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Mental arithmetic activates analogic representations of internally
generated sums

Arava Y. Kallai a,b,n, Christian D. Schunn a,b, Julie A. Fiez a,b,c,d

a Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
b Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA
c Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
d Center for the Neural Basis of Cognition, Pittsburgh, PA, USA

a r t i c l e i n f o

Article history:
Received 3 February 2012
Received in revised form
31 May 2012
Accepted 14 June 2012
Available online 23 June 2012

Keywords:
Number representation
Analogic representation
Arithmetic
Adaptation fMRI
Intraparietal sulcus

a b s t r a c t

The internal representation of numbers generated during calculation has received little attention. Much
of the mathematics learning literature focuses on symbolic retrieval of math facts; in contrast, we
critically test the hypothesis that internally generated numbers are represented analogically, using an
approximate number system. In an fMRI study, the spontaneous processing of arithmetical expressions
was tested. Participants passively viewed a sequence of double-digit addition expressions that summed
to the same number. Adaptation was found in number-related regions in a fronto–parietal network.
Following adaptation, arrays of dots were introduced, differing in their numerical distance from the
sum of the addition expressions. Activation in voxels that showed adaptation to a repeated sum was
also sensitive to the distance of the dot quantity from the sum. We conclude that participants exhibited
adaptation to an internally generated number, that adapted representations were analogic in nature,
and that these analogic representations may undergird arithmetic calculation.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the research on the representation of numbers has
utilized externally presented number stimuli like Arabic numer-
als, number words, or arrays of objects. However, when proces-
sing numbers in everyday life, people often have to generate
numbers internally. For example, when calculating the tip to give
a taxi driver in a cash exchange, a passenger might calculate
precisely or estimate the amount to be paid. Either way, during
the calculation process new numbers are mentally generated
from the operands, and the mentally created numbers are
typically not presented externally (e.g., as hand-drawn calcula-
tions). The process of mental calculation has generally been
studied separately from the question of number representation.
On one hand, studies on numerical representation focus on the
nature of these representations, such as whether they preserve
the quantity or size for which numbers stand (Piazza, Izard, Pinel,
Le Bihan, & Dehaene, 2004; Piazza, Pinel, Le Bihan, & Dehaene,
2007), whether they are notation-dependant or -independent
(Cohen Kadosh & Walsh, 2009), or whether they are holistic or
componential (Dehaene, Dupoux, & Mehler, 1990; Reynvoet &

Brysbaert, 1999). On the other hand, studies on math and
arithmetic skills tend to focus on assessing strategies like mental
calculation vs. fact retrieval (Delazer et al., 2005; Ischebeck,
Zamarian, Egger, Schocke, & Delazer, 2007), or exact calculation
vs. estimation (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999;
Venkatraman, Ansari, & Chee, 2005). The present study combines
these two lines of research and asks: what is the nature of the
numerical representations that result from mental arithmetic? By
testing the representation of numbers that are generated intern-
ally, as a result of solving arithmetic problem, we set up condi-
tions that are less dependent on external notation. This
arrangement can further our understanding of number represen-
tation in a way that has not yet been explored.

It has been suggested that humans use more than one
numerical system when processing numbers. One distinction
has been made between a language-independent system of
number magnitude representation and a language-based system
for stored tables and exact arithmetic knowledge (Campbell &
Clark, 1988; Dehaene, 1992; Dehaene et al., 1999; Lemer,
Dehaene, Spelke, & Cohen, 2003). For example, in a study with
bilinguals, Dehaene et al. (1999) showed that the solving of
arithmetic problems taught using precise calculation depended
on the language in which they were taught, while the solving of
problems taught using estimation strategies did not depend on
the taught language. Precise vs. approximate calculation also
resulted in the recruitment of different brain networks, with
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parietal regions more active during approximate calculation and
left frontal regions more active during precise calculation
(Dehaene et al., 1999). The authors concluded that estimation
makes use of magnitude representations rather than language-
dependent facts. Studies of numerical representation have also
shown that when verbal number representations are unavailable
(e.g., due to verbal interference), adults rely on a non-verbal,
approximate numerical system (Cordes, Gelman, Gallistel, &
Whalen, 2001; Frank, Fedorenko, Lai, Saxe, & Gibson, 2012;
Whalen, Gallistel, & Gelman, 1999).

Numerical representations in the approximate magnitude
system are said to be analogic, which means that representa-
tions preserve the quantity or size for which numbers stand
(Dehaene, 1992; Gallistel & Gelman, 1992; McCloskey, 1992).
This form of representation has been linked to a fronto-parietal
network (Arsalidou & Taylor, 2011; Dehaene, 1992; Dehaene &
Cohen, 1997; Ischebeck et al., 2006). Most of the regions
included in this network are not exclusively sensitive to number
processing; however, parts of the intra-parietal sulcus (IPS) have
been more specifically associated with the analogic representa-
tion of numbers (Arsalidou & Taylor, 2011; Dehaene et al., 1996;
Dehaene, Piazza, Pinel, & Cohen, 2003; Eger, Sterzer, Russ,
Giaraud, & Kleinschmidt, 2003). In a non-human primate study
of numerical information processing, neurons in the IPS and in
prefrontal cortex were found to be sensitive to a specific
numerical value, exhibiting decreasing activation when the
distance between the presented numerosity and the preferred
numerosity for that neuron grew larger (Nieder & Miller, 2004).
This pattern corresponds to the behavioral Distance Effect
(Moyer & Landauer, 1967), which is the increase in reaction
time as the distance between the to-be-compared numbers
decreases. In an adaptation fMRI study in humans, a similar
sensitivity to numerosity was found in the IPS (Piazza et al.,
2004). In this study, participants passively observed a stream of
dot collections with a similar numerosity but different shapes
and spatial distributions. Deviants of other numerosities yielded
larger activation the larger the distance between the adapted
numerosity and the deviant (see also Ansari, Dhital, & Siong,
2006; Cantlon, Brannon, Carter, & Pelphrey, 2006). Piazza et al.
(2004) used non-symbolic numerosities (arrays of dots) as their
stimuli. However, in a later study, Piazza et al. (2007) showed
that when adapting to non-symbolic numerosities, distance-
sensitive dishabituation was observed with symbolic as well as
non-symbolic deviants, and the same was found when adapting
to symbolic numerosities in the form of Arabic numerals. The
authors concluded that the adaptation was to the analogic
representation of numbers that carries the meaning of quantity
(but see Cohen Kadosh & Walsh, 2009, for an alternative
interpretation).

Considering the representations used in mental calculation,
fluency in math and arithmetic has traditionally been thought to
mainly involve fact retrieval from memory (Pellegrino &
Goldman, 1987; Resnick, 1983; Siegler, 1988). However, a num-
ber of recent findings suggest that mathematical performance can
also be related to the precision of the analogic representations of
numbers (Duncan et al. 2007; Halberda, Mazzocco, & Feigenson,
2008; Jordan, Glutting, & Ramineni, 2010; Jordan, Kaplan,
Ramineni, & Locuniak, 2009; Locuniak & Jordan, 2008; Peters,
Slovic, Västfjäll, & Mertz, 2008; Wilson et al. 2006). For example,
Halberda et al. (2008) found that the precision of non-symbolic
quantity representation in 14-year-olds correlated with their
performance on symbolic math tests administered every year
from kindergarten to sixth grade, even when lexical skills and
general intelligence were taken into account. Similar results were
obtained in a study that involved old and younger adults (Peters
et al., 2008). Thus, it seems that fluency in math and arithmetic

problem solving is affected by the quality of analogic representa-
tions of quantities.

Studies of brain activity during engagement in arithmetic
problem solving provide a potential window into the representa-
tional substrates of mathematical cognition. Although a number
of studies have elucidated the brain regions that are involved in
the processing of basic calculations (Dehaene et al., 1999; Delazer
et al., 2003, 2004, 2005; Ischebeck et al., 2007; Ischebeck,
Zamarian, Schocke, & Delazer, 2009; Venkatraman et al., 2005;
Zamarian, Ischebeck, & Delazer, 2009), these studies were not
designed to test the representational products of calculation. For
instance, in agreement with the thesis that fluency in math is
based on fact retrieval, in a series of studies, Delazer and
colleagues (Delazer et al., 2003, 2004, 2005; Grabner et al.,
2009; Ischebeck et al., 2007; Zamarian et al., 2009) demonstrated
that algorithmic calculation, which characterizes complex and
new arithmetic problem-solving, is associated with activation in
bilateral IPS, while fact retrieval, which characterizes familiar
problem-solving, is associated with activation in the left angular
gyrus. The distinction between IPS and the angular gyrus was also
associated with distinction between estimation and exact calcu-
lation (Stanescu-Cosson et al., 2000). Yet, contrary to these
findings, Venkatraman et al. (2005) showed that the IPS was
involved in the process of both exact and estimate calculation of
single-digit addition problems.

In the present study, we extend beyond previous work, and
test whether adaptation to quantities can take place when the
actual to-be-adapted quantity is never presented. We use a
passive viewing task, involving exposure to a series of symbolic
addition expressions that sum to the same number. The resulting
sum is never presented. Following an adaptation period, deviants
are introduced amid the addition expressions. The deviants are
arrays of dots, in which their quantities are varied to be larger,
smaller, or exactly as the adapted sum. Adaptation by itself does
not provide much information about the nature of the adapted
representations. Thus, the choice of non-symbolic notation of the
deviant stimuli serves to test whether the adaptation is to the
analogic representations of quantities. The experimental ques-
tions are (1) whether representations of the arithmetical sum will
exhibit adaptation, and (2) whether adaptation, if it exists, will be
for the analogic representations of quantities.

2. Method

2.1. Participants

Forty participants (20 male) completed the experiment as part of a longer
procedure that included fMRI and behavioral tests before and after training
(reported elsewhere). Participants provided signed consent. For participating in
the entire experiment, participants received $230 in base pay, plus performance
bonuses, for a mean total pay of $317 (range of $285 to $346). All participants
were college students or recent graduates, 18 to 25-years-of-age (mean
age¼20.87). Particularly, they were screened to be non-experts in math, as
operationally defined by a math SAT1 between 600 and 700 (mean¼645, STD¼32)
and a major field of study outside of a math-connected discipline. Participants had
to be right handed, with English as their first language, not taking any prescription
psychotropic medications, and have no ferrous metal in the body.

2.2. Stimuli

Four standard sums were selected: two at the range of 30s (35 and 38) and
two at the 50s (53 and 56). For each standard sum, a list of all possible addition
expressions composed of two double-digit numbers was created (e.g., two
samples for the sum 53 are: 24þ29 and 18þ35). The lists included between 14

1 Math SAT is a general quantitative reasoning test used for selection into
most universities in the US with a mean of approximately 500 and a maximum
score of 800.
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(for sum of 35) and 35 (for sum of 56) expressions. For each sum, seven sets of
deviant stimuli were created. Following the results of Piazza et al. (2004),
demonstrating the logarithmic nature of the distance effect, deviant numbers
were selected to form a log2 scale to make the perceived difference between
larger and smaller deviants for each standard sum equivalent. The deviants were
dot displays in which the number of dots corresponded to one of seven ratios
from the standard sum: 0.50, 0.67, 0.80, 1.00, 1.25, 1.50, and 2.00. Generally,
deviants could contain a number of dots that were close (ratios of 0.80 and
1.25), intermediate (ratios of 0.67 and 1.50), or far (ratios of 0.50 and 2) from the
quantity of the standard sum (ratio of 1.00), and could be larger or smaller than
the sum quantity. The dots were presented in a random array on a 17
(horizontal)#12 (vertical) matrix at the center of the screen that created 204
possible locations. The matrix occupied 64% (width)#60% (height) of the
screen. To control for non-numerical factors, such as overall area and contour,
each dot was randomly selected to be large (1.721), medium (1.331), or small
(.951). The deviant quantities for each sum are detailed in Table 1. All stimuli
were presented as white figures on a black screen. The size of the numbers in
the addition expressions was randomly selected from a range of font sizes from
16 to 28.

2.3. Procedure

The general design followed the design used by Piazza et al. (2004, 2007).
The task was divided into two runs, 5 min and 28 s each. Each run started with a
white fixation cross presented at the center of the screen, which remained
visible throughout. Each run was further divided into two blocks, one from each
range of stimuli (30s and 50s). Alternating between the two ranges ensured that
a new adaptation process started in each block. Using two different ranges also
allowed us to explore possible differences in the population of neurons that
process each range (Eger et al., 2009). In each block, 150 stimuli were presented;
about 14 of them were deviants. Stimuli were presented for 300 ms at a
constant rate of one every 1000 ms. Each block started with an adaptation
period of fifty addition expressions that all summed to the same number (35, 38,
53, or 56), followed by 100 trials that could be either standard (addition
expression that is summed to the same number) or deviant (array of dots). At
least five and at most nine standard stimuli separated one deviant from the
next. A block ended with a 12 s break. The addition expressions appeared at one
of twelve possible locations 7.51 around the fixation cross. Participants were
instructed to pay attention to the expressions on the screen but make no
response. They were told that after the experiment is over they would be asked
some questions about what they had seen. Participants were not informed about
the dots stimuli.

The experiment reported was part of a larger study that included a compar-
ison between experimental and control groups before and after training. The
complete study consisted of nine one-hour sessions and included pre and post
behavioral tests (sessions 1 and 9), pre and post fMRI scans (sessions 2 and 8), and
five training sessions (sessions 3–7). The behavioral tests included the following
tasks: Math Fact Retrieval, Number Comparison, Multi-Digit Arithmetic Fluency,
Dots Comparison, and Complex Math. The scans included two additional tasks
(conducted before the reported task): an fMRI version of the training task, and
another adaptation task that tested tuning curves of symbolic numerals. The
results of the other tasks, as well as results of the post-scan, are reported
elsewhere. The Institutional Review Board (IRB) of the University of Pittsburgh
approved the reported procedure.

2.4. fMRI parameters

Scanning was performed on a 3.0 T Siemens Magnetom Allegra head-only
research scanner. An FDA approved research head coil was used for all of the
scans. Stimulus presentation was controlled using ‘‘E-prime’’ software (Schneider,
Eschman, & Zuccolotto, 2002).

Functional scans were obtained using a standard EPI pulse sequence. Thirty-
eight 3.2 mm thick oblique slices were obtained during the functional scans.
Acquisition parameters used in this study were: TR¼2000 ms, TE¼25 ms, flip
angle¼701, with a field of view of 205 mm. These parameters gave us coverage of
temporal lobe structures as well as full coverage of the parietal lobe. T1-weighted
anatomical images were acquired with a magnetization prepared rapid gradient
echo sequence (repetition time TR¼1540 ms; echo time¼3.04 ms; image
matrix¼2562; voxel size¼1 mm#1 mm#1 mm; 192 slices).

The Analysis of Functional NeuroImages (Afni) package was used to prepro-
cess and analyze the data (Cox, 1996). Data were pre-processed with the
following steps: (1) motion correction by registering all volumes with the third
volume, as well as alignment of all functional volumes for each individual to his/
her anatomy and transforming the anatomy to standard space (NN27); (2) spatial
smoothing using a 5.5 mm full-width at half-maximum Gaussian kernel; (3) scal-
ing signal for each voxel to mean of 100. Next, functional data were concatenated
across the two runs and analyzed with a general linear model (3dDeconvolve).
Regressors for the model included two regressors for a linear decrease during the
first 50 s of each block (one for each range), as well as time onsets for each
deviant type (seven ratios for each range: 30s and 50s) which were modeled with
gamma model (GAM, by Afni). The baseline activity was modeled by linear,
quadratic, and cubic trends, six motion estimates, and a time series from two foci
in the ventricals (Windischberger et al., 2002). Group activation was analyzed
with one-sample t-test of beta coefficients generated in the single-subject
deconvolution process, and a Monte Carlo simulation was used to correct for
multiple comparisons.

Table 1
Deviant quantities for each sum.

Deviant category Ratio Sum 35 Sum 38 Sum 53 Sum 56

Smaller—far 0.5 18 19 26 28
Smaller—intermediate 0.67 23 25 36 37
Smaller—close 0.8 28 30 43 45
Identical 1 35 38 53 56
Larger—close 1.25 44 48 66 70
Larger—intermediate 1.5 53 57 80 84
Larger—far 2 70 76 106 112

Fig. 1. Parietal regions showing a significant (corrected po .01, based upon a
corrected alpha level of po .00005 and a cluster extent of eight or more voxels)
linear decrease during the adaptation periods (first 50 s of each block), collapsed
across 30s and 50s adaptation ranges. Talairach coordinates of crosshair: x¼29,
y¼$63, z¼41.

Table 2
Coordinates of peak activation within clusters that survived an alpha threshold of
po .01 (corrected, based upon an uncorrected alpha level of po .00005 and a
cluster extent of eight or more voxels) for a linear decrease of activation during
the adaptation period, collapsed across the 30s and the 50s adaptation ranges. The
peaks within the clusters were defined as local maxima separated by at least four
voxels.

Cluster location Peak coordinates (Brodmann
area, if applicable)

t value Cluster
size

Right parietal cortex 28, $65, 44 (BA 7) 6.41 157
43, $50, 38 (BA 40) 5.90
29, $55, 35 (%BA 39) 6.53
32, $67, 29 6.46

Left parietal cortex $38, $56, 44 (BA 40) 5.66 120
$28, $61, 35 (BA 39) 6.90

Right middle frontal gyrus 47, 32, 26 (BA 46) 7.26 56
Right precentral gyrus 47, 2, 35 (BA 6) 5.45 39
Left inferior frontal gyrus $40, 8, 29 (BA 9) 5.86 19
Right medial cerebellum 8, $64, $25 6.61 14
Left medial cerebellum $7, $64, $25 5.79 24
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Author's personal copy

3. Results

3.1. Adaptation analysis

Data from the adaptation period were used to determine
whether adaptation occurs in response to repeated representation
of an internally generated quantity. We searched for regions where
activity decreased linearly during the first 50 s of each block.
Significant adaptation effects were found in seven regions: the
right and left parietal lobules (shown in Fig. 1), the right middle
frontal gyrus, the right precentral gyrus, the left inferior frontal
gyrus, and the right and left medial cerebellum (see Table 2).

Given past literature that has implicated parietal cortex with
analogic representation, we first focused on the two parietal
regions identified by the group analysis. The entire volumes of
the parietal clusters were used as masks for further analysis.
Following the procedure reported by Piazza et al. (2004, 2007),
within each parietal region we isolated, for each participant, the
voxel with the largest adaptation effect for each range. As
mentioned, a secondary purpose for using two ranges was to
examine a possible difference in the population of neurons that
process each range. To address this question, we used a MANOVA
approach to determine whether the anatomical distribution of
peak adaptation effects in each hemisphere varied across the 30s
vs. 50s adaptation ranges. No significant differences were found
(see Appendix A.1).

Fig. 2 shows the averaged time course of the Blood Oxygena-
tion Level Dependent (BOLD) signal during the adaptation period,
averaged across blocks and participants, for each of the selected
voxels. Activation increased following the onset of the block,
attained its peak around 12 s (6 TRs) after the stimuli onset, and
then decreased linearly to a minimum at the end of the adapta-
tion period. The activation was higher for a range in the voxel that
better adapted to that range.

To determine whether the adaptation effect varied across the
two hemispheres or adapted ranges, the signal changes (calcu-
lated as raw BOLD value in each TR minus the value in the first
TR) at the peak of the response to the new sum for each block (TRs
5–9) were compared to the signal change values at the end of the
adaptation period (TRs 21–25), with Hemisphere (Left vs. Right),
Preferred Range (30s vs. 50s), Presented Range (30s vs. 50s), and
Phase (peak vs. end), as factors (see shaded areas, Fig. 2). As
expected, the effect of Phase was significant with activation
significantly higher at the Peak than the End of the adaptation
period: F(1, 32)¼41.01, MSE¼ .000, po .0001, Zp

2¼ .56. The overall
signal change in the left hemisphere was significantly larger than
the signal change in the right hemisphere, F(1, 32)¼6.75,
MSE¼ .000, po .02, Zp

2¼ .17, indicating that the initial presentation
of each new sum generated a more robust Peak response in the
left hemisphere. However, the variable of Hemisphere did not
interact with any other variable, implying that representations in
the two hemispheres adapted to the two ranges in a similar
manner. No main effects were found for Preferred Range (F(1,
32)¼1.54, MSE¼ .000, p¼ .22) or Presented Range (Fo1), suggest-
ing that the adaptation process to the two ranges was also similar.
However, the interaction of Preferred Range and Presented Range
was significant: F(1, 32)¼9.4, MSE¼ .000, po .005, Zp

2¼ .23; and so
was the three-way interaction between Preferred Range, Pre-
sented Range, and Phase: F(1, 32)¼77.78, MSE¼ .000, po .0001,
Zp

2¼ .71. The two-way interaction reflected a Preferredness Effect,
such that overall signal change was larger for a presented range at
its preferred voxel. The three-way interaction showed a larger
Phase effect (i.e., the difference between Peak and End) in the
preferred voxel for each range (see shaded areas in Fig. 2). This
interaction shows that the range that was ideal for a voxel
showed higher peak activation but also lower activation at the
end of the adaptation period. This is to say that the Preferredness
effect includes both higher responsiveness and a steeper rate of

Fig. 2. The time course of the BOLD signal during the adaptation period, averaged across blocks, in the voxels that were selected for each participant to show the largest
adaptation effect (increase followed by linear decrease during the first 50 s of each block). Left panels display activation of voxels from the left hemisphere; right panels
display voxels from right hemisphere; top panels display preferred voxels for 30s; and bottom panels display preferred voxels for 50s. Shaded areas denote the Peak and
End phases used in the ANOVA.
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adaptation (see additional comparisons concerning the different
ranges in Appendix A.2). Since the voxels were selected according
to the linear decrease they exhibited to one of the ranges, these
results can be simply explained in terms of a statistical selection
bias, although it is also possible that they reflect an underlying
neural organization that is sensitive to different magnitude
ranges.

To summarize, activation in voxels selected according to their
linear decrease during adaptation period was sensitive to the
adapted range. The lack of significant differences between the two
ranges (30s and 50s) suggests that the adaptation process was
equally effective in the different ranges. Thus, it seems that
participants were adapted to the sums of addition expressions
but the range of the repeated sum did not affect the observed
results.

3.2. Deviants analysis

After confirming that adaptation to sums indeed took place,
we proceed to investigate the nature of the adapted representa-
tions. We therefore examined the response of the voxels,
selected according to their pattern of activation during the
adaptation period, to the deviant dot stimuli that were intro-
duced following each adaptation period. For each of the four
voxels from each individual (one for each range and each hemi-
sphere), the beta coefficients of the gamma model for each ratio-
deviant were extracted. Thus, this analysis involved data that
were temporally independent from the data used for voxel
selection. Moreover, the adaptation was for symbolic presenta-
tions of addition expressions, while the deviants were non-
symbolic arrays of dots.

The analysis included four within-subject variables: Hemi-
sphere (2)#Preferred Range (2)#Presented Range (2)#Ratio
(7). Importantly, the deviant responses across the seven ratios
formed a quadratic pattern: F(1, 32)¼20.96, MSE¼ .313,
po .0001, Zp

2¼ .4. That is, a distance effect was observed: the
further the quantity of dots was from the adapted sum, the
higher the deviant response. The variable of Ratio did not interact
with any other variable (in most cases: Fo1), indicating that the
distance effect observed for a range that was ideal for a voxel was
not significantly different from the distance effect for the other
range, in both hemispheres. No difference was found between
hemispheres and the variable of Hemisphere did not interact
with any other variable. The variables of Preferred Range and
Presented Range showed no main effects (Fso1), but the inter-
action between the two variables, indicating the Preferredness
effect, was significant, F(1, 32)¼14.43, MSE¼ .18, po .001,
Zp

2¼ .31: the conditions in which the voxel that was best adapted
to a specific range and then presented with deviants within this
range showed smaller beta coefficients (mean: .04) than the
conditions in which that voxel was presented with deviants from
the other range (mean: .12), which might be a result of less
adaptation to this range. As mentioned above, however, the
Preferredness effect did not interact with the distance effect.
Fig. 3 shows the pattern of the distance effect in each of the
preferred range and presented range conditions (averaged across
hemispheres). The main effect of Ratio across all condition is
shown in the top-left panel of Fig. 4.

To examine whether the parietal regions are uniquely sensi-
tive to the distance effect, a similar analysis was conducted on
deviant data extracted from the frontal and cerebellar ROIs that
also exhibited significant adaptation effects in the whole-brain
analysis (Table 2). As in the parietal regions, the individual voxels
were selected using the adaptation period data from each parti-
cipant. A distance effect, measured as a quadratic function of
Ratio, was found in the right middle frontal gyrus, right precentral

gyrus, and bilateral cerebellum (pso .05, Zp
2so .34; see Table B.1

and full details in Appendix B). In the left inferior frontal gyrus,
the quadratic function of Ratio was only marginally significant
(p¼ .07). The interaction between Preferred Range and Presented
Range, which indicates the Preferredness effect, was not signifi-
cant at any of the non-parietal regions (ps4 .19), nor were the
interactions of Ratio with any of the other variables. Although a
quadratic function of ratios was demonstrated in most non-
parietal regions, testing the difference of each ratio from the
adapted quantity (i.e., ratio 1), at the four regions showing the
distance effect, revealed a significant difference only for the ratio
of 2 (pso0.05). In contrast, in the parietal regions, ratios of .5, .67,
and 2 differed significantly from the ratio of 1 (pso .05) and the
ratio of 1.5 was marginally significant (p¼ .09). Thus, a greater
distance was required to achieve a significant dishabituation
response to the dot displays in the non-parietal than in the
parietal regions.

3.3. Distance effect at the group level

An additional voxel-wise analysis was done at the group level,
to look for regions that showed a distance effect of deviants from
the adapted sum without a priori constraints on their locus. This
analysis also permitted a comparison between the activation
maps related to adaptation to those related to the distance effect
for the deviants from the adaptive sum. Five clusters exhibiting a
significant distance effect were identified (corrected po .05,
based upon an uncorrected alpha of po0.01 and a cluster extent
of 60 or more voxels) (see Table 3). Two of these clusters
overlapped with significant right frontal and parietal clusters
identified through the group analysis of adaptation effects (see
Fig. 5), indicating that the adaptation and distance effects arise
from shared neural tissue, despite differences in numerical

Fig. 3. The consistent pattern of beta coefficients at the different conditions of
preferred range and presented range, as a function of the ratio of deviants from the
adapted sum, at the parietal regions, collapsed across hemispheres. The signifi-
cance of the distance effect, as a quadratic pattern, was: po .05 for all conditions
except for Preferred-30 s-Presented-30 s (p¼ .1).
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Author's personal copy

notation. No overlap was found for the remaining three clusters,
which localized to the left dorsal precentral gyrus and bilateral
fusiform gyri. Activation in these regions may be due to notation-
specific numerical processing or to non-numeric differences
across the dot displays. No overlap was observed in the left
parietal cortex, which showed the adaptation effect, because the
distance effect in this region did not survive the statistical
threshold for significance in the group analysis.

4. Discussion

In the present study we tested whether adaptation to quan-
tities can take place when the actual to-be-adapted quantity is
never presented. The standard stimuli, to which adaptation was
tested, were addition expressions composed of two double-digit
numbers. The specific addends in the expressions rarely repeated,
thus, any numerically-related adaptation response should be only
to the one repeated aspect in the stimuli, namely, the sum of the
two addends. An important strength of the present study is the
separation between the data according to which voxels were
selected for analysis (linear decrease during adaptation period),
and the data according to which activation in these voxels was
evaluated (sensitivity to the distance of the number of dots
actually presented, from the adapted sum). Thus, deviant stimuli
differ from adaptation stimuli both qualitatively and temporally.

During the adaptation period, an increase followed by a linear
decrease of activation was observed in brain regions known to be
part of the fronto-parietal network that supports processing of
numerical information. Importantly, the region that has been
recognized as mainly associated with the analogic representation
of numbers – the IPS (Dehaene, 1992) – exhibited the largest
adaptation effect, in both left and right hemispheres. The pre-
sence of an adaptation effect by itself does not directly test the
nature of the adapted representations. For instance, one could
claim that adaptation could have been to the repeated addition
expressions per se: just the fact that numbers were presented

Table 3
Coordinates of peak activation and cluster size that survived an alpha threshold of
po .05 (corrected, based upon an uncorrected alpha level of po .01 and a cluster
extent of 60 or more voxels) for the distance effect during deviants periods,
collapsed across the 30s and the 50s adaptation ranges. Asterisks mark clusters
that overlapped with a cluster identified in the group analysis of adaptation effects
(Table 2).

Cluster location Peak coordinates
(Brodmann area)

Cluster
size

Right parietal cortexn 41, $43, 56 (BA 40) 82
26, $61, 26 (BA 7 and 19) 163

Right middle frontal/precentral
gyrusn

32, $10, 59 (BA 6) 72

41, 2, 29 (BA 6) 81

Left precentral/middle frontal gyrus $31, 5, 53 (BA 6) 77
Right fusiform gyrus 38, $37, $13 (BA 37) 109
Left fusiform/middle temporal gyrus $52, $52, $7 (BA 37) 73

Fig. 4. Beta coefficients as a function of the ratio of deviants from the adapted sum (collapsed across preferred and presented ranges) in the non-parietal regions. The
average of left and right parietal regions is presented in the top-left panel, for comparison. The dashed line in Ratio 1 denotes the position of the expected lowest beta
coefficient.

A.Y. Kallai et al. / Neuropsychologia 50 (2012) 2397–24072402



Author's personal copy

could have triggered the increase of activation in number-sensi-
tive regions, and the fact that more numbers were introduced
could ultimately have caused adaptation to ‘‘seeing numbers’’.
However, the results from the deviant analysis provide more
direct evidence about the representational source of the adapta-
tion effect. If adaptation was merely to ‘‘seeing addition expres-
sions’’, no distance effect would have been expected for deviant
stimuli and certainly not one centered on the sum. Since distance
of deviants was measured in respect to the adapted sum, any
sensitivity of the recovery from adaptation to distance from the
sum would imply that adaptation was to that sum and not to the
mere presentation of addition expressions.

A distance effect from the adapted sum was observed in
voxels selected according to the adaptation effect they showed
at the first part of each block. It is worth noting that similar
effects were observed for deviants larger or smaller than the
adapted sum, thus, a greater activity in response to more distant
deviants cannot be attributed to the overall number of dots. Also,
since the analyzed voxels were selected according to the adapta-
tion function they showed, the probability that these voxels
show a distance effect by mere chance is low. The finding that
voxels that showed adaptation to addition expressions also
showed a distance effect to dot deviants provides evidence for
the type of representations that were adapted in response to the
addition expressions. Since deviant stimuli were composed of
non-symbolic dot collections, it can be said that the mental
representations that were internally generated and adapted
during the adaptation period were analogic representations of
the sums’ quantities. Piazza et al. (2007) have already shown
across-notation recovery from adaptation, through the actual
presentation of Arabic numbers and dot quantities. In the
present study however, the to-be-adapted number was not
shown. The distance effect, in this case, indicates that the sums
were calculated – either automatically or intentionally – each
time an addition expression was briefly presented; otherwise, no
adaptation to the sum would take place. In view of these facts,
the adaptation found for the analogic representations of num-
bers in the present study was to numbers generated internally
by participants.

The distance effect in the IPS, shown in Fig. 3, was centered on
the actual sum (ratio of 1) in three out of four conditions. This
result should be considered in light of previous finding showing a
systematic underestimation of the number of dots in a given
display (Izard & Dehaene, 2008). Underestimating the number of
dots should have resulted in the distance effect shifted to the
right (to larger ratios), given that participants would have
perceive the larger number of dots as the actual sum. This was
actually the case for voxels preferring the 50s when deviants for

sums in the 50s were presented. The other three conditions did
not show such a shift, which could be a result of one or both of the
following reasons. First, underestimation might be attributed to
the response selection stage and therefore may not exist in
passive view; and second, the sums might have been under-
estimated too. Regarding the second option, some studies have
suggested the existence of an Operational Momentum: a bias
toward larger outcome values for addition and smaller values for
subtraction problems (Knops, Viarouge, & Dehaene, 2009;
Lindemann & Tira, 2011; Pinhas & Fischer, 2008). Yet, only small
to no operational momentum was found for symbolic addition
expressions using double-digit operands (Knops et al., 2009), and
when carry problems are included (as was the case in the current
study) this can eliminate the effect altogether (Lindemann & Tira,
2011). Thus, we assume that the operational momentum should
not have had an effect in the current study.

A whole brain analysis, searching for sensitivity to distance
from the adapted sum, revealed a distance effect mainly in right
fronto-parietal regions. A similar asymmetry between hemi-
spheres was reported by Piazza et al. (2007), who found a smaller
distance effect in left IPS when the adaptation was to symbolic
stimuli and the deviants were non-symbolic stimuli (see also:
Ansari, 2007; Cohen Kadosh, Cohen Kadosh, Kaas, Henik, &
Goebel, 2007; Cohen Kadosh, Cohen Kadosh, Schuhmann, et al.,
2007; Piazza, Mechelli, Price, & Butterworth, 2006; Piazza, Pinel,
Le Bihan, & Dehaene, 2007). Ansari (2007) suggested that the left
IPS is specialized for symbolic representations of quantity. In line
with this view, Piazza et al. (2006) demonstrated that processing
approximate numerosity correlates with increased activity of a
right lateralized fronto-parietal cortical network, while exact
counting correlates with additional left regions. Since it is reason-
able to assume that, in the present study, the brief presentation of
adaptation and deviant stimuli alike gave rise only to approxima-
tion of numerosity, the asymmetry found in the present study
further supports the conclusions of Ansari (2007) and Piazza et al.
(2006). It is important to note, however, that although not
significant at the group level brain analysis, a distance effect
was observed in the voxels selected from the left parietal regions
according to their adaptation response. Thus, the lack of group
level significance might indicate larger individual variability in
the location of the distance effect in left regions, compared with
right regions. The overlap between distance-sensitive and adap-
tation-sensitive voxels in the group level once again confirmed
the claim that the two analyses are associated: about a third of
the voxels in right parietal and frontal regions that were adapted
to the sums also overlapped with those that showed sensitivity to
the distance of a non-symbolic quantity of dots from the
adapted sum.

Fig. 5. Overlap of group clusters of adaptation to addition expressions and sensitivity to distance in frontal cortex (A) and parietal cortex (B). Blue: linear decrease during
adaptation period (p¼ .00005); yellow: distance effect from the sum (p¼ .01); green: overlap. Talairach coordinates of crosshair in panel A: x¼43, y¼3, z¼27; and in panel
B: x¼28, y¼$66, z¼38.
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The distance-sensitive result was found, to a lesser extent, in
the voxels that were selected according to their adaptation
function in frontal and cerebellar regions. Frontal regions were
also reported to exhibit a distance effect in the study by Piazza
et al. (2007), where shifts between notations were introduced.
The authors suggested that the frontal sensitivity was a result of
awareness to distance that was reached due to the large distance
from the adapted number that was easily noticed. The finding of
frontal number-sensitive regions is also consistent with Nieder
and Miller’s (2004) report on monkey’s processing of numbers.
According to their report, neurons in both parietal and frontal
areas are sensitive to the distance of the presented number from
the preferred number of the neurons, but the parietal activity is
earlier than the frontal activity. Nieder and Miller concluded that
signals from the parietal regions feed forward to frontal regions.
Frontal sensitivity to distance in the present study is interesting,
given that the deviants were highly distinguished from adapta-
tion stimuli in their notation. One could expect that high
awareness of the deviants’ different notation might overshadow
the fine variability between deviants (i.e., the distance of
number of dots from the adapted sum). The distance effect
found in right frontal regions suggests that participants might
have been, at least to some extent, aware of the relation of the
deviants to the sums. This awareness could have been a con-
sequence of behavioral tests, which were given to participants
on the day previous to the scan. Two tests included deciding
whether a presented number was larger or smaller than a
standard number. One task involved symbolic numerals (dou-
ble-digit numbers) and the other involved non-symbolic arrays
of dots. These tests could have raised awareness to the relation
between standard adaptation stimuli and deviants in the
adaptation task.

No previous study has reported the cerebellar nodule to be
involved in number-related or calculation-related tasks (Arsalidou &
Taylor, 2011), possibly due to poor anatomical coverage of this brain
region. The role of the cerebellum in these tasks should be further
examined.

Another aspect of the present study is the use of double-digit
numbers for the sums as well as for the addends in the addition
expressions. The lack of explicit instructions to calculate the sum
of the addition expressions, together with the very short pre-
sentation time of the complex expressions, suggest that any
calculation that took place was not entirely intentional. There is
some evidence for the automatic calculation of sums, as long as
the addends are single-digits numbers. For instance, the auto-
matic addition effect (Lefevre, Bisanz, & Mrkonjic, 1988) and the
associative effect (Winkelman & Schmidt, 1974) are assumed to
be the result of automatic retrieval of ‘‘math facts’’ for single-digit
problems. However, no automatic retrieval is expected for expres-
sions involving double-digit numbers given that these partici-
pants did not have stored facts for these expressions. With no
memory traces to rely on and given adequate time, sums at the
ranges of 30s and 50s could be precisely calculated either by
means of retrieving math facts of the tens and units of the
addition expression, or by calculating the sums using some kind
of an algorithm. However, in the present study, each addition
expression was presented for 300 ms, which is a very short time
for either strategy. With not enough time to use a deliberate
strategy, and no memory traces to be retrieved, we suggest that
the sums in the present study were calculated automatically by
means of estimation.

Estimation has been specifically associated with the IPS and
more generally with the fronto-parietal network (Dehaene et al.,
1999; Stanescu-Cosson et al., 2000), which is the network said to
process numbers meaningfully and is also the network that
showed adaptation in the present study. Delazer et al. (2003),
and Ischebeck et al. (2007, 2006) showed that when solving
untrained arithmetic problems, the fronto-parietal network was
activated, and that following training of new or complex arith-
metic procedures, a training-related shift was observed from IPS
and frontal regions to the left angular gyrus (Delazer et al., 2003;
Ischebeck et al., 2007, 2006), which is a region associated with
math fact retrieval (Dehaene, 1992). In the present study, the
repetition of addition expressions was minimized to avoid the
formation of memory traces. It is important to note that in the
current study, the angular gyrus was found to be sensitive to
neither the adaptation (measured as linear decrease during the
first 50 s of the block) nor to the distance of deviants from the
adapted sum. The lack of sensitivity of the angular gyrus provides
support for the claim that adaptation was to the product of an
estimation calculation and not to stored facts that might have
been used to solve it.

Our findings add to the converging evidence showing that
fluency in math cannot be attributed to fast and efficient retrieval
of math facts stored in long-term memory in every condition.
Correlations between math and arithmetic abilities and the
quality of analogic numerical representation have been shown
in past studies (Duncan et al., 2007; Halberda, et al., 2008; Jordan
et al., 2010, 2009; Locuniak & Jordan, 2008; Peters, et al., 2008;
Wilson et al., 2006). We now show a direct link between
calculation and analogic representation of quantity, by demon-
strating that the spontaneous calculation of double-digit arith-
metic expressions activates abstract analogic representations of
quantity.

To summarize, the present study shows that mere presenta-
tion of addition expressions can drive adaptation to the sums of
the expressions. This finding illustrates that internally gener-
ated sums behave similarly to external stimuli, such as visual
displays of Arabic numerals and dot quantities, as in Piazza
et al. (2007). The fact that adapted regions were sensitive to the
distance of dots stimuli from the adapted sum suggests that the
generated sum corresponded to the analogic approximate
representation of the sum’s quantity. Finally, the conditions
applied in the study (brief presentation, double-digit number
addends, no explicit instructions) suggest that calculation
of the sum of two double-digit numbers – at least approxi-
mately – can be accomplished spontaneously based on mean-
ingful analogic representations. This conclusion supports the
notion that the addition procedure is automatic (Ric & Muller,
2012) and challenges previous conclusions that have empha-
sized the importance of symbolic fact retrieval, associating
automatic calculations (Delazer et al., 2003; Ischebeck et al.,
2007, 2006) and fluency in math (Pellegrino & Goldman, 1987;
Resnick, 1983; Siegler, 1988) mainly with the process of fact
retrieval.
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Appendix A. Investigation of range differences

A.1. Spatial difference between voxels that were adapted for each
range

A secondary purpose for using two ranges (30s and 50s) in
the stimulus set was to examine a possible difference in the
population of neurons that process each range. As can be seen in
Fig. A.1, the distributions of preferred voxels for the two ranges
largely overlapped. Mean and standard deviation of coordinates
for each of the four selected voxels from each individual
(left and right hemispheres for each range) are detailed in
Table A.1. In order to examine the possibility of a systematic
shift of coordinates, two MANOVAs were conducted, one for
each hemisphere. The independent variable in each analysis
was Range (30s vs. 50s) and the dependent variables were
the three coordinate values (x, y, and z). No significant
difference was found between ranges (Fo1 for both hemi-
spheres), which might be a result of the coarse voxel size used
(3.2 mm#3 mm#3 mm).

A.2. Adaptation differences between voxels that were adapted for
each range

In the ANOVA reported in the main text, with Hemisphere,
Preferred Range, Presented Range, and Phase as factors, the three-
way interaction between Preferred Range, Presented Range,
and Phase showed that the Phase effect was slightly larger
for the range of 30s in its preferred voxel (Zp

2¼ .62) (leftmost
column, Fig. A.2), than it was for the range of 50s in its preferred
voxel (Zp

2¼ .48) (rightmost column, Fig. A.2), but this difference
was not statistically significant: F(1, 32)¼2.63, MSE¼ .000, p¼ .12,
Zp

2¼ .08.

Appendix B. Analysis of deviant data extracted from frontal
and cerebellar ROIs

Individual voxels were selected for analysis using the adapta-
tion period data from each participant. The analysis included
three within-subject variables: Preferred Range (2)#Presented
Range (2)#Ratio (7). The results for each ROI are detailed in
Table B.1.

Table B.1
Statistics of ANOVAs conducted on deviant data extracted from the frontal and cerebellar ROIs that exhibited significant adaptation effects in the brain-wise analysis
(Table 2). Distance effect is the quadratic function of Ratio. Preferredness effect is the interaction between Preferred Range and Presented Range. Differences in degrees of
freedom are due to different number of participants missing a voxel that exhibited an adaptation effect above a threshold of t¼ .5 for one of the two ranges.

Region Effect F df MSE p Zp
2

Right middle frontal gyrus Distance effect 16.24 1, 32 .23 .000 .34
Preferredness effect 1.15 1, 32 .24 .29 .04
Distance#preferredness .08 1, 32 .06 .77 .04

Right precentral gyrus Distance effect 4.72 1, 31 .28 .04 .13
Preferredness effect 1.76 1, 31 .17 .19 .05
Distance#preferredness 1.52 1, 31 .06 .23 .07

Left inferior frontal gyrus Distance effect 3.63 1, 28 .16 .07 .12
Preferredness effect 1.08 1, 28 .06 .31 .04
Distance#preferredness 1.85 1, 28 .02 .19 .06

Right medial cerebellum Distance effect 9.53 1, 26 .11 .005 .27
Preferredness effect 1.76 1, 26 .06 .2 .06
Distance#preferredness 3.74 1, 26 .01 .06 .13

Left medial cerebellum Distance effect 8.59 1, 30 .13 .006 .22
Preferredness effect 1.77 1, 30 .17 .19 .06
Distance#preferredness .05 1, 30 .04 .82 .002

Table A.1
Means (standard deviations) coordinates of the preferred voxels for each range in
each hemisphere. The voxels were selected for having the largest adaptation effect
within the parietal clusters identified in the group analysis (see Table 2, Fig. 1 in
the main text, Section 3.1). Uncorrected p¼ .00005, minimum number of voxel: 8).

Range

Hemisphere 30s 50s

Left $29(5), $61(7), 39(6) $31(5), $61(7), 39(6)
Right 34(7), $57(9), 39(7) 35(7), $57(9), 41(5)

Fig. A.1. Distribution of the spatial location of preferred voxels for 30s (gray
circles) and 50s (white squares) in each hemisphere. Each point corresponds to a
preferred voxel of one participant. Axes correspond to Talairach coordinates
(hence, z is the vertical axis).

Fig. A.2. Signal change as a function of peak and end of adaptation period according to
voxel preference (30s vs. 50s) and the presented range (30s vs. 50s), across hemispheres.
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