K-Means clustering algorithm
may converge to a local minimum and may yield different
clustering results on different runs, we ran through our
model on all the 20 problems 40 times.

The mean accuracy of the 40 runs is pretty close to the
accuracy performance of participants in the global pre-
view group. Since our model employed a naive local
search strategy and the group with global preview had
incomplete local information, the closeness of accuracy
between them is what we expected. However, the mini-
mum accuracy generated by the 40 runs of our model is
very close to the accuracy performance of the control
group. The reason might be sometimes the naive projec-
tion rule in our local search fits to the generated global
information very well, so it produced a similar result as
the more sophisticated local search strategy used by
human cognition.

6. Model evaluation

To evaluate our model in depth, we did a comparison
between our model and other models against the human
performance in the control condition along four dimension
of TSP behavior across the 20 TSP problems used in our
experiment. We focused on the control condition because
that condition best represents full use of global informa-
tion. We calculated three results on the set of solutions that
each model produced on the twenty traveling salesman
problems used in our experiment: number of intersections,
mean accuracy, standard deviation of accuracy and exact
path chosen. Both trends and exact values are important
measurements on how well a model fits human perfor-
mance data (Schunn & Wallach, 2001). Pearson correla-
tions between model and human data are used to
measure fit to trends; average signed errors are used to
measure fit to exact value.

We compared our model with the following models and
heuristics: the Pyramid model' (Graham et al., 2000),
Sequential Convex-Hull model (MacGregor et al., 2000),
Nearest Neighbor and Convex Hull. Table 1 summarizes
the global and local information strategies used by each
of the models.

! The code for the pyramid model was downloaded from http://
www2.psych.purdue.edu/tsp/workshop/downloads.html in November
2005. The code is an improved version of the model described in Graham
et al. (2000).
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Table 1
Global and local information/strategies of different models
Global information processing strategy Global information Local information processing strategy
Nearest neighbor No global information processing No global information Find nearest point to the current point
heuristic
Convex hull heuristic Find then develop the convex hull contour Convex hull contour Jumping around the contour edges to insert
the points that will yield the minimum
increase
in total length. (Search through all points.)
Sequential convex hull Find then develop the convex hull contour in Convex hull contour Apply the insertion rule to the current edge.
model CHSQ a clock-wise or counter-clockwise sequence (Search through all points close to the current
edge.)
Pyramid model Apply Gaussian filters to build a pyramid. Pyramid: A hierarchy of No local information processing
Use insertion rules to update the pyramid convex contours
Kmeans model Generate Kmeans cluster centroids Sketch Spline-curve Project points onto their nearest Spline-curve
Spline curve around the cluster centroids
6.1. Number of intersections our experiment. Because NN has no global information,

it generates many more intersections than the rest of the

For human and models, we computed the number of = models and human data. Pyramid and convex hull have
times the selected final path crossed itself (called intersec- deterministic algorithms, so they generated certain high
tion). For data from humans and models with a random peeks on particular problems and zero values on others.
factor (Human, NN, CHSQ, Kmeans), we computed Both Kmeans and CHSQ are close to human data in value
means (see Table 2). of number of intersections. None of the correlations with
Fig. 10 plots the number of intersections generated by human performance were statistically significant, although
human and each models on the 20 TSP problems used in the CHSQ correlation was marginally significant (p <.1).

Table 2
The sum (over all 20 problems) of means (over different participants or model runs) on number of intersections generated

Human NN Convex Hull Pyramid Kmeans CHSQ
Number of intersections 2.3 110 6 14 2.8 2.3
Correlation 0.30 —0.13 0.23 0.31 0.39 (*)
Average signed error 4.98 0.15 0.63 0.03 (*) —0.03 (*)

Correlation and ASE on number of intersections between each model and human participants; “*’” indicates best matched model on each dimension.
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Fig. 10. Average number of intersections generated by each model for each problem.
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Table 3
Correlation and ASE on accuracies between models and human
participants

NN Convex hull Pyramid Kmeans CHSQ
Correlation 0.70  0.62 0.41 0.84 (x) 0.67
Average signed error 0.17 —0.01 0.02 0.04 0.00 (*)

“x” indicates best matched model on each dimension.
6.2. Mean accuracy

As shown in Table 3, NN is much worse than the human
performance in term of mean accuracy. Convex Hull, Pyr-
amid, Kmeans and CHSQ are close to human accuracy lev-
els as has been found in the part. Kmeans model did depart
from the human data and the other three models as the
number of points got larger. One reason for this is Kmeans
model employed a naive local search strategy that project
points onto their nearest Spline-curve. As the number of
points going bigger, the ratio of centroids to points is smal-
ler. So the Spline-curve is more inaccurate in characterizing
the detail local information. In this situation a more
sophisticated local search strategy should be employed.

All but the Pyramid model led statistically significant
correlation with (human data). The Kmeans model corre-
lated with the trend of human performance best among
the models we compared. Our hypothesis is that the global
information Kmeans model utilizes is the best approxima-
tion to the global information human use, so it generate a
similar trend with human performance. Fig. 11 plots the
means of accuracy of human performance and each model.

6.3. Standard deviation

In addition to accounting for overall and problem-spe-
cific differences in mean accuracy, a model could also try
account for overall and problem-specific differences in the
variability across participants in accuracy (as measured
by standard deviations). These differences in variability

1.45 q
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1.35 4

1.3 4 i

Accuracy
i b
[N]

1.15 1

1.1

1.05

might reflect the degree of garden path effects from differ-
ent start points (i.e., small choices made early have large
down-the road consequences). A Levene Test shows that
there are statistically significant differences in the standard
deviations of human accuracies on different problems.

At the level of overall standard deviations, the pyramid
and Convex Hull models fail outright because they are
deterministic, and thus predict standard deviations of zero.
The nearest neighbor model predicts standard deviations
that are too large. The Kmeans and CHSQ models are
close to observed human levels overall (Fig. 12). In terms
of predicting problems specific differences in variability,
none were statistically significant. It may be because that
a few participants who were using different strategies than
others (see Table 4).

6.4. Natural vs. random performance

We also tested the performance of the models on the two
different set of points: natural and random. Recall that nat-
ural paths start with worse accuracy but have smaller
decrease in accuracy as the number of points increase.
None of the current models could predict the main effect
of problem type nor the interaction with numbers of cities.
However, a variation of the Kmeans model was successful:
The minimum error in the 40 runs of Kmeans model for a
given TSP problem generated the same pattern shown in
the human performance. As we discussed earlier, there is
no significant different between natural and random prob-
lems in term of accuracy performance in the other two par-
ticipant groups. So only when both global and local
information are available, the participants will generate
this pattern of difference between natural and random
problems. When we took the shortest path generated by
our model across 40 runs, the accuracy performance for
the two kinds of problems generated by our best model
run (Fig. 13a) matched the solution accuracy generated
by human participants (Fig. 13b). This is additional evi-

—+— Human
s ~-e--NN_TSP

[ - == - ConvexHull
E <+ Pyramid
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—e— CHSQ

Number of Points

Fig. 11. Accuracy performance of models and humans on each problem.
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Table 4
Mean standard deviation, correlation and ASE of the standard deviations
between human participants and models

Human NN Kmeans CHSQ
Mean 0.03 0.07 0.03 0.02
Correlation 0.06 0.11 0.22
Average signed error 0.04 0.01 (*) —0.01 (*)

1)

*”” indicates best matched models.

dence that there exists a spline-curve generated by our
model that captured the global information human uses.
The reason that the Kmeans model in average did not cap-
ture this phenomenon may be because it generated too
many “bad” clusterings. In other words, only the “best”
clustering generated by K-Means clustering algorithm
and the spline-curve it follows would resemble the global
information used by human cognition.

As the number of points goes up, the average number of
points in each cluster becomes bigger (#Clusters =
2 x /#points). The global information generated by our
model becomes less accurate in guiding the local search,
which results in the decrease in accuracy. However, in

- Human Random

1.02 4

—=— Human Natural

1 T T T T 1

0 20 40 60 80 100
Number of Points

mid-size natural TSPs, there are some dense clusters. Those
dense clusters contain much more points than average.
Since the clusters are so dense, that accuracy is not much
affected by the possible detours around the points inside
those dense clusters. The number of points in the rest of
the clusters remains small. So the global information is still
quite accurate. In other words, because of an uneven distri-
bution, the complexity of global information for natural
points increased at a slower rate as the number points
increases.

6.5. Exact path correlations

A good model of human TSP problem solving should
not only predict the accuracy of the total path length that
a human would generate on a TSP problem but also should
be able to predict the likelihood of human participant tak-
ing a particular path. We used the following method to cal-
culate the exact path correlation between human-generated
and model-generated solutions. For each TSP problem
with n cities, build a matrix of nxn, where each cell
M(i,j) equals the numbers of observed paths between city

b 1,12 4
1.1 1
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1.04 4
—— Kmeans Min
Random
1.02 1 —-= Kmeans Min
Natural
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Number of Points

Fig. 13. Accuracy trends on natural/random problems for human participants (left) and Kmeans best run (right).
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i and city j. Then compare the similarity between the mod-
els and the participants at the individual path level by lin-
earizing the matrix and compute the correlation between
the two resulting vectors. Fig. 14 shows the mean correla-

Table 5
Mean correlations between participant and model solutions on each of the
20 problems

NN
0.83

CH
0.78

Kmeans

0.89"

CHSQ
0.87

Pyramid
0.77

Mean correlation

[

*”” indicates best matched models.
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tion between the participant solutions and model solutions
on each problem.

As Table 5 shows, the Kmeans model correlates best with
the participants’ choices on exact paths. The Kmeans model
outperforms other models especially on larger size problems
(n> 50), as Fig. 14 shows. One possible reason for this phe-
nomenon is that as the size of the problem grows larger,
human participants display a larger diversity of possible path
choices. Our model captured this characteristic of human
TSP solving by generating different paths on each run.

We visualized the characteristic by plotting the fre-
quency of an edge selection by participants or each model
as its thickness. Fig. 15 shows the solutions of a 50-points
TSP generated by participants, Kmeans, CHSQ and Pyra-
mid models. The arrows point to areas where participant-
generated paths and Kmeans-generated paths displayed a
great similarity in both pattern (path choices) and thickness
(path frequency). The same kind of similarity could not be
found in other models.

This visualization technique also helps us to identify rea-
sons for why the Kmeans model departed from human data.
As we can see in Fig. 16, the main outside contour of the
Kmeans model displayed a large number of zigzags (as the
arrows identifies) while the participants, the Pyramid and
CHSQ models did not. The zigzags in the Kmeans model
are the result of its naive local search rule of projection.
Since the Kmeans model connects points that have the near-
est projections on the Spline-curve, those points themselves
could be far away if one point is inside the Spline-curve and
the next one is outside it. Through repeated crossing of the
Spline-curve, the zigzag pattern is generated.

\ Kmeans

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
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Fig. 15. Chosen paths for a 50-point TSP generated by participants and models.
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Fig. 16. Chosen paths for a 100-point TSP generated by participants and models.

06.6. Efficiency of global information representation

As the simulation results shown, the Kmeans model and
CHSQ model are the best two in predicting human perfor-
mance. But we have argued that the Kmeans model should
predict human performance better than other models in
part because it has a more compact representation of glo-
bal information. Here we formulize this intuition, specifi-
cally by comparing the efficiency of the spline-curve of
the Kmeans model with the traditional convex hull for rep-
resenting global information in TSP.

Fig. 17 shows the convex hull and a spline-curve gen-
erated by our model on the same 70 points TSP. Both
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have 11 turning points, by which one could argue that
they occupy approximately the same amount of visual
working memory. But the spline-curve contains more
information of the original problem so that it would be
a better guide to the local search. Less information is
required to be processed to build a path in the local infor-
mation-processing phase using the spline-curve than the
convex hull as the global information. This idea can be
formalized as follows:

1. I(S) =~ I(C).
2. I(Path|S) <I(g)(Path|C).
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Fig. 17. Convex hull (left) and spline-curve (right) of 70 points TSP.
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1(S) is the information contained in the spline-curve, and
I(C) is the information contained in the convex hull, which
are approximations of their size in human visual/spatial
working memory. I(Path|S) is the conditional information
of the TSP path given the spline-curve as the global infor-
mation, which is an approximation of the amount of infor-
mation-processing in the local search phase. I(Path|C) is
the same information conditional on the given convex hull.
As we can see, the spline-curve yields a higher ratio of
information efficiency.

7. Conclusion

In this paper, we proposed an alternative model of
human performance on the TSP, to test general predictions
about the nature of global visual information that guides
local visual information search. It has been previously
argued that human cognition utilizes both global informa-
tion and local information to solve the traveling salesman
problem. Our model has separate phases of global informa-
tion processing and local information processing, consis-
tent with that of Best (2005). Result of our experiment
and model simulations has shown that global information
is important for human TSP solving and humans tend to
use spline-like low-frequency curves around clusters to rep-
resent the global information.

We proposed two criteria for the global information:
compactness and sufficiency. We defined the global infor-
mation in our model to be a Spline-curve generated from
the Kmeans cluster centroids. This global information is
compact in size to be able to easily fit human visual/spatial
working memory constrains. It is also sufficient to guide
the local search without high search costs. Our local search
strategy is very simple. By doing a simple projection onto
the Spline-curve, our local information-processing phase
guarantees the linearity on reaction time as a function of
number of points. This local information processing part
of the Kmeans model also processes points in a sequential
way as suggested in previous research (Best, 2005; MacGr-
egor et al., 2000).

To evaluate our model, we compared the models with
human performance data that we collected. Our model fits
the human performance well in number of intersections and
the mean standard deviations of accuracy. The accuracy
performance of the Kmeans model departs did a little bit
from the human data when the number of points was large.
This departure might be a result of an overly simplistic
local search strategy, and/or our assumption that the global
information is fully processed in the beginning no longer
holds for large TSPs due to its complexity and working
memory requirement. But our model generates a high cor-
relation with the trend of human performance on different
problems, suggesting that we have captured important ele-
ments of the global information that human use.

The presented ideas in modeling the global information
processing in the TSP solving could also be adopted in

other problem solving domains. When a certain factor in
the problem solving process can not be directly observed
or can only be weakly measured, it might be helpful to
build a computational model of the problem solving pro-
cess and compare its fitness in different dimensions as the
uncertain factor is manipulated.

8. Future work

Currently our model is based on the hypothesis that glo-
bal information is fully processed in the beginning of TSP
solving. Furthermore, the global information used in con-
trol condition is not directly observable. It would be inter-
esting to explore the possibility of interleaved global/local
information processing when the size of TSP is large. An
eye-tracking experiment would be helpful to further inves-
tigate these issues.

A more sophisticated local search strategy should also
be developed to substitute the naive projection rule. To fur-
ther test our hypothesis about the nature of the global
information processing, some other visual problem solving
tasks, such as map reading and navigation, would be inter-
esting to look at.

MacGregor and Ormerod (1996) and MacGregor, Orm-
erod, and Chronicle (1999) suggest that the difficulty of a
TSP is affected by the number of points inside the convex
hull and the layout of points. Our result in this paper fur-
ther points to the direction that the complexity of the glo-
bal information, instead of merely the number of points
inside, caused the difficulty. So a qualitative analysis of
the relationship between the complexity of global informa-
tion and the difficulty of the problem would be interesting
too.
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