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Abstract

Many everyday skills are learned by binding otherwise independent actions into a unified sequence of responses across
days or weeks of practice. Here we looked at how the dynamics of action planning and response binding change across
such long timescales. Subjects (N = 23) were trained on a bimanual version of the serial reaction time task (32-item
sequence) for two weeks (10 days total). Response times and accuracy both showed improvement with time, but appeared
to be learned at different rates. Changes in response speed across training were associated with dynamic changes in
response time variability, with faster learners expanding their variability during the early training days and then contracting
response variability late in training. Using a novel measure of response chunking, we found that individual responses
became temporally correlated across trials and asymptoted to set sizes of approximately 7 bound responses at the end of
the first week of training. Finally, we used a state-space model of the response planning process to look at how predictive
(i.e., response anticipation) and error-corrective (i.e., post-error slowing) processes correlated with learning rates for speed,
accuracy and chunking. This analysis yielded non-monotonic association patterns between the state-space model
parameters and learning rates, suggesting that different parts of the response planning process are relevant at different
stages of long-term learning. These findings highlight the dynamic modulation of response speed, variability, accuracy and
chunking as multiple movements become bound together into a larger set of responses during sequence learning.
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Introduction

Many complex skills involve learning to bind discrete,

independent actions into a unified sequence of responses. For

example, consider a novice piano student trying to learn Fur Elise

for the first time. Mastering this simple melody requires learning to

bind many independent hand movements into a well-timed and

unified sequence of actions. After an hour, the student might be

able to pick up small parts of the melody, but mastering the overall

song requires days or weeks of practice.

This sequential learning is a multifaceted process, with both

implicit procedural and explicit conscious components [1–4]. For

example, when imperative cues for an action, e.g., key presses, are

presented in a sequential fashion, the speed and accuracy of the

actions steadily improve with practice [4] even if subjects are not

explicitly aware of the cue ordering [5]. In fact these implicit and

explicit components appear to be consolidated differently [6],

illustrating the role of multiple plasticity mechanisms during

sequential skill learning. The transition from implicit (early) to

explicit (late) learning is thought to reflect different stages of the long-

term consolidation [1,3,6] and likely reflects the recruitment of

different neural systems at different stages of learning [2,3,7–12].

During the explicit stages of learning, performance changes are

accelerated compared to changes observed in implicit stages. This

acceleration with explicit awareness is thought to result, in part, from

associative processes that facilitate identification of relational

patterns between items in the cued sequence [1,13–15]. This

binding of responses is sometimes referred to as ‘‘chunking’’ [13,16–

26]. Of the hundreds of studies on manual sequence learning in

humans, only a small subset have focused on the process of response

binding itself. In a typical ‘‘chunking’’ study, a simple (i.e., 3-12 item)

sequence is used and the repetition structure of elements in the

sequence is manipulated (e.g., ‘‘abcabc’’ vs. ‘‘dacbdc’’). With

practice, the first item in the concatenated set of actions exhibits a

slower response time (RT) than the rest of the elements in the set.

This slowing is used as an index of the segmentation of the learned

chunk [12,13,16–22,25–28].

Several lines of evidence suggest this binding of actions may

happen during the response planning stages or higher executive

decision-making states: (1) chunking is correlated with working

memory capacity, but not simple motor production abilities

[27,29,30], (2) it is context-specific (i.e., chunks of one sequence do

not transfer to another sequence with similar structure [16]), (3)

the structure of chunked responses is not affected by manipulations
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of execution parameters (e.g., target distance, effector)[13].

Although these findings highlight the high level cognitive processes

that may mediate response binding, the simplicity of the sequences

being tested limit our understanding of the capacity of this aspect

of sequence learning.

In addition, most of the behavioral sequence learning studies in

humans have focused on learning-related changes that occur

within, at most, a few days of training. However, outside the

laboratory, complex skills are acquired over the course of days,

weeks or months of training. Indeed, this long timescale of learning

is supported by functional imaging studies showing a transition

from primarily cortical systems early in learning to subcortical

systems, like the basal ganglia, after several days or weeks of

training [2,7–9,11,28,31]. This long timescale is also supported by

studies in non-human animals that also find a long timescale of

consolidation for skill learning [23,24,32,33].

When interpreting behavioral dynamics in sequence learning, it

is generally assumed that the properties of sensorimotor planning

are the same at both short (i.e., 1-2 days) and long (i.e., weeks or

months) timescales of training. However, there is evidence that the

dynamics of sensorimotor planning do not, in fact, change

monotonically over time during sequence learning, but are instead

modulated over the course of long-term training. In songbirds,

infant and juvenile birds learn to acquire the sequential production

of ‘‘syllables’’ in social calls by emulating an adult tutor (see [34]

for review). During early learning, these sequences of calls, or

‘‘motifs’’, are highly variable in both spectral and temporal

structure. Over time these calls crystalize into a well learned and

highly stable song, due in large part to structures analogous to the

human cortico-basal ganglia system, called the anterior forebrain

pathway (AFP)[35]. In the so-called ‘‘sensorimotor phase’’ of

learning, juvenile birds modulate their songs depending on

whether the call is directed at a conspecific female or not. During

the undirected songs the sequential structure of the vocalization

becomes more variable, as does the firing pattern of AFP cells

tuned to the production of the bird’s own song[36–38]. This

dynamic modulation of response variability in undirected songs

acts as a way of exploring the space of vocalizations in order to

maximize learning and identify an optimal song structure most

appealing to mates. Taken together with results from the human

neuroimaging literature [2,7–9,11,28,31], these findings in the

songbird support the hypothesis response planning systems change

across the course of consolidation during extended practice.

Here we set out to describe the dynamics of learning in a

sensorimotor sequence task that is trained across more ecological

timescales of skill learning. We used a bimanual version of the classic

serial reaction time (SRT) task [4], with a complex sequence that was

designed to prolong the transition from implicit to explicit learning

stages as well as evaluate the extent of response binding in a

naturalistic way. During this training we measured behavioral

responses, and modeled the underlying computational dynamics of

response planning across a more ecologically valid time-scale of two

weeks (10 training days). Our results reveal a complex interplay

between movement, speed, variability and accuracy as independent

movements become bound into a singular action plan.

Methods

Ethics Statement
All experimental procedures were approved by the local ethical

review board at the University of Pittsburgh and all participants

provided written informed consent to participate in the study.

Participants
Twenty-five neurologically health adults (16 female, age = 18–

30 years, all right handed), were recruited from the University of

Pittsburgh student population. All subjects were financially

compensated for their time.

Experimental Protocol
All participants were trained for 10 days (five weekdays for two

weeks) on a bimanual SRT paradigm. On each day of training,

participants were seated comfortably in front of a computer

monitor. Both the left and right hand were placed on a 5 key

response glove (PST Inc) and participants were allowed to arrange

these gloves on the table in front of them to maximize comfort and

ease of responding.

All stimulus presentation and behavioral recording was

performed using EPrime2 software (PST Inc). During each trial,

eight response cues were spatially arrayed on the screen. These

cues consisted of white boxes, with four placed to the left of a

fixation cross and four placed to the right (Figure 1a). The fixation

cross was not used to restrict eye movements but only to spatially

separate the cues for the two hands. Each box spatially

corresponded to a key on the response pad (thumbs were excluded

for responses). For example the left-most box corresponded to the

left pinky key and the right-most box corresponded to the right

pinky key. On each trial, a single box would turn green

(‘‘imperative cue’’) to indicate that the participant should press

the corresponding key. Participants were given no instruction

other than to press the key as quickly as possible. If subjects

pressed an incorrect key, all eight boxes flashed red for 200 ms to

provide feedback of the error. There was also a 200 ms interval

between the last response and the following trial cue.

Trial blocks (256 trials per block) were broken into two types of

trials. During Sequence blocks, the trial-by-trial order of the

imperative cue followed a preset 32-item sequence of 6-8-5-6-3-5-

4-1-3-6-8-4-1-2-7-3-1-8-2-7-5-2-4-5-7-3-1-6-8-2-4-7, using the fol-

lowing key mapping: 1 = left pinky, 2 = left ring finger, 3 = left

middle finger, 4 = left index finger, 5 = right index finger, 6 =

right middle finger, 7 = right ring finger, and 8 = right pinky

finger. The sequence structure was explicitly designed to avoid any

‘‘triplet’’ structures that could aid in the detection and learning of

the pattern [14]. At the beginning of each Sequence block, the first

cue would start at a random position along the sequence in order

to reduce detection of the sequence from the first few trials. During

each Sequence block the entire cue sequence was repeated eight

times. In the Random condition, the trial-by-trial ordering of the

cue was presented in a pseudo-random order. This was pseudo-

random because repeated presentations of the same cue were

eliminated so as to make the cue presentation appear as similar as

possible to the Sequence condition. After each block of trials,

participants were given feedback on their mean reaction time and

accuracy. Participants were allowed to continue to the next block

at their own pace.

Each training day was divided into nine testing blocks

(Figure 1b). The first two blocks were Random trials. During

these trials, participants had a maximum response window of

600 ms. If the response was longer than this time, an error signal

was presented to the subject (see above). The next five trial blocks

were adaptive Sequence blocks that reflected the core training

period. These blocks were adaptive because the response window

was shortened on each block based on the mean (mRT) and

standard deviation (sRT) of the reaction times during the previous

block: maximum response time = mRT + sRT. If this value fell

below 200 ms or the accuracy on the previous block fell below

75% correct, this window was reset to the 600 ms default. After

Long-Term Sequence Learning
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the adaptive training blocks, two probe blocks were presented to

test learning related effects in the absence of the adaptive response

window. The first probe was a Random condition, with a 600 ms

maximum response window. The second probe, and last trial

block, was a Sequence condition with a 600 ms maximum

response window.

After each day of training, participants were verbally given a

post-hoc questionnaire by one of the experimenters designed to

assess their explicit awareness of the presence of the sequence. This

questionnaire consisted of four questions. First, participants were

asked ‘‘Did any of the stimuli appear different than the other?’’

Participants who answered ‘‘no’’ were given a score of 0 for that

day and sent home. Participants who answered ‘‘yes’’ were then

asked the second question ‘‘If so, in what way?’’ If subjects failed to

respond with any one of the following key words they were given a

score of 1 and sent home for the day: ‘‘pattern’’, ‘‘sequence’’,

‘‘sequential’’, ‘‘order’’, or ‘‘ordering’’. If subjects responded with

one of the key terms, they then were then asked ‘‘Was the pattern

always present or just occasionally?’’ If participants responded that

the pattern was ‘‘always present’’, then they were given a score of 2

and sent home. If participants responded that the sequence was

only occasionally present, then they were asked the fourth and

final question, ‘‘Can you replicate any part of the sequence now?’’

If the subject could accurately reproduce at least 4 consecutive

items in the sequence by visually showing the experimenter the

movements or verbally recalling them, then the subject was given a

final score of 3.

Data Analysis
All data analysis was restricted to the last two probe blocks (one

Random and one Sequence). The time series of reaction times and

vector of correct/incorrect responses for each trial were extracted

on each day from the two probe blocks separately. For time-series

analysis, missing reaction time values (i.e., response time outside

the maximum response window) were replaced with the mean

value, otherwise these trials were excluded from analysis. To

control for general, non-sequence specific changes in response

speed (e.g., improved simple reaction time), response times during

the Sequence probe was measured relative to the distribution of

reaction times in the Random probe block and reflected as a z-

score: (mRandom – mSequence)/ sRandom. Accuracy was determined

by looking at the percent correct trials during the Sequence probe

block.

To estimate the rate of learning across training days for each

subject, we fit an ordinary least square regression model to the

average day-by-day sequence-specific RTs and accuracy rates.

Because some subjects may asymptote with learning, we fit two

models: 1) a simple linear model (y~bLinearxDayza), 2) and a

quadratic model (y~bLinearxDayzbQuadraticx2
Dayza). A likelihood

ratio test was used to determine when the quadratic model

provided a significantly better fit than the simple linear model.

This also provides a direct test of asymptotic behavior in the

learning rates. In cases where the linear model was the best fit, the

subject’s across-day learning score (l) was estimated as: l =

bLinear. When the quadratic model was the better fit, the subject’s

across-day learning score was determined by summing the linear

and quadratic components of the regression model: l = bLinear +
bQuadratic.

Once the across-day learning measures were taken, we then

looked at the influence of an error on subsequent trial responses.

To do this we calculated the error response function (ERF) during

each probe block, which is an estimate of the degree of post-error

slowing [39–41], by taking the average reaction time of the

subsequent six trials after an error (red vertical lines in Figure 3a).

This number of post-error trials was determined based on pilot

analysis showing no significant effects after 6 trials (see Figure 6).

One ERF was calculated for each subject on each training day.

Separate ERFs were calculated for the Random and Sequence

probe blocks.

In order to look at the inter-trial dynamics of reaction times

during both probe blocks, the first 32-trials (i.e., first sequence run)

were excluded from analysis because these trials often exhibited an

exponential decrease in reaction times during the Sequence probe

block on later training days (see Figure 4a). In addition, the linear

trend in subsequent trials was removed using an ordinary least

squares linear regression approach and the time-series zero-mean.

This vector of response times was then used to look at the inter-

trial correlation (using xcorr.m in Matlab) across the entire length of

Figure 1. The bimanual Serial Reaction Time task. A) Subjects saw eight response cues on a computer screen that were spatially aligned with
each non-thumb finger. Imperative cues (green box) were presented one at a time on each trial and subjects were cued to press the corresponding
key as quickly as possible. B) Example training structure and reaction times from a representative subject (tenth training session). Each dot represents
a single trials reaction time and the vertical bars indicate the breaks between blocks. Horizontal lines within each block show the maximum response
window. See text for experimental details.
doi:10.1371/journal.pone.0047336.g001
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the sequence, i.e., 31 lags. This autocorrelation function was

estimated independently for the Random and Sequence probe

blocks on each day for each subject.

With the autocorrelation of response times, we next estimated

the size of a chunked set of responses by determining the number

of significant, consecutive non-zero lags observed in the Sequence

Probe block for each subject and each training day. On each day,

the null distribution was estimated by taking the across-subject

mean, m(l), and standard deviation, s(l),of the autocorrelation

function, at each lag l, from responses in the Random Probe block.

For each subject we then estimated a one-sample t-test for the

autocorrelation value at each lag, r(l), as

t(l)~ r(l){m(l)ð Þ s(l)
� ffiffiffiffiffiffiffiffiffiffiffi

Nsubjs

p� �{1

. The number of consecutive,

significant t-tests starting at lag = 1 was then as an estimate of

sequence chunk size. Significance was estimated using a

Bonferroni corrected alpha for 31 comparisons, i.e., the length

of the autocorrelation function for each subject and each day.

State-space Model
Finally, we modeled the trial-by-trial dynamics of response

planning using a linear dynamical systems approach that has been

described elsewhere [22,23]. This state-space approach uses the

expectation and maximization algorithm to fit the parameters of a

model of the dynamics of an unmeasured internal state, Xt, based

on observable output values, Yt, and input values. In our case, the

internal state reflects the preparedness to make a fast response on

the next trial. We modeled the response preparedness dynamics

for each Sequence probe block and each subject using the

following equations:

State Update

Xtz1|ffl{zffl}
ReponseState

~ AXt|{z}
State

Memory

z ½b1:::b8�

Yt(1)

:::

Yt(8)

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Response
Prediction

z Fet|{z}
Error

Correction

z N(0,Q)|fflfflfflffl{zfflfflfflffl}
State
Noise

ð1Þ

Output

Yt|{z}
ReactionTime

~Xtz ½d1:::d8�
kt(1)

:::

kt(8)

2
64

3
75

Cue

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Response

Bias

z N(0,R)|fflfflffl{zfflfflffl}
Motor
Noise

ð2Þ

On each trial, the reaction time, Yt, is a function of the unseen

response preparedness state, Xt, and the response bias, D, to each

stimulus cue, K, plus motor noise, R. We modeled the response

bias of each key separately so D is a 1x8 vector of response bias

weights and K is a 8x1 binary vector where kt(i) = 1 if the ith cue is

presented, otherwise kt(i) = 0. After each trial, the internal

response preparedness state is updated based on: 1) a degree of

retention of the previous trial’s state, A; 2) the influence of the

reaction time on the previous trial, B; 3) the influence of an error,

F, on the previous trial; 4) internal state noise, Q. In the state

update, the Y vector is a binary vector indicating which key was

pressed on the previous trial, regardless of its accuracy, and et is a

binary scalar that is 1 if the previous response was an error and 0 if

it wasn’t.

An expectation-maximization algorithm was used to estimate

the free parameters A, B, D, F, Q, and R based on the observable

vectors of reaction times, Y, and errors, E, from each trial [24]. In

this way, the free parameters and the estimated internal state

vector, X, are all in units of reaction times, i.e., milliseconds.

Negative values for Xt reflect trials where the participant is

prepared to make a faster response than the mean (i.e., ‘‘prepared’’

trials), while positive values are trials where the response is delayed

relative to the mean (i.e., ‘‘hesitation’’ trials).

Results

Response times and accuracy
Two subjects were excluded from the final analysis for failure to

complete all 10 days of training. The post-hoc questionnaires

showed a steadily increasing awareness of the presence of the

sequence across training days (Figure 2a; repeated measures

F(22,207) = 30.68, p,0.001). A score of 2 indicates transition

from implicit to explicit detection of the sequence, since this is the

point where participants are aware of the presence of a pattern on

some blocks, but cannot explicitly relay a 4-item chunk. On

average the group passed this awareness threshold after Day 5 of

training.

Sequence-specific response times showed a steady improvement

across all 10 training days (repeated measures F(22, 207) = 59.39,

p,0.001). Figure 2b shows the distribution of sequence-specific

response time changes (see Methods, Data Analysis) across subjects

for each training day. Learning does not appear to asymptote by

the end of training. All but one subject (p = 0.034) failed to show a

better fit with the quadratic model than the simple linear model;

significance for that single subject disappears after adjusting for

multiple comparisons (see Methods, Data Analysis for details).

Therefore, individual subject across-day learning rates on response

times (lRT) were modeled with a simple linear equation.

Accuracy scores during the Sequence probe block also showed

improvement across training (Figure 2c; repeated measures F(22,

207) = 40.94, p,0.001). However, unlike response times, accu-

racy rates appeared to plateau after the fifth day of training, where

participants performed at a constant 93–95% accuracy for the last

week of training. Only one subject had a non-significant likelihood

ratio test for the quadratic model (p = 0.174). For all other subjects,

the across day learning rates on accuracy were better fit by a

quadratic model than a simple linear model (all p’s , 0.0017).

Therefore, we chose to use the quadratic model to quantify each

subject’s rate of change of accuracy across training (lAcc).

An inspection of the single-subject learning rates for both

response time and accuracy (Figure 2d) reveals both highly

significant learning at the group level and substantial inter-subject

variability (lRT = 0.357 +/-0.167, lAcc = 3.46+/-2.22; mean +/-

standard deviation). Despite the range of individual variability in

learning rates, participants appeared to change their speed and

their accuracy independently. While the direction of the correla-

tion between lRT and lAcc was negative, as expected from a

speed-accuracy trade-off, it did not reach statistical significance

(Spearman’s r = 20.18, p = 0.18). This lack of correlation in the

learning rates suggests that response speed and response accuracy

are learned at independent rates in this sample.

Long-Term Sequence Learning
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Response variability and learning
Computational models of sensorimotor control [42,43] and

animal models of sequential learning [37,38] suggest that

variability in the planning process can play a critical role during

learning. We looked at how variability in response times changed

across the training period in both the Random and Sequence

Probe blocks (Figure 3a). In the Sequence condition, we found a

consistent increase in movement variability across all training days

(repeated measures F(22,207) = 4.50, p,0.0001). This increase in

variability appeared to be selective to the sequence condition, since

no such change was detected in the Random probe (dashed lines

in Figure 3a; repeated measures F(22, 207) = 1.18, p = 0.309).

If this expanded response variability was related to the across-

day learning rates, then individual differences in response

variability should predict individual differences in learning rates,

i.e., does more variability on early training days correlate with

faster improvements in response times across the entire training

period? To test this we correlated each day’s response time

variability with the across-day learning rates for each subject

(standard deviations were estimated using a bootstrap with 1000

iterations, [44]). During the early phase of training (Days 2–7),

movement variability had a strong positive correlation with overall

response learning (black lines, Figure 3b). As training progressed

(Days 9–10), response variability went from being advantageous

for reaction time learning, to being counter-productive. An

opposite, albeit weaker, pattern was observed for the relationship

between response variability and accuracy learning rates (red lines,

Figure 3b). At the early phase of learning (Days 3–7), greater

variability correlated with less accuracy learning. At later stages of

learning, reaction time variability had no relationship with across

day learning rates for accuracy.

This pattern of correlations between response variability and

learning suggests that optimal learners expand their movement

variability early in the learning process (i.e., before Day 8), albeit

with a slight cost to accuracy, and contract variability at later

training days. To explicitly test this, we categorized subjects as

being either high or low learners on both lRT and lAcc separately.

This categorization was done by performing a median split on the

learning rate scores. Consistent with the lack of correlation

between lRT and lAcc, only 39% of our participants were found to

be overall high or low learners (i.e., have high lRT and high lAcc

scores or have low lRT and low lAcc scores). The remaining

subjects were evenly split between a primarily speed-based

learning strategy (i.e., high lRT and low lAcc, 30.4%) or an

accuracy-based strategy (i.e., low lRT and high lAcc, 30.4%).

For each learning type (lRT or lAcc) we looked at how high and

low learners modulated their reaction time variability across

training. Consistent with our predictions, for high versus low lRT

participants, we found that the better learners showed an initial

rise in movement variability during the early phase of training

(Days 2–6) followed by a sharp drop in variability on later training

days (solid lines, Figure 3c). In contrast, low lRT learners showed a

Figure 2. Performance changes across the training period. A) Mean and standard error of the report scores to the post-hoc questionnaire for
each training day. Dashed line shows the explicit detection threshold. B) Whisker plots showing the distribution of response time changes for each
day of training. The box edges show the upper and lower quartile ends (i.e., the 25th and 75th percentile), while the whisker lengths show the 90%
confidence intervals and the red crosses show outliers beyond the confidence interval. The horizontal red line shows the median. C) Same plotting
conventions as B, but for the percent correct trials during the Sequence probe block. D) Distribution of subject learning rates for response times (lRT)
and accuracy (lAcc). Errorbars show the 95% confidence interval across subjects.
doi:10.1371/journal.pone.0047336.g002
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monotonic increase in movement variability across training. This

between-group difference in movement variability was not found

when participants were split based on lAcc scores (Figure 3d),

although the mean for the high learners was slightly lower than the

mean for the low learners during the early phases of learning as

predicted by Figure 3b. These findings suggest an advantageous

learning strategy, at least for response speed, that involves

expanding the variability of planned responses during early stages

of training followed by reduced movement variability as sequence

structure crystallizes.

Emergence of the post-error slowing
As skills become consolidated, particularly cognitive skills that

monitor performance, the presence of an error can introduce a

characteristic slowing of subsequent trials [39]. This effect is

sometimes referred to as a post-error slowing and may reflect

either conflict monitoring [40] or reorienting processes [41]. This

effect could also be consistent with a response-binding hypothesis,

since subsequent responses are no longer independent motor plans

but part of a larger meta-motor plan and disrupting the motor

plan may carry over to subsequent behaviors. To measure this

effect across subjects, we calculated the average reaction time

across subjects and training sessions after an error (Figure 4). This

is referred to as the error response function (ERF). During the

Sequence probe block, errors had increasing influence on

subsequent response times (Figure 4a). This is shown as both a

main effect of training day (repeated measures F(9,990) = 15.42,

p,0.001) and a Day-by-Lag interaction (repeated measures

F(45,990) = 6.54, p,0.001) in the ERF. By the end of training,

a single error could delay response times of up to 4 trials

(Figure 4b). This effect only occurs during the Sequence probe

block, as no such pattern is present when the same analysis is

performed on responses during the Random probe condition

(Figure 4c,d), and there is no significant Day-by-Lag interaction on

the ERF (repeated measures F(45,990) ,1). Thus, as with higher-

level cognitive skills, we also see evidence of post-error slowing in

our sensorimotor sequence learning task.

Response binding
Neural models of sequence learning suggest that learning

happens by binding independent responses together in a unified

action plan [15,45]. Typical approaches to measuring response

chunking in the context of the SRT involve looking for signatures

of response boundaries in the response times [13,16–22,26]. The

logic of this approach is that, if a set of items is bound together and

separated from a second adjacent set, then the first item in a

chunked sequence of responses will be significantly slower than the

rest of the items in the set [21]. Such an approach is simple when

dealing with small and specifically constructed sequences so as to

highlight easy-to-define chunk boundaries. However, the com-

plexity of the sequence used here precludes this style of analysis

because it was constructed so as to minimize obvious structures

that would facilitate detection of the sequence (see Methods).

Therefore, we developed a novel analytical approach based on

two assumptions: 1) as internal response plans become coupled

(i.e., dependent) their output should become more correlated, 2)

execution/motor noise is independent across trials. We can think

of the responses across trials as a chain of random variables

consisting of internal plans (x) and observable responses (y), where

yt~xtzN 0,sMotorð Þ (Fig 5a). Probability theory holds that the

joint probability of any two responses is

P ytz1\ytð Þ~P ytz1Dytð ÞP ytð Þ:

Before learning, each plan is independent from another, i.e.,

P xtz1\xtð Þ~P xtz1Dxtð ÞP xtð Þ~P xtz1ð ÞP xtð Þ;

however, as two temporally adjacent plans become bound together

P xtz1Dxtð Þ=P xtz1ð Þ and the properties of the two responses

become correlated. Since yt+1 is defined by xt+1, the resulting

output should also exhibit this dependency. This property extends

across multiple responses according to the chain rule, such that

Figure 3. Relationship between response variability and learning rates. A) Variability of response times for both probe blocks. Errorbars
show standard error across subjects. B) Correlations between individual subject learning rates, lRT and lAcc, and reaction time variability on each day.
Errorbars show standard deviation from bootstrap simulations (1000 iterations). Asterisks show significant one-sample t-tests (from a null of r = 0),
after adjusting for multiple comparisons (Bonferroni correction for 10 comparisons). C) Response time variability during the Sequence Probe block for
high and low response time learners. Errorbars show standard error across subjects. D) Same as C but with subjects separated by accuracy learning
rates.
doi:10.1371/journal.pone.0047336.g003
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Therefore multiple key presses that reflect a shared internal

command should exhibit an increased correlation in their trial-by-

trial responses.

If this is model is true, then adjacent responses should become

correlated with each other across training in the Sequence Probe

condition. To illustrate this we simulated a simple motor planning

system where on each trial the response plan is estimated as

xt~axt{1zN mP,sPð Þ, and the motor output is

yt~xtzN 0,sEð Þ. In this simulation we set mP = 200 ms, sP

= 10 ms, and sE = 10 ms. We then tested a range of inter-trial

binding parameters, a, from statistically independent across trials

(a = 0) to strongly coupled (a = 0.75). For each binding

parameter, we ran a set of 100 simulated blocks, with 1000

simulated trials per block.

Figure 5b shows the autocorrelation function for the simulated

responses, y, from this simulated experiment. As the binding

parameter between internal plans gets stronger we see a peak

emerge in the autocorrelation function. This peak in the response

time correlation function can then be used as an index of response

chunking across plans. To specifically test this approach, we

isolated the linear component of the Sequence probe block

(Figure 5c), removed the slow linear trend, and looked at the

autocorrelation of the residual response time vector. Consistent

with the binding hypothesis, we detected a consistent pattern

emerging in the autocorrelation function across training days in

the Sequence probe block (Figure 6a,b). A two way repeated

measures ANOVA detected a significant Day-by-Lag interaction

(F(288,6336) = 3.44, p,0.001), consistent with a learned peak in

the autocorrelation function across training. This effect appears to

be mainly expressed during the Sequence probe block. An

identical analysis performed on the preceding Random probe

block found a much smaller interaction (Figure 6c,d; Day x Lag

interaction F(288,6336) = 1.16, p = 0.035) however this compar-

ison did not pass significance after a Bonferroni correction for

multiple comparisons (adjusted p = 0.025).

When we isolate the autocorrelation function in the Sequence

Probe for the first, middle (Day 5) and last (Day 10) training day,

we see significant correlations extending out to 7 lags by the end of

training, suggesting that the response time on one trial significantly

predicts the response time 7 trials later (Figure 6b). In fact, we can

use the number of statistically significant lags from lag = 1 as an

index of set size in the bound sequence (see Methods). We found

that the hill in the autocorrelation function asymptotes at the end

of the first week of training at ,7 lags (Figure 7a; repeated

measures F(22,207) = 2.011, p = 0.04).

It is common in SRT studies to assume that learning related

improvements in overall response time are related to response

chunking, i.e., actions get faster because response plans are getting

Figure 4. Emergence of post-error slowing with training. A) Post-error slowing shown using the error response function (ERN) for 6 trials after
an error and each training day. Data are shown as one-sample t-tests across subjects. B) Mean and standard error ERN across subjects for the first (Day
1), middle (Day 5) and last (Day 10) day of training. Each value shows the average response time, in milliseconds, at six different lags relative to the
block mean value for that day. C) Same as A for responses during the Random probe block. D) Same as B, but for Random probe block trials.
doi:10.1371/journal.pone.0047336.g004
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bound together. If this is true, then we should see a correlation

between the size of a response chunk and sequence specific

response times. We tested this using bootstrapped regression to

model the relationship between chunk size and response time

scores on each day. While overall response times correlated with

chunk set sizes early in learning (Days 2–5), this relationship

disappears on later training days once chunk size asymptotes

(Figure 7b). This utility early in learning resembles patterns seen in

the relationship between response variability and across-day

learning rates (see Figure 3). So we ran the same analysis using

response time variability on each day as the dependent variable.

As expected we also see a similar phasic relationship across the

training period, albeit much noisier than when average response

times are used as the dependent variable (Figure 7c). Therefore,

both the mean and variability of response times are only associated

with the size of a chunked set early in training.

Finally, as mentioned in the previous section (Results, Emergence

of the post-error slowing), the presence of a post-error slowing might

reflect the consequence of disrupting a bound sequence of

responses. If this is correct, then we should see a consistent

correlation between the magnitude of the post-error slowing and

size of the chunked set. To test this, we took the average response

time after an error for each subject and each day and correlated

these values against chunk sizes on that day. This correlation

pattern was nearly identical to that observed with the mean

response times, where the significantly positive associations on

Days 3–5 of training.

Trial-by-trial dynamics of learning
The autocorrelation in response times and the increased post-

error slowing with training are consistent with a response-binding

hypothesis with learning. The conceptual model in the previous

section (Results, Response biding) posits only a dependency between

adjacent response plans. However, there are many possible

features from which a response planning system can learn [46].

Therefore, to come up with a conceptual understanding of the

underlying dynamics that link consecutive trials together, we

adopted a state-space modeling approach that simulates the trial-

by-trial dynamics of the response preparation process (see

Methods, State-space model). This model fits in a class of state-space

models of internal response planning [7,42,43,47–49] rather than

the dynamical control models used to explain repetitive or

oscillatory behavior [50].

Using the time-series of reaction times and the error-feedback

signal on each trial, we modeled the dynamics of a simulated

response preparation state, Xt (Methods, Eq. 1), and the adaptive

response dynamics of the behavioral output, Yt (Methods, Eq. 2).

This reflects a more sophisticated model than the qualitative

Markov-Chain model used above (see Results, Response binding). An

example simulation during a Sequence probe block for one subject

is shown in Figure 8. Normally these types of dynamic models are

Figure 5. Outline and predictions of the response binding hypothesis. A) Before learning, the internal plan (x) on each trial (t) is temporally
independent as is each response time (y). With training (gray lines) each command becomes dependent on the properties of the previous trial,
forming a chunk. B) Autocorrelation functions for simulated trials using the model shown in A and different inter-plans binding terms (a). C) Example
Sequence probe block from a single subject (same data as Figure 1B). Each blue dot shows a single trial reaction time. The gray window shows the
first cycle of the sequence that was excluded from the autocorrelation analysis. The dashed black line shows the linear trend line that was removed
before autocorrelation analysis. Each vertical red line shows an error trial.
doi:10.1371/journal.pone.0047336.g005
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used to model the sensorimotor system’s adaptive dynamics to

learn a new mean output after a perturbation [42,47,48]. Here, we

used this dynamical systems approach to model how the system

learns to be more or less prepared to make the subsequent

response.

Figure 8 shows the free parameters of this state space model

across training. In the state update part of the model (Methods,

Eq. 1), there are four parameters: state memory (A), response

prediction (B), error correction (F), and state noise (Q). The first

term we looked at was the state memory parameter (A), which

measures the degree to which the previous state on trial, t,

influences the subsequent trial, t+1. This is analogous to the

binding parameter, a, used in the previous model (see Results,

Response binding). With training, the state memory term gets

stronger (repeated measures F(22, 207) = 5.86, p,0.001;

Figure 9a), meaning that the previous state has a much stronger

influence on the preparedness of the following trial. The asymptote

in state memory values means that by the last day of training it

only takes a few trials for subjects to transition between fast and

slow states because the previous state has a much stronger

influence on subsequent response plans.

The response prediction term (B) captures the degree to which a

response at a single key on one trial influences the preparedness for

making a response on the subsequent trial. So, rather than having

preparedness states being associated across trials, the executed

action influences subsequent preparedness states. For example,

how does making a fast response with the left index finger make a

subject more or less prepared to make a response on the next trial?

This parameter also showed a strong training effect, illustrated by

a significant main effect of training day (Figure 9b; repeated

measures F(9,1386) = 4.47, p,0.0001). This means that the

influence of a single key press on the subsequent response state was

stronger with longer training. This effect appeared to be expressed

equally for all response keys, since we did not detect a significant

main effect of response key (repeated measures F(7,1386) = 2.07,

p = 0.050) and only a small day by response key interaction

(repeated measures F(63,1386) = 1.60, p = 0.0024, Bonferroni

corrected threshold p = 0.0084). Therefore, consistent with the

increased association of adjacent responses during the Sequence

probe trial, we see an increased internal prediction of future

response states with training. Being faster on one trial means that

subjects were faster on the next trial, while being slower on a trial

slowed down the following trial response.

The error corrective term (F) measures the influence that

committing an error on one trial has on the preparedness to make

a response on the following trial. This parameter should reflect the

degree of post-error slowing. As expected, F also showed a strong

training effect (Figure 9c; repeated measures F(22,207) = 12.30,

p,0.01). In this case, the presence of an error on one trial slowed

down the response state. By the end of training a single error could

delay the internal state response by ,15 ms. This effect gets

compounded across trials because of the increased state memory

(A), likely reflecting the multi-trial effect seen in the ERF (Figure 7).

The state memory, response prediction and error-corrective

parameters are the terms in the state model that best capture

learning related changes on a trial-by-trial basis. We wanted to see

whether changes in these terms with training were correlated or

learned independently. To simplify analysis, we created a

Figure 6. Autocorrelation of response times across the training period. A) Heatmap of the autocorrelation functions for each training day
and lag value. Data is presented as one-sample t-test values across subjects. B) Mean and standard error autocorrelation functions, across subjects, for
the first (Day 1), middle (day 5) and last day of training (Day 10). C) Same as A for responses during the Random probe block. D) Same as B, but for
Random probe block trials.
doi:10.1371/journal.pone.0047336.g006
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composite response prediction score for the first and last day of

training by averaging across all response key values. Learning

changes were assessed by subtracting scores on the first day of

training (Day 1) from the last day of training (Day 10). All three

scores showed highly significant learning effects (A: t(22) = 7.93,

p,0.001; B: t(22) = 5.45, p,0.001; F: t(22) = 6.17, p,0.001),

however we did not detect a significant correlation between

changes in A & B (Spearmans r = 20.27, p = 0.09), A & F

(Spearmans r = 0.07, p = 0.348), or F & B (Spearmans r = 0.11,

p = 0.313),. Thus changes in state memory, response prediction

component, and the error-corrective component appear to occur

at different rates.

Finally the state noise term (Q) estimates the internal variability

in the response planning system. This parameter also showed

significant training effects, such that later training sessions had

more noise (Figure 9d; repeated measures F(22,207) = 3.64,

p,0.01). While at first this may seem antithetical to increased

learning, it has been well established that state noise is correlated

with increased state learning [43]. In this way, feedback learning

results in a more energetic internal state that also increases the

noise of the planning system. This pattern also follows the overall

change in reaction time variability that we observed (Figure 3a).

In contrast to the internal state, the response bias term (D) in the

output portion of the model failed to show slightly less consistent

learning effects (Figure 9d). This term reflects the inherent output

bias for each finger; i.e., is the left pinky faster than the right index

finger? While there was a significant main effect of training day

(repeated measures F(9,1386) = 3.54, p = 0.0004), there was a

much stronger main effect of response key (repeated measures

Figure 7. Estimated chunk size and relationship to other behavioral changes. A) Mean and standard error of estimated chunk size based on
the autocorrelation for each day. B) Regression values for the relationship between chunk size and mean response times. Error bars show the
adjusted 95% confidence intervals generated using a bootstrap method and after correcting for 10 comparisons. Asterisks show significant effects.
Dashed line shows the null mean (i.e., 0). C) Same analysis as B but for chunk size and response time variability. D) Same analysis as B, but for the post-
error slowing (PES) effect using the first lag after an error as an index PES.
doi:10.1371/journal.pone.0047336.g007

Figure 8. The simulated response state (top panel) and output
values (bottom panel) during the Sequence probe block for an
example subject at the beginning of training. Negative states
reflect a system prepared to make a faster output response. Positive
states reflect a slower, more cautious system.
doi:10.1371/journal.pone.0047336.g008
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F(7,1386) = 55.78, p,0.0001). The training day by response key

interaction was also significant (repeated measures F(63, 1386)

= 2.28, p,0.001). However, most of the training effects appeared

to stem from changes that occurred after the initial training session

(Day 1). If this day is removed from analysis, we still observed a

very strong main effect of response key (repeated measures

F(7,1386) = 54.75, p,0.0001), however the main effect of training

day disappears (repeated measures F(8, 1386) = 1.21, p = 0.30).

Post-hoc tests reveal that the main effect of response key is driven

by faster responses with the pinky fingers and index fingers than

the ring or middle finger. So while there is a consistent response

bias such that certain key presses are easier to execute than others,

there was no effect of training on the simple motor execution. This

is consistent with the lack of training effects observed during the

Random probe condition.

While the response bias term failed to show significant training

effects, we did see a steady increase in motor noise (R) across

training sessions (Figure 9e; repeated measures F(22,207) = 6.46,

p,0.0001). This term shows the noise in the motor plant that

executes an action. Similar to the state noise term, the motor noise

term increased with training, suggesting a more variable output

with training. Again, this is likely a bi-product of the increased

trial-by-trial dynamics of the internal state and its carry-over to

Figure 9. State-space model results. A) Whisker plots showing the change in the fitted state memory term (A) across training days. Data
presented as inverse parameter values to reflect time to change state (in trials). Same plotting conventions as Figure 2a,b. B) Heat map of average
response prediction term (B) across training. C,D) Whisker plots of the error correction term (F) and state noise term (Q, in variance units) respectively.
Same plotting conventions as A. E) Heat map of the average response bias term (D) from the output equation (Methods, Eq. 2). F) Whisker plot of the
motor noise term (R, in variance units) across training day. Same plotting conventions as A.
doi:10.1371/journal.pone.0047336.g009
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downstream execution processes as has been shown in previous

studies [43,47].

Discussion

We found that prolonged training on a complex, bimanual SRT

paradigm results in continued behavioral improvements across

two weeks of training. Based on the post-hoc questionnaire,

subjects transitioned from being unaware of the sequence to being

aware of its presence on certain blocks of trials after 5 days of

training. This coincided with an asymptote of accuracy rates, but

not response times. Indeed, our measure of sequence specific

response time changes showed continued improvement up to the

last day of training. Analysis of across-session learning rates

suggests that response speed and response accuracy are learned

independently. For learning of response speed, an optimal

performance strategy appears to be to quickly expand response

time variability during early phases of learning and then contract

this variability at later stages of learning. Consistent with a

response binding hypothesis [15,21], we observed the emergence

of both a post-error slowing [39] and increased correlation in

response times across trials. The size of the chunked set asymptotes

at ,7 trials after the first week of training, despite continued

improvements in response speeds into the second week of training.

Using a state-space model of the internal planning processes, we

confirmed that as learning crystallizes, subjects exhibit greater

dependency between the plan on one trial and the plan on

subsequent trials (i.e., increased state memory) as well as the ability

to both predict future responses and exhibit a greater penalty in

subsequent response times for committing an error. Taken

together, these results show how complex sequential skill learning

is a highly dynamic process at long timescales of training, with

multiple component processes that lead to performance improve-

ments at different stages of the training process.

Evidence of response binding during sequence learning has

previously been demonstrated within shorter training ses-

sions[13,14,16–22,25,26]. Koch and Hoffmann (2000) showed

how chunking is partially based on relational patterns in the

stimulus presentation itself. For example, the triplet ‘‘1-3-1’’ is an

easy three response pattern to both consciously detect and bind as

a unified response. Our sequence was constructed to minimize

these types of easy to detect cues. First, we extended the sequence

length to be much longer than the typical pattern used in an SRT

task. Second, we started each sequence block at a random position

in the list, so as to not always begin each block of trials with the

same key presses. Finally, we explicitly generated a sequence

pattern that did not contain any triplet structures so as to minimize

observable relational patterns. This is likely why the post-hoc

questionnaire showed that subjects were unaware of a sequential

ordering of the stimuli until after several days of training, rather

than within the first or second training session. However, despite

these measures several aspects of the task encouraged explicit

awareness. The direct error signals, the discrete blocking of

Random and Sequence trials, and even the post-hoc questionnaire

itself could all serve as distinct clues to the presence of the

sequence. So while our definition for moving from implicit to

explicit strategies was the ability to detect a pattern of cues on

specific blocks of trials (i.e., a questionnaire score of 2), this is in

fact a fairly conservative threshold. It is entirely possible that

simply being aware of the presence of a pattern may engage more

explicit learning systems. In addition, as skills become automatic,

there is a return to an implicit strategy during the execution

process (for review see [3]). Since we did not test for automaticity

(e.g., adopt a dual task probe), we cannot be sure if this return to

implicit strategies took place within the 10 day training period.

Future studies should focus on disentangling verbal awareness

from automaticity with long-term training, in order to better

understand the dynamics that lead to response binding during skill

learning.

Based on the autocorrelation results (Figures 6 & 7a), by the end

of training, up to seven discrete key presses had become correlated

across time. This item length is particularly interesting given its

similarity to the 7+/2 2 item limit of the working memory in the

classic digit span measure [51]. Indeed, working memory appears

to be critical for general sequence learning [29] and correlates with

the magnitude of chunk boundaries using more traditional chunk

estimation methods [30].While this may suggest a strong working

memory component in the high-level explicit learning of the

sequence structure, it should be pointed out that the autocorre-

lation functions in our sample did not appear to asymptote by the

end of training. Thus further training may broaden this item span

beyond the ‘‘magical’’ 7+/2 2 length. However, it should be

pointed out that even training on the digit span task can

dramatically increase the working memory span length as well

[52].

Although response chunking is assumed to be a key mechanism

in response time improvement, we only detected correlations

between chunk size and overall response speed in the Sequence

Probe blocks during the early training days (Figure 7b–d). At first,

this pattern of results may suggest a transitional relationship

between chunk size and response times. However, this pattern may

also indicate a lack of true relationship between these variables.

Unlike the movement variability results shown in Figure 3, chunk

size has a clear asymptote at the end of the first week of training. If

chunk size and response times (or post-error slowing) are linked

through a common third variable, but not directly to each other,

then any correlation between these variables would quickly

disappear once the chunk sizes asymptote. Without more

sophisticated analysis, we cannot rule out this possibility when

interpreting these results.

The post-error slowing with training is also particularly

interesting because this is typically interpreted as the result of

conflict monitoring [40] or reorienting processes [41]. While we

interpret our findings in the framework of a response-binding

hypothesis, we cannot rule out the possibility that this slowing

reflects a high-level monitoring of errors. In fact, error-corrective

learning is thought to be a key component of the sequence learning

process (see [3] for a review). Conflict models of post-error slowing

propose that this arises from monitoring of planning errors, for

example, when you make a plan to hit the ‘‘k’’ key on a computer

keyboard but it is not the appropriate character for the word you

are typing (as opposed to execution errors like planning to press

the ‘‘k’’ key but seeing ‘‘j’’ appear on the screen instead). The

monitoring of planning errors is thought to be mediated primarily

by connections between the anterior cingulate gyrus and the basal

ganglia [40], the latter of which is also known to be critical for

long-term skill learning such as sequence learning [12]. Future

research is needed to explicitly disentangle conflict monitoring,

error correction and response binding.

The state-space model was intended to be a first pass at

disentangling portions of these component processes. Consistent

with typical state-space models of motor learning (see [46]), our

results suggest that over time subjects learn a forward model of

future response plans based on the previous trial responses. Being

faster on individual trials (i.e., more prepared), means that subjects

are more likely to be even faster on following trials. This inter-

response dependency likely interacts with the increasingly dynamic

state memory (A) as well, in order to bind adjacent response plans
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together. The increased state memory with training also suggests

strong response ‘‘chunking’’ by showing how individual response

plans become more dependent over time. The initially slow

memory rate (i.e., requiring many more trials to reset the state) at

the beginning of training is likely a precaution against learning on

noise. As subjects become more certain of future response cues, it

becomes necessary for the response preparation state on one trial

to influence the next, thus resulting in a more dynamic internal

state. As the state and learning dynamics increase, so does the

noise of the system (i.e., state noise, Q, and motor noise, R) due in

large part to the increased energy of the system [43].

It is important to point out that, in this study, response speed

and error-corrective mechanisms appear to be learned indepen-

dently. Our first evidence for this comes from the observation that

reaction time learning rates and accuracy learning rates are

uncorrelated in this sample. This is bolstered by the observation

that changes in the response prediction component and the error-

corrective component of the internal state model also occurred at

different rates. Taken together these findings highlight the multiple

mechanisms at play when learning to bind multiple responses into

a unified sequence of actions.

It should be noted that our measure of response binding is

dramatically different than previous measures of response chunk-

ing [13,14,16–24,26]. In nearly all of these studies, the slowing of

responses to one or two items in the sequence is used as an index of

the start of a new set. Our approach assumes that as temporally

adjacent plans get bound together, this will be reflected in the

autocorrelation function of response times. While it has intuitive

appeal, this model is inherently incapable of determining whether

chunks vary in size across the sequence, isolating segmented

boundaries between chunks, or estimates of the strength or degree

of chunking. Clustering based approaches have recently shown

promise at characterizing complex sequence patterns [25]. Future

work should look to improve the current methodological approach

by finding ways to characterize specific chunk boundaries on such

long and complex sequences.

There is ample evidence to suggest that the response chunking

observed in this study is likely to be dependent upon cortico-basal

ganglia systems. First, recent functional imaging experiments have

show how novel measures of chunk concatenation in a similar task

correlates with activity in a frontal-striatal network [25]; although

this study only looked at changes across a few days of training. In

our study, the emergence of the auto-correlation and error-related

delays in response times occurred after several days of training.

This time-scale is consistent with the time-scale of learning

mediated by corticostriatal systems [53]. Second, there is ample

evidence from the neurophysiological literature that behavioral

chunking depends on corticostriatal networks. In rodents, daily

training on a T-Maze task shows that responses of striatal cells

become time-locked to different stages of the task itself, suggesting

the emergence of the sequence of behaviors necessary to complete

the task [33]. Indeed, blocking of striatal dopamine activity with

raclopride, a D2 receptor antagonist, interferes with the chunking

of a new motor sequence in primates, but not the recall of an

overly learned sequence pattern [23,24,32]. Indeed, this timescale

of learning and the implication of basal ganglia pathways fits with

current models of motor skill consolidation (see [3] for review).

Similar sequential learning processes are also found in the

learning of social songs in song birds (for review see [54]). As

mentioned in the Introduction, during development these birds

learn to bind a sequence of vocalizations together into a stable and

highly stereotyped song. It is well established that the AFP, the

bird-song analogue to the cortico-basal ganglia system, is critical

for this learning process, but not for the execution of an already

learned song. One interesting observation from this literature is

that, during early stages of learning, juvenile males will modulate

the variability and precision of their ‘‘motifs’’ depending on the

presence (directed song) or absence (undirected song) of a female

[35–37]. Much of this variability during undirected songs is driven

by variability in the firing dynamics of AFP neurons [35–38]. It is

believed that this expanded variability is critical to the learning

process as a way of exploring the space of possible songs (i.e., as a

way of practicing slight variations when not trying to impress a

female). As a song crystallizes into a stereotyped vocalization, this

modulation of variability in undirected contexts disappears. In our

study, we found a similar dynamic modulation of response

variability during learning. Overall response time variability

increased with training. However response variability was a

predictor of better learning only during early phases of training

and became detrimental to learning at later training days. In fact,

better learners, at least in terms of learning response speeds,

expanded response time variability more during the early phase of

learning and then contracted it on later phases of learning. Thus,

while response time variability is often seen as ‘‘noise’’ from

sensorimotor systems, this finding highlights a possible utility for

variability in the learning process itself.

Finally, in humans it has long been known that the basal ganglia

are critical for novel behavioral patterns to become automatically

programmed skills [12,55]. This type of automaticity is typically

measured using a dual-task probe condition. Unfortunately, as

mentioned above, we did not test the automaticity of the learned

sequences across training to see if patterns go from being

interfered by the dual task to being unaffected by the dual task.

Future work should also focus on how these response dynamics

change with degree of automaticity, in order to confirm the

likelihood of the cortico-basal ganglia system being involved in the

learning process, as well as the degree of consolidation of the

learned sequence itself.
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