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Abstract: Cumulatively, participation in optional science learning experiences in school, after school,

at home, and in the community may have a large impact on student interest in and knowledge of science.

Therefore, interventions can have large long-term effects if they change student choice preferences for such

optional science learning experiences. To be able to track K-12 students’ intentions to participate in optional

science learning experiences, we developed a new measure of science choice preferences in early

adolescence. The present study with 284 5th and 894 6th graders from diverse school contexts (i.e., from the

BayArea and the Pittsburgh area) illustrates the value of applying ItemResponse Theory analyses to develop

ameasurement instrument. These analyses established the overall reliability of the instrument and each item

in the scale, as well as the generalizability of the scale and individual items across subgroups by gender,

by ethnicity, and by achievement levels in science. Further, preferences to participate in science were

shown to be separate from preferences to participate in mathematics, engineering, or medicine. Finally, the

science choice preferences measure is validated through replicated positive correlations with levels of

science interest, self-efficacy, and learning achievement. # 2015 Wiley Periodicals, Inc. J Res Sci Teach

52: 686–709, 2015

Keywords: choice in science learning; early adolescence; item response theory IRT; psychological

assessment

Strength in science, technology, engineering, and mathematics (STEM) fields is an indicator

of a nation’s ability to sustain itself and important for successful participation in the modern

workforce. Therefore, STEM is an increasingly critical area of K-12 schooling. However, across

ages and cohorts, students are becoming less motivated to choose and engage in science-related

activities, courses, and careers (Glynn, Brickman, Armstrong, & Taasoobshirazi, 2011; Logan &

Skamp, 2008; Vedder-Weiss & Fortus, 2011, 2012) leading to poor academic performance in

science learning (Bryan, Glynn &Kittleson, 2011; Lee & Shute, 2010). For example, Bryan et al.

(2011) found that students’ achievement in sciencewas significantly associated with their science

self-efficacy and intrinsic motivation. From the perspective of social cognitive theory, motivated

students are supposed to: i) proactively make academic choices and ii) actively engage in these

choices in learning (Bandura, 2001).
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Numerous studies have been done in the fields of science education, educational psychology,

and the learning sciences in measuring academic engagement and identifying the influences on

engagement (Fredricks, Blumenfeld, & Paris, 2004; Jang, Reeve, & Deci, 2010; Linnenbrink &

Pintrich, 2003; Pekrun & Linnenbrink-Garcia, 2012; Steele & Fullagar, 2009). However, choice

has received much less attention as an outcome or indicator of motivation (e.g., Neuville, Frenay,

&Bourgeois, 2007).

Therefore, more research is critically needed to explore what personal and contextual factors

will facilitate or hinder K-12 students’ choice of science activities, courses, and even science-

related careers in the future. A necessary step is validly measuring their choice preferences in

science learning, which will then support investigations of how science choice preference is

associatedwith their personal and contextual factors. Accordingly, the present study is intended to

develop a scale assessing middle school students’ choice preference (CP) in science learning.

Science choice preference in the present study is defined as the extent to which children prefer a

science-related choice when given both science-related and non-science related alternative

options (i.e., a psychological tendency toward a topical choice).

Theoretical Background

Children in the middle school years and beyond have a large amount of what the informal

learning research community have called “free choice time,” that is time in which children have a

large amount of control over the topic and form of their experiences (Dierking & Falk, 2003). For

example, most children in developed nations usually have large amount of time not occupied by

schooling, eating, and sleeping when adding up after school, weekends, and vacation time. This

total amount of this free choice time can exceed the number of hours in school, and thus presents

an opportunity to significantly increase science learning time even if only a fraction of the free

choice time is devoted to science (Bevan et al., 2010; Feder, Shouse, Lewenstein, & Bell, 2009).

Some of this time can be spent on science learning in and around the home (e.g., reading science-

related books, watching science-related TV shows orwebsites, exploring natural phenomena such

as mixing chemicals or collecting insects) alone or with family and friends. Many children can

also choose from a variety of optional organized activities related to science learning, such as

participating in various after school clubs, weekend classes, or summer camps. While access to

some of these opportunities is determined by family income and distance of home from urban

centers, most communities have some relevant open-access opportunities (e.g., through public

libraries or community organizations), and most homes have access to some relevant media

(Madden, Lenhart, Duggan, Cortesi, & Gasser, 2013; Powers, Wilson, Keel, & Walton, 2013;

Rectors&Sheffield, 2011).

If a significant amount of this free choice time is spent on science, science learning outcomes

could be much higher. Also, given the diversity in content that could be accessed in free choice

settings, science choice preference may create opportunities to deepen interest and identity in

science, which would broaden participation in STEM-related careers and could also improve

learning outcomes.

Prior Psychological and Educational Research on Choice

Choice in psychological research can be viewed either as an input for later motivation

development or an outcome of motivation (Patall, 2012; Schunk, Pintrich, & Meece, 2008).

Choice ismost often treated as an input for or influence onmotivation and learning, particularly in

the framework of self-determination theory (SDT) (Katz & Assor, 2007; Patall, Cooper, &

Robinson, 2008; Patall, Cooper, & Wynn, 2010; Patall, 2013). A basic tenant in SDT research is

that people’s intrinsic motivation will be improved when they consciously feel some degree of
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autonomy in controlling their own thoughts and actions (e.g., making a choice). Thus, providing

students with choices is widely used to offer them a sense of autonomy for enhancing motivation

and performance (Flowerday&Schraw, 2003; Patall et al., 2008). Researchers have also explored

what personal factors (e.g., interest) (Patall, 2013) and context- and task-related factors (e.g., the

type of choice, number of options) (Reber, Hetland, Weiqin, Norman, & Kobbeltvedt, 2009)

influence the effects of choice on motivation and learning. In classroom settings, providing

students with choices is usually manifested as a teaching strategy, such as allowing students

generate their own solution to problem, or offering students choices about the materials to use in

classroom (Katz & Assor, 2007; Patall et al., 2008). For example, Mortensen and Smart (2007)

investigated how providing elementary school students with free-choice worksheets motivated

them to participate in science learning activities in the sciencemuseum.

An alternative to treating choice as an input for improving motivation is to conceive of this

construct as a behavioral outcome or indicator of motivation (Zimmerman, 2011). That is to say

that studentswith highermotivation to learn science should choosemore science-related activities

in and out of school than those with lowmotivation. Prior research in this line have explored how

individual motivational beliefs predict students’ choices of tasks, activities, courses, and careers

within the framework of expectancy-value theory (EVT, Simpkins, Davis-Kean, & Eccles, 2006;

Wigfield & Eccles, 2000; Wigfield & Cambria, 2010). EVT involves two core motivational

constructs. One is expectancy for success—individuals’ self-beliefs about how well they will

do on upcoming tasks/activities, which is conceptually similar to the notion of self-efficacy in

social cognitive theory (Bandura, 1997). The other is a four-component construct—values that

individuals attach to an immediate task/activity (e.g., learning activities in today’s class), or

future events (e.g., courses in the next term, career in the future). Attainment value refers to the

importance of doing well on a given task; interest value refers to the enjoyment obtained from

engagement of tasks/activities, which is similar to other motivational constructs such as intrinsic

motivation (Ryan & Deci, 2000), and interest (Hidi & Renninger, 2006); utility value refers

to the usefulness individuals attach to their future plan; and cost refers to any assessment of

resources (e.g., time, efforts) one may need to accomplish a task. In EVT, students’ choices of

tasks/activities/courses are influenced by their expectations for success (personal efficacy) and

thevalues they attach to the choices (Eccles, 2009).

Choice preferences in this motivation research have been defined and measured in two

different ways: i) individuals’ intended selection of courses/future college majors (which can be

called as hypothetical choices), and ii) choices they had actually made (which can be called as

actual choices). For example, Meece, Wigfield, and Eccles (1990) adopted a single item measure

(a seven-point scale rating) of elementary and high school students’ choices of mathematics

course. That measure asked students whether they would take more math in the future if they no

longer had to. It is an example of ameasure of one’s psychological tendency tomake a choice from

two options (taking or not takingmath courses). Similarly, Hazari, Sonnert, Sadler, & Shanahan’s

study (2010) used a single item measure of high school students’ intended choice of a physics

career inwhich the studentswere asked to report the likelihood of choosing a career in the physical

sciences (1—not at all likely to, 6—extremely likely). In these two studies, students only had two

options (science-related versus not science-related), but the world actually consists of many

complex alternatives such as art, sports, and business. For example, Parker et al., (2012) used a

single-item measure of high school students’ choices of university major from four options

(physics/mathematics/engineering; life, biological, and medical sciences; humanities and social

sciences; and law and business). The Science Aspiration and Career Choice scale (Archer et al.,

2012; DeWitt, Archer, & Osborne, 2014) has five items, but is limited at least in two aspects: i)

not providing any alternative non-science options, and ii) all the items are distant future-oriented
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(job/career) only. Stronger measures should consider a broader variety of choices and a broader

variety of alternatives in each choice such that a choice measurement instrument is able to validly

predict the tendency to participate in optional science learning opportunities (Kane, 2001;

Morizot,Ainsworth,&Reise, 2007).

In science education research studying actual choices, a common outcome measure is

students’ selection of STEMcourses,majors, and careers (Bøe, 2012;Cerinsek,Hribar,Glodez,&

Dolinsek, 2012; Sjaastad, 2011). But such measures are of little practical use for studies of early

adolescents because they are not given such choices, and many secondary schools throughout the

world give students few to no choices in STEMcourse taking.Most importantly, beyond students’

life-defining choices, few researchers have examined choices students need to make in their daily

science learning in and outside schools (e.g., choices of learning tasks/activities/courses in school;

choices of TVprograms related to science at home, visiting sciencemuseumsoutside school).

Simpkins et al., (2006) measured student choices at a more micro level: the extent to which

they actually had chosen to participate in math or science activities over the past year on a seven-

point scale (0¼ never, 6¼ almost every day for a lot of time). They used children’s actual choices

of activities in Grade 5 to predict their later motivation (expectancy for success, value, and

interest), and in turn how those motivational variables at Grade 6 and 10 predicted the number of

math or science courses they actually chose throughout high school. However, Simpkins et al.’s

(2006) choice measure was problematic as it did not consider whether it was the students who

actually made the choice and what alternatives students had. In other words, it was a measure of

the context as well as a measure of the child. This suggests that measuring the aspect of choice

controlled by the student (i.e., the target of student experiences) will need to focus on hypothetical

choices and consider a range of both science related and non-science related options (e.g., art,

music, sports) that compete for free choice time and resources. Of course, contextual factors may

also influence student motivation which in turn influences choices that were made. But it is

important to differentiate choices made at least partially by students from choices made

exclusively by others.

It should also be noted that the total of all actual choices over short time periods might be

highly subject to particular competing time periods that may be very localized (e.g., a particular

sports season or time of a school play). However, a sumof all actual choices over long time periods

is not a convenient outcome measure for most research studies: it requires waiting a long time to

collect, and either high vigilance if information is directly collected or regularly collected, or high

noise frompoormemory if collected infrequently.

In sum, actual choice measurement instruments have many practical and theoretical

problems. First, any given actual choice will vary across children in the degree to which children

are allowed to make choices entirely on their own (versus with family or friends also influencing

the final choices). Second, the available actual choices are different across locations, and may

involve too long a list to comprehensively study on a regular basis, and one that would need to be

regularly updated based on changing programming. Hypothetical choice measures hold greater

promise, but more diverse types of choices are required, particularly ones including both macro

(e.g., choosing to be a scientist) and micro science choices (e.g., choosing to visit science

museums) that also consider explicitly the alternative choices that compete for time and resources.

Conceptualizing Science Choice Preference

In daily life situations, choice may occur when one selects one alternative from among

similarly attractive but indeterminate options (Williams, 1998). Individuals are motivated to

choose the best or most rewarding option among the alternatives given their anticipations and the

information they have about the circumstances under which they are restricted in making that
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choice (Patall, 2012).Making a choice essentially involves psychological processes and behaviors

of judgment and decisionmaking. Froma cognitiveviewof decisionmaking, Fuzzy-TraceTheory

postulates that people’s judgment and decision making are based on simple, gist-like schema of

options (Reyna & Brainerd, 1995; Reyna, Adam, Poirier, LeCroy, & Brainerd, 2005). Gist refers

to one’s semantic representation of information reflecting her or his knowledge, value, culture,

and developmental level through direct and indirect experiences (Reyna et al., 2005). In other

words, themental representation driving decisionmaking ismulti-dimensional in terms of content

and development.

Students in school or out-of-school often need to make a choice from among multi-attributes

alternatives differing in importance or preference. In schools in theUS, students typically have the

option of stopping after two high school courses in science (Sheppard & Robbins, 2005), and

many do opt out. In addition, out-of-school learning represents a large proportion ofwaking hours;

as children become older, the amount of time spent in child-selected, optional, out-of-school

learning contexts (reading, club, and summer learning) can produce significant science learning

opportunities (Bevan et al., 2010). Finally, career interest by the end of eighth grade has been

found to begoodpredictor ofwhoobtains a STEMdegree (Tai, Liu,Maltese,&Fan, 2006).

The large learning opportunity represented by the choices and the predictiveness of the choice

tendencies suggest that researchers and teachers in science education need to know the extent to

which children prefer a science-related choice when given both science-related and non-science

related alternative options, i.e., science choice preference. Specifically, for researchers to be able

to fully examine the ways in which motivation influences learning, researchers need to study

children’s science choice preferences rather than studying just engagement and learning

behaviors. For classroom teachers, assessing science choice preference provides a tangible

intermediate outcome of their instruction that can have larger later effects on student learning. It

could also be used to assess other arenas of educator intervention such as students’ openness to

suggestions for out-of-school learning opportunities, or gaps between student preferences and

current regional opportunities for students (e.g., to organize an after-school club).

Therefore, framedwithin Fuzzy-Trace Theory (Reyna&Brainerd, 1995; Reyna et al., 2005),

we conceptualize students’ choice of science experiences as reflecting their holistic mental

representation of experiences with science. We define science choice preference as the tendency

to choose a variety of activities (e.g., attending science class, participating in a scientific

experiment), in various settings (e.g., in school, outside of school), at different points in time (e.g.,

present, proximal, or distant future). Science choice preference is influenced through changing

motivational levels and changing conceptions ofwhat science is, and it also drives latermotivation

levels and conceptions of science through expanded learning opportunities. In other words, it is

rooted in the contemporary view that cognition is dynamic and situational (Tschacher & Scheier,

1999).

Design Principles for an Effective Science Choice Preference Instrument

A core part of the mental representation that determines individuals’ science choice

preferences is the issue ofwhat science is (i.e., their perception of science) and thuswhich choices

reflect this conception. Students’ conception of science is shaped and developed over time by the

context in which students experience science (Zimmerman, 2012), and especially the authenticity

of the science that is experienced (Chinn &Malholtra, 2002). Accordingly, several measurement

considerations should guide the design of an effective science choice preference instrument.

First, science education research has revealed variation in students’ perception of what kinds

of situations in real life are scientific (Mantzicopoulos, Samarapungavan,&Patrick, 2009).While

there may be learning domains with indirect relationships to science (e.g., medicine and
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engineering), they can only be included as part of science choice preference to the extent towhich

children see the choices as science-related, as preferences are built upon perceptions of theworld.

For instance,when individuals are required tomake a choice fromamong possible careers, student

A may chose doctor or engineer because in her mind it is a science-related career. Alternatively

student B, who is generally interested in science-related careers, may not choose doctor or

engineer simply because, in hermental model of science, neither doctor nor engineer has anything

to do with science. Mathematics, sometimes described as the language of science in science

standards documents, is similarly ambiguous. For example, a child might choose to participate in

amathematics club because it is part of their larger science schema. Butmath-related items should

not be included in a science choice preference scale if only a few students select those options

because of their connections to science but most other students make choices about the options

because of someother reason (e.g., presence or absence ofmath anxiety).

Second, in accordance with sociocultural perspective of learning, context may play a vital

role in individuals’ perception of science, regardless of expertise or developmental stages (Buldu,

2006; Mantzicopoulos et al., 2009). Thus science choice preference is conceptualized as an

individual’s psychological tendency (a state) to make choices toward science in the contexts in

which choices are made. A scale aimed tomeasure individuals’ choice of science should embrace

the options that are concrete and representative of the broader set that are commonly available,

i.e., a mix of in school and out-of-school activities. At the same time, this consideration may

require the creation of a scale that is specific to particular age groups because the commonly

available choices or the choices perceived as relevant to science may be specific to particular age

groups. We focus on the choices broadly relevant to early adolescents because of prior research

suggesting that middle school is a key transitional point across K-12 schooling at which a decline

in sciencemotivation begins (Wigfield,Byrnes,&Eccles, 2006).

Third, contextual influences such as family background and individual factors such as gender

may frame perceived choices. For example, Buldu’s study (2006) found young children’s

perception of scientists varied as a function of their socio-economic status. Both Mantzicopoulos

et al. (2009) and Buldu (2006) suggest a relation between the children’s age and their stereotyped

perception of science and scientists. Many existing studies in science education research revealed

a pervasive gender effect on K-12 students’ attitude toward science and science learning (Britner,

2008; Patrick, Mantzicopoulos, & Samarapungavan, 2009; Simpkins et al., 2006). Gender

differences in academic interest usually begin to emerge in the middle school years (Meece &

Painter, 2008). We examine whether gender or age shapes which choices reflect one’s science

choice preferences. For example, certain choices might be avoided because they are seen as not

appropriate for girls or for kids of this age rather than representing participation in science.

The Current Study

Thepresent studywas aimed to develop andvalidate a newscalemeasuring early adolescents’

science choice preferences that better reflects the concerns identified from the review of the past

literature about conceptualization and measurement via actual and hypothetical choice. Avalid

measure with good precision should have acceptable internal consistency and unidimensionality

(homogeneity). Internal consistency indicates the overall degree of interrelation among a set of

items (Simms&Watson, 2007). Unidimensionality refers to the extent towhich all of the items in

a scale converge on a single latent trait, i.e., that participants differ only on a single latent trait (e.g.,

science choice) regardless of gender, ethnicity, self-efficacy, interest, or achievement.

Factor analysis methods can be used to establish unidimensionality, but Item Response

Theory (IRT) methods provide additional insights into critical measurement properties of a scale.

IRT methods have been widely applied to educational assessments such as aptitude tests,
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knowledge, language tests, and are now beginning to be used in the analysis of other kinds of

scales (Embretson & Reise, 2000; Fraley, Waller, & Brennan, 2000; John & Soto, 2007). The

present study applied IRTmethods to test explore the breadth of student’s conceptions of science

in science choice preferences as well as to test measurement invariance of the scale across time,

demographics, and motivation levels. Scales are not useful for studying effects of demographics

of motivation levels on choice or cummulating results across studies done in different contexts if

location, demographics, ormotivation levels change themeasurement properties themselves. The

IRTmethod and its use in this study are detailed in theMethods section.

We test scale validity frommultiple perspectives (Kane, 2001). First, from a content validity

perspective, we begin with a broader set of choices to overcome the identified limitations of the

prior narrow science choice scales (Archer et al., 2012;DeWitt et al., 2014; Simpkins et al., 2006).

Second, because motivational research conceives of choice as an important outcome of

motivation, from the perspective of concurrent validity, we test whether our science choice

preference scale is significantly associated withmotivation to learn science. Specifically, research

has found that both self-efficacy and interest are powerful predictors for students’ learning

behaviors and achievement (Britner&Pajares, 2006;Hidi&Renninger, 2006), sowe examine the

associations of choice preferenceswith science self-efficacy and interest.

Thus, to strongly establish the reliability and validity of the new science choice preferences

scale, we apply factor analysis, IRTanalysis, and cross-scale correlation analyses. No prior study

of choice has gone beyond a simple reliability analysis of the measures they used. Our in depth

analyses are organized around three specific research questions:

1. How broadly conceptualized are student conceptions of science choice preferences?

Specifically, are choice preferences toward mathematics, engineering, or medicine part

of science preferences inmiddle school students?

2. Are the psychometric properties (e.g., discrimination) of the science choice preferences

scale consistent over location, time, gender, ethnicity groups, self-efficacy levels,

interest levels, and achievement levels?

3. Towhat extent is themeasure of science choice preferences associatedwith self-efficacy

beliefs and interest in science learning?

Methods

The research questions required testing the reliability, validity, and generalizability of the

science choice preference scale across very different contexts. Therefore, two cohorts of students

were selected to be different on many dimensions. First, Cohort 1 was from the Pittsburgh area, a

historically blue-collar, industrial-focused urban region in the Eastern US; Cohort 2 was from the

Bay Area, a highly diverse, technology-focused urban region in the Western US. Those two

regions are different from one another in many aspects such as ethnic composition (see Table 1

below). Second, since the participants from the Pittsburgh area were 6th graders, and those from

the Bay Area were 5th graders, this makes it possible to examine if whether the scale functioned

similarly across ages. Third, within the Pittsburgh cohort, the data were collected at two points in

time (i.e., Test 1 andTest 2), enabling us to assesswhether the psychometric properties of the scale

is consistent over time (i.e., appropriate for longitudinal research). In short, the study design was

not created to provide a clean test of age or region, but instead to provide a generalization test of

the scale’s properties across substantially different contexts, using the larger and more complete

Pittsburgh dataset as the in-depth investigation and the smaller Bay Area dataset as a
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generalization test. Related to instrument validity, data were also collected on two motivational

variables and an achievement test.

Participants and Procedure

For the Pittsburgh cohort, 894Grade 6 students from 10 public schools (38 classrooms) in the

Pittsburgh area, participated in Test 1 and Test 2. For the Bay Area cohort, 284 Grade 5 students

from four schools participated. Table 1 shows that the Pittsburgh and Bay Area cohorts

simultaneously differ in age and ethnicity distributions. Themajority in the Pittsburgh cohort was

Caucasian and African Americans, while the majority in the Bay Area cohort was Hispanic and

Caucasian.

For the Pittsburgh cohort, Test 1 was conducted in September and early October, and Test 2

was conducted approximately 5 months later, in early February. The choice preference scale was

administrated in both Test 1 and Test 2. Meanwhile, the students also completed a survey on their

levels of self-efficacy and interest in science learning at Test 1. All 10 schools in Pittsburgh were

currently teaching the same 5-month-long unit on weather and climate from Full Option Science

System (FOSS, http://www.lhsfoss.org/), a hands-on curriculum developed by the Lawrence Hall

of Science. A knowledge test on weather and climate was conducted as a part of Test 2. The Bay

Area cohort participated only in Test 1 in late October of that same year, completing the survey

questionnaire on the science choice preferences, and self-efficacy and interest.

Science Choice Preference Scale

We developed a five-item CP survey involving a total of 29 different options as our CP (i.e.,

five items, each with 4–7 alternative response options). Total scale information (e.g., reliability

coefficient) is a function of the number of items in a scale, and scale lengths could affect responses

(Hinkin, 1995). Scales with too many items can create problems with respondent fatigue or

response biases, but scales with too few items may lack content and construct validity (Hinkin,

1995).Adequate internal consistency reliabilities can be obtainedwith as fewas three items (Cook

et al., 1981, as cited in Hinkin, 1995). According to this logic, we believe that five items could be

appropriate for theCP scale.

We explore through IRTanalyses in which the 29 options are consistently associated with an

overall science choice preferences construct. This multi-item, multidimensional scale is intended

to expand the existing choice instruments in science learning (Archer et al., 2012; DeWitt et al.,

2014; Hazari et al., 2010; Simpkins et al., 2006) in four aspects: hypothetical-focus, content,

Table 1

Demographic information in the two cohorts of participants

Pittsburgh Cohort Mean
Age¼ 12.0 (SD¼ 0.5)

Bay Area Cohort Mean
Age¼ 10.5 (SD¼ 0.5)

Gender
Boy 350 (50.7%) 135 (51.9%)
Girl 340 (49.3%) 125 (48.1%)

Ethnic information
White 261 (47.9%) 73 (32.6%)
Asian 15 (2.8%) 8 (3.6%)
African American 246 (45.1%) 25 (11.2%)
Hispanic 19(3.5%) 111 (49.6%)
Native American 4 (0.7%) 7 (3.1%)

Journal of Research in Science Teaching

MEASURING EARLY ADOLESCENTS’ CHOICE IN SCIENCE LEARNING 693



context, and time. Specifically, it uses only hypothetical choices rather than reporting of actual

choices. As to content and context, one item is about class choice (i.e., item 1); three items are

about different science-related activity choices (i.e., item 3, 4, and 5); and one item is about career

choice (i.e., item 2). In addition, the choice preference scale involves diverse science-related

choices (e.g., engineering, medicine, and mathematics), as well as non-scientific options (e.g.,

history, art; item1 and 2).As to time, three items are about present/immediate choices (today; item

3 and 4); one is about proximal future (next year; item 1), and one item is about distant future

(choosing to be scientist; item2). The distant future item is similar to the distant-future focus of the

ScienceAspiration andCareer scale (Archer et al., 2012;DeWitt et al., 2014).

All but one item required students to choose one option among the choices because at a given

moment in time, only one from the set is typically possible, and items are simply scored as

selecting the science choice or not (e.g., selecting the sciencemuseum versus the othermuseums).

As future choice situations sometimes allow for selecting multiple options, for the item asking

children to pick classes for the next year, the participants were allowed as many classes as they

wanted. As long as science class was selected, 1 is given to this item regardless the number of

choices a student selected (e.g., someone chosemore than one class) otherwise, 0 is given to it.

For three of the items, there were choices that were not precisely about science, but were

sufficiently related to science that children may have encoded them as science-related choices.

Therefore, we explored whether these choices should also be counted as evidence of a science

choice. For example, the career choice item included options of engineer and doctor. Similarly, the

class choice item included amath class option and the activity choice item included amathematics

puzzle. We used IRT analyses (described below) to determine whether mathematics, medicine,

and engineering were part of a science-related field of choices in the minds of children at this age

or whether they were in fact conceptually distinct choices that are not part of pro-science choice

preferences.

Measures on Self-Efficacy, Interest, and Learning Achievement

In order to provide concurrent validity information about the choice scales and to establish

measurement invariance across learner populations, data were also collected on children’s self-

efficacy and interest in science (see supplemental materials for full scales). Each scale was

developed as part of a larger research effort aimed at understanding 6th grade science learning and

motivation development in and out of school; items were adapted from the literature to apply to

both in and out of school (rather than typical items that focus on science in just school or just a out-

of-school) and be relevant to 6th graders (rather than those more relevant to college-aged or high

school-aged populations). Cognitive interviews were conducted with children to validate new

items.

Both self-efficacy and interest data were collected at Test 1. Detailed introduction to the

validation work of the two self-developed motivational instruments is beyond the present study,

but reliability and confirmatory factor analysis fit statistics are included here. Self-efficacy was

measured as amean score across 9 four-point (YES!, yes, no, NO!) Likert scale items (Cronbach’s

a¼ 0.85; e.g., I think I am pretty good at: Coming up with questions about science). Its

measurement is not only subject specific (i.e., science), but also specific to critical aspects of

science (e.g., capability of coming up with questions about science) rather than simply asking the

degree of general confidence in learning science. By doing so, the students at this agewere brought

into a more specific context in which a fine-grained measurement of their self-efficacy can be

obtained. The CFA fit indices (CFI¼ 0.96, RMSEA¼ 0.06) indicate acceptable homogeneity of

this nine-item self-efficacy scale, according to the typical thresholds for an acceptable CFAmodel

ofCFI>¼ 0.90 andRMSEA< 0.08 (Brown, 2006).
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The interest variable was computed as a mean score across 10 four-point Likert scale items

(Cronbach’s a¼ 0.91; e.g., “When I work on science at school, I: like it-dislike it”). The 10 items

were intended to not only cover a wide range of possible interest-related psychological

states while learning science in and out of school, but also includes both affective and cognitive

elements of interest. In contemporary research, interest is composed of both affective and

cognitive aspects (Hidi&Renninger, 2006). Thus, rather than simply asking if they are “interested

in” or “liked” science, the items included related psychological states like happy, amazed, curious,

excited as elements of the interest construct. The CFA fit indices (CFI¼ 0.96, RMSEA¼ 0.07)

indicate acceptable homogeneity of this 10-item interest scale.

The achievement test, collected at Test 2, was developed to assess the big ideas found in the

curriculum unit on weather and climate, and consisted of 21 multiple choice questions

(Cronbach’s a¼ 0.78; e.g., What is the primary energy source that drives all weather events,

including precipitation, hurricanes, and tornadoes? (a) the Sun, (b) the Moon, (c) Earth’s gravity,

or (d) Earth’s rotation. Only the Grade 6 students in Pittsburgh took part in the knowledge test,

taking the test after 5months of instruction on this topic.

The ranges of percentage of missing data (item non-response rate) for each of the nine self-

efficacy items, the 10 interest item, and the 21 achievement test items are respectively, 1.7–5.7%,

2.2–11.7%, and 8.4%. Missing items were dropped from the computation of mean scores. While

there is currently no agreement upon threshold defining problematic percentage in psychological

studies, published papers commonly range from 5% to 20%missing items (Schlomer, Bauman,&

Card, 2010). Thus, the percentages ofmissing data in the present study should not be problematic.

A Brief Introduction to IRT and its Use in the Present Study

Since the science choice preference scale will be systematically validated here throughmore

advanced methods from IRT (Embretson & Reise, 2000; Fraley et al., 2000; John & Soto, 2007;

Morizot et al., 2007), a brief introduction to key aspects of this psychometricmethod and details of

our use of IRTare givenbelow.

IRT is a psychometric approach which assumes that an individual’s response to a particular

item is influenced by a combination of an overall characteristic of the individual (i.e., a trait or

ability) and properties of the item. Different IRT models vary in how many properties (called

parameters) are associated with each item. In the present choice measurement, whether or not

individuals endorse a choice item (e.g., choosing to do science experiments in school) is assumed

to be affected by two item features (and therefore is called a two parameter model): i) the

discriminability of the item and ii) the difficulty level of the item. An item’s discrimination

indicates the relevance of the item to the trait being measured by the test, similar to factor loading

in confirmatory factor analysis (CFA). A large positive discrimination value indicates relatively

high consistency between the item and the underlying trait being measured. A discrimination

value of 0 means that the item is unrelated to the underlying trait. Discrimination values will be

used to determine whether the items about engineering, medicine, and mathematics choices are

associated with science choice preferences. Discrimination values can also be tested statistically

across subgroups of students test whether the item is stable in the extent to which it assesses the

construct across subgroups (e.g., whether both boys and girls consider science club participation

as indicative of general choice preferences toward science).

Mathematically, item difficulty is quantified in terms of trait level denoted as u and

represented by an IRT scale score rather than a raw score (Embretson & Reise, 2000). IRT scores

are usually computed on a standardized metric with a mean of 0 and standard deviation of 1.

Specifically, an item’s difficulty is defined as the trait level required for participants to have a 0.5

probability of endorsing the item. For example, if an item’s difficulty is 0, an individual with an
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average trait level (i.e., whose trait level is 0) will have a 50/50 chance of endorsing the item. If an

item’s difficulty is 1.5, then an individual having a trait level of 1.5 will have a 50/50 chance of

endorsing the item. Participants whose trait levels are lower than 1.5 will have lower than 50/50

likelihood of endorsing the item. Good scales have a distribution of items that vary in difficulty

values in order to optimally differentiate students at both high and low ends of the scale.

Motivational scales can sometimes have poor differentiation of students at the high end of the

scales because theyhaveno high difficulty items (Stake&Mares, 2001).

The IRTmodels in the present study were run in IRTPro (SSI, http://www.ssicentral.com/irt/

IRTPRO_by_SSI.pdf). It has Graphical User Interface and runs in Microsoft Windows. The data

to be processed can be imported into IRTPRO directly from SPSS data files, and outcomes for the

selected IRT model (e.g., Two-Parameter Logistic) are generated automatically in table form

(e.g., discrimination, difficulty,Goodness-of-Fit parameters).

Results

The results are organized by three research questions. First, to characterize the breadth/

narrowness of student choice preferences, we begin with IRT analyses focused on identifying

which items are associated with science choice preferences as a scale. Second, we examine the

consistency of the scale over time and across student subgroups by gender, ethnicity, self-efficacy

levels, interest levels, and achievement levels. Third, we validate the choice preferences scale by

testingwhether it is associatedwith twomotivational variables (science self-efficacy and interest).

Description of the Items and the Scale

Table 2 presents the frequencies with which each possible science item was selected in each

of the three data collections. Note that Ns vary across items because of students skipping items or

failing to complete a measure from absences. There is a small amount of variation in item

frequencies across data collections. While there is considerable variation in popularity of items,

all items are selected by some children. What is unclear from simple frequencies, however, is

whether item popularity is driven by relevance to science interests or just general popularity with

children at this age, regardless of interest in science (e.g., visiting science museums could simple

reflect an interest in seeingwhat dinosaur looks like).

Table 2

Selection frequencies of each choice preference item across age and locations

Bay Area Pittsburgh

Early 5th Grade
(241< n< 284)

Early 6th Grade
(620< n< 894)

Mid 6th Grade
(703< n< 894)

Science class 57% 39% 37%
School activity 25% 17% 13%
Home activity 30% 25% 23%
Science museum 50% 28% 39%
Scientist 5% 5% 5%
Math class 43% 50% 49%
Math activity 7% 5% 5%
Math puzzle 14% 8% 24%
Doctor 12% 9% 9%
Engineer 6% 3% 5%
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Are Choices of Mathematics, Engineer, and Doctor Items Indicators of Preferences

Toward Science?

In order to answer the above theoretical question and basic scale construction question,

Figure 1 shows the discrimination of each item in the 10-item choice preference IRT model. An

item’s discrimination indicates the relevance of the item to the trait being measured by the test,

which corresponds to factor loading in confirmatory factor analysis (CFA; Embretson & Reise,

2000). A large positive discrimination value indicates a good consistency between the item and

the underlying trait beingmeasured.Adiscriminationvalue of 0means that the item is unrelated to

the underlying trait. An item with a negative discrimination value is inversely related to the

underlying trait, i.e., individualswith high trait level are less likely to endorse the item.

The three math items and the doctor and engineer items always had discrimination values

below þ0.5, a common threshold for acceptable discrimination (Fraley et al., 2000). This

consistently low discrimination indicates that they are not indicators of preferences toward

science and should be removed from the choice preference scale. By contrast, the discrimination

values of the other five science items are larger than 1 in the three cases, and clearly should be

retained in the scale. After deleting the problematic items, the remaining analyses focus on the

psychometric properties of the five-item CP scale. Figure 1 shows the discrimination values of

each item in the choice preference scale over time and in the Bay Area early 5th grade, Pittsburgh

early 6th grade, andmiddle 6th grade in the 10-item IRTmodel.

Overall Scale and Item-Level Psychometric Properties

Past psychometric research has found that x2 is driven too heavily by sample size (Healey,

2012), and depends on full information contained in the contingency table (Cai,Maydeu-Olivares,

Coffman, & Thissen, 2006; Cai & Hansen, 2013). When there are empty cells in the table (i.e.,

limited information), Cai and colleagues’ studies (2006, 2013) suggest that researchers use limited

information Goodness-of-Fit M2 instead of x2. The Goodness-of-Fit parameters in Table 3

Figure 1. Discrimination values of each item in the choice preference scale over time and across settings in the 10-item
IRTmodel.
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indicate that overall the five-item 2PL IRT model fits the three datasets well according to the

commonly used thresholds of p> 0.05 andRMSEA< 0.05.

The key IRT parameters (difficulty and discrimination) for each item level are shown in

Table 4. The discrimination values of all five items were generally good across all contexts (i.e.,

well above 1). Difficulty also varied considerably across items from high positive to negative

items, indicating the scale comprised items useful for differentiating students across a wide

spectrum of overall science choice preferences. The scientist item had the highest difficulty,

suggesting that choosing it require a high level of science choice preference compared to choices

of other activities. By contrast, taking an extra science class was relatively easiest to endorse

overall.

Note that the difficulty of some items (the museum visit item) varied substantially across

contexts, even when the discrimination did not. That is, the choices always reflected choices in

science, even when the relative intensity of preferences required to endorse a particular item

varied.

Are the Items Equally Informative Across Gender, Ethnic Groups, Levels of Achievement,

Level of Self-Efficacy, and Level of Interest?

Differential item function (DIF) analyses were conducted on the item discrimination values

to determine whether the measures of choice preference can be generalized across gender, ethnic

groups, levels of self-efficacy, levels of interest, and levels of learning achievement. We created

median-split high/low groups on the two motivational variables (self-efficacy, interest) among

both the Pittsburgh and Bay Area cohorts, and on achievement in the Pittsburgh cohort. Students

are excluded from a given analysis when the relevant motivation, performance, or demographic

information was missing. We combine White and Asian as the traditionally over-represented

Table 3

Overall Goodness-of-Fit parameters for the three IRT models

Bay Area Pittsburgh Cohort

Early 5th Grade Early 6th Grade Middle 6th Grade

M2 value 3.28 (df¼ 5, p¼ 0.66) 8.04 (df¼ 5, p¼ 0.15) 2.05 (df¼ 5, p¼ 0.84)
RMSEA 0.00 0.03 0.00

Table 4

Mean (and standard error) discrimination and difficulty of science choice preference across ages and

locations in the 5-item models

Discrimination Difficulty

Bay Area Pittsburgh Cohort Bay Area Pittsburgh Cohort

Science choice
preference

Early 5th
Grade

Early 6th
Grade

Mid 6th
Grade

Early 5th
Grade

Early 6th
Grade

Mid 6th
Grade

School activity 2.7 (0.6) 3.2 (0.6) 2.8 (0.5) 0.7 (0.1) 0.7 (0.1) 0.7 (0.1)
Home activity 3.2 (0.8) 2.7 (0.4) 1.7 (0.2) 0.5 (0.1) 0.4 (0.1) 0.4 (0.1)
Scientist 1.8 (0.6) 2.2 (0.4) 1.8 (0.3) 2.3 (0.4) 1.9 (0.2) 1.8 (0.2)
Extra class 1.9 (0.4) 1.4 (0.2) 1.7 (0.2) �0.2 (0.1) �0.1 (0.1) �0.2 (0.1)
Museum visit 1.7 (0.3) 1.4 (0.2) 1.5(0.2) �0.3 (0.1) 0.4 (0.1) �0.4 (0.1)
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groups in science and the remaining ethnicities as the traditionally under-represented groups in

science. Table 5 shows that of the 70 possible differences on the five binary variables, only a small

numberwas statistically significant (e.g., the discriminationvalue of the scientist item for the early

5th gradegirls inBay area is higher than boys at p< 0.001).

We note several important points in these DIF analyses. First, all of the items are positive

indicators of science preferences regardless of gender, ethnicity, achievement, self-efficacy, and

interest. Second, the discrimination of all items is relatively consistent across subgroups, but the

Table 5

Discrimination values (with SEs) of each science choice preference item as a function of gender, ethnicity,

classroom achievement, interest, self-efficacy in science across ages and locations

Bay Area Pittsburgh Cohort

Early 5th
Grade

Early 6th
Grade

Mid 6th
Grade

Girls
n¼ 125

Boys
n¼ 151

Girls
n¼ 346

Boys
n¼ 350

Girls
n¼ 346

Boys
n¼ 350

School activity 3.7 (1.6) 2.3 (0.6) 2.5 (0.5) 3.6 (0.5) 3.6 (1.3) 3.3 (1.0)
Home activity 3.1 (1.1) 3.0 (1.0) 3.3 (0.2) 1.9 (0.3) 1.7 (0.3) 1.6 (0.3)
Scientist 23.9 (7.9) 1.5* (0.6) 1.9 (1.1) 1.9 (0.4) 2.2 (0.8) 1.6 (0.4)
Extra class 1.4 (0.4) 1.8 (0.5) 1.1 (0.6) 1.6 (1.3) 2.6 (0.8) 1.9 (0.4)
Museum visit 2.5 (0.9) 1.8 (0.5) 1.3 (0.3) 1.2 (0.2) 1.5 (0.3) 1.7 (0.3)

Others
n¼ 130

W/A
n¼ 67

Others
n¼ 275

W/A
n¼ 276

Others
n¼ 275

W/A
n¼ 276

School activity 2.7 (0.8) 3.3 (1.5) 25.2 (1.9)* 3.0 (0.8) 3.8 (2.3) 3.7 (2.4)
Home activity 2.3 (0.7) 5.6 (4.8) 2.0 (0.4) 2.7 (0.7) 1.5 (0.4) 1.6 (0.4)
Scientist 2.1(1.1) 0.7 (0.9) 1.9 (0.6) 2.2 (0.7) 1.9 (0.7) 1.9 (0.6)
Extra class 2.1 (0.6) 1.9 (0.8) 1.4 (0.3) 1.4 (0.3) 1.5 (0.4) 2.9 (1.0)
Museum visit 3.0 (1.1) 1.8 (0.7) 1.1 (0.3) 1.2 (0.3) 1.5 (0.4) 1.3 (0.3)

Low Ach
(N/A)

High Ach
(N/A)

Low Ach
n¼ 415

High Ach
n¼ 407

Low Ach
n¼ 415

High Ach
n¼ 407

School activity 4.2 (1.5) 3.2 (0.6) 3.1 (1.0) 4.0 (1.7)
Home activity 3.1 (0.8) 3.1 (0.6) 1.5 (0.3) 2.0 (0.4)
Scientist 2.1 (0.6) 3.2 (0.8) 2.6 (0.7) 1.6 (0.4)
Extra class 1.4 (0.3) 1.6 (0.8) 1.7 (0.3) 2.1 (0.4)
Museum visit 1.3 (0.3) 1.8 (0.3) 1.6 (0.3) 1.4 (0.3)

Low SE
n¼ 102

High SE
n¼ 106

Low SE
n¼ 308

High SE
n¼ 293

Low SE
n¼ 437

High SE
n¼ 378

School activity 1.9 (0.6) 3.3 (1.3) 2.0 (0.4) 3.1 (0.9) 4.6 (4.2) 2.4 (0.4)
Home activity 39.9* (2.5) 1.6 (0.5) 6.7* (2.0) 2.0 (0.4) 1.5 (0.3) 1.9 (0.3)
Scientist 1.2 (1.3) 1.8 (0.8) 2.6 (0.8) 1.4 (0.9) 2.4 (0.7) 1.7 (0.4)
Extra class 2.0 (0.6) 1.4 (0.5) 1.0 (0.2) 1.3 (0.3) 2.2 (0.5) 1.6 (0.3)
Museum visit 2.0 (0.6) 2.7 (1.3) 0.9 (0.2) 1.5 (0.3) 1.2 (0.2) 2.5* (0.5)

Low Int
n¼ 124

High Int
n¼ 92

Low Int
n¼ 300

High Int
n¼ 306

Low Int
n¼ 417

High Int
n¼ 403

School activity 15.4* (2.2) 1.3 (0.4) 2.8 (0.8) 3.2 (1.1) 2.5 (0.9) 2.4 (0.6)
Home activity 1.8 (0.5) 37.4* (4.0) 3.7 (1.4) 2.4 (0.6) 1.3 (0.3) 1.5 (0.3)
Scientist 0.6 (0.7) 1.4 (0.7) 2.0 (0.7) 2.2 (0.6) 2.7 (1.0) 1.4 (0.3)
Extra class 1.6 (0.5) 1.2 (0.4) 1.4 (0.3) 1.1 (0.3) 1.6 (0.4) 1.4 (0.3)
Museum visit 1.6 (0.5) 4.8 (4.0) 1.2 (0.3) 1.7 (0.4) 1.1 (0.3) 1.6 (0.3)

*p< 0.05.
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occasional variance of each item in isolated cases highlights the importance of having a scalewith

more than just one item to be a reliable and valid indicator of science choice preferences across

subgroups (Hazari et al., 2010; Simpkins et al., 2006). For example, the most discriminating

choices, school activity and home activity, show high variability in discriminability across

subgroups, and the commonly used career preference is sometimes the weakest indicator. Every

item shows at least 2:1 variations in discriminability across subgroups even in the larger Pittsburgh

cohort.

Table 5 shows that there are four exceptionally high discrimination values of the four items in

the Bay Area cohort, and one exceptionally high discrimination value in the Pittsburgh cohort

(roughly 3.5% of the total 140 discrimination values in the two cohorts). For example, the

discrimination of the home activity (39) is extremely high among the low self-efficacy group.

Mathematically, the discrimination parameter represents the slope of the middle section of the

itemcharacteristic curve (an index of steepness of the curve), and theoretically its range is between

�1 and þ1, with typical value less than 2.5 (Baker & Kim, 2004). The x-axis of the item

characteristic curve is the standardized latent-trait continuum (i.e., choice preference levels in this

case); the y-axis represents the probability of endorsing the itemwith a level of CP (standardized).

In the case of positive discrimination values, an extremely high discrimination indicates a very

steep curve, which, in turn, suggests the probability of endorsing the item is almost 1 for the

students whose total CP scores are greater than the mean score (upper group), and the probability

of endorsing the item is almost 0 for the studentswhose total CP scores are less than themean score

(in the lower group). This suggests that an itemwith extremely high discriminationmakes a clear-

cut distinction between the upper group and the lower group, but poorly discriminates the students

within either of the two groups, compared to the items with typical discrimination values. It is

possible that the activities with very high discrimination values were rarely available to these

students and thus required strong demonstration of preferences among these students. Alternative-

ly, in the lowmotivation cases, it may be that too few learners had high science choice preferences

and thus the estimate of the more difficult items was unstable (i.e., can be treated as outliers). It is

unclear why the home activity was so discriminating among the high interest subgroup in the Bay

Area 5th graders. Compared to the data obtained from the Bay Area, the discrimination values in

themuch larger Pittsburgh cohort are generally consistent across avariety of subgroups.

Are Science Choice Preferences Associated With Self-Efficacy Beliefs, Interest, and

Achievement in Science Learning?

Prior to addressing this research question, we first examined the scale reliability issue from

the perspective of Classical Test Theory by computing the internal consistency between all items

that the scale contains, i.e., the scale’s reliability coefficient. Because the fiveCP items are binary,

reliability was computed using Armor’s u (1974) instead of Cronbach’s a. Mathematically,

Armor’s u is a function of the number of items in the scale and the largest eigenvalue from the

principal component analysis of the correlation matrix of the items of the scale (Armor, 1974).

Statistically, unlike a, u is not affected by the skewness of the item response distribution, and

thus provides a better reliability estimate than coefficienta for all scaleswith skewed distributions

(Zumbo, Gadermann, & Zerisser, 2007). The reliability coefficients from the three measurements

of science choice preferencewere all good (see Table 4). These high coefficients further justify the

conclusion drawn from the above IRT analyses that the scale developed in the present study is

psychometrically reliable in general, in other words, the five CP items statistically converge on a

unique psychological construct—science choice preference.

We assessed concurrent validity by examining the correlations of individual choice

preference scores with twomotivational variables: self-efficacy and interest, and the achievement
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score (only from theMid 6th graders).Within each context, childrenwere divided on self-efficacy,

interest, or achievement measure using a median split. ANOVA analyses (shown on Table 6)

revealed shows that interest effects on choice preferencewere significant in both locations for CP,

and the significant self-efficacy effect was observed among both the early 6th graders andmid 6th

graders in Pittsburgh. The mid 6th graders with high CP got high achievement scores in science

learning.

Did the CP measure show sensitivity to either self-efficacy or interest differences across a

wide range of each variable? The four panels shown in Figure 2 show that there was indeed a

monotonic (and nearly linear) relation of self-efficacy and interest with choice preference. The x-

axis on the two figures represents equal proportion bins by self-efficacy (on the left), and interest

(on the right); the y-axis represents the mean choice preference score for participants falling in

each bin. This visual pattern was found to be statistically significant with a standard multiple

regression (F(3,451)¼ 19.75, adjusted R2¼ 0.11, p< .001) in which the interest (b¼ 0.22,

p< .001) and self-efficacy (b¼ 0.10, p< 0.05)were the predictors, and the choice preferencewas

the outcome.

Discussion

We focus on two significant contributions from the current student of early adolescents’

science choice preference, which we defined as the extent to which children tend to prefer a

science-related choice when given both science-related and non-science related alternative

options. Overall, the developed science choice preference scalewas found to be reliable and valid

across a diverse group of students and contexts. Second, the empirical patterns across the items in

the instrument have implications for science teaching and learning.Wediscuss each point below.

An Innovative Expansion to the Measurement of Choices in Science

It is widely realized that K-12 students become less motivated to choose and engage in

science-related activities, courses, and careers (Glynn et al., 2011; Logan & Skamp, 2008;

Vedder-Weiss & Fortus, 2011, 2012), thus, exploring motivational factors influencing children’s

science choices is an important focus for researchers in the fields of science education and

Table 6

Reliability coefficients (Armor’s u) and ANOVA on group difference of mean CP scores (with standard

errors) between boys and girls, and levels of interest and self-efficacy across ages and locations, and

levels of learning achievement (Middle 6th grade only)

Bay Area Pittsburgh Cohort

Early 5th Grade Early 6th Grade Middle 6th Grade

Armor’s u 0.81 0.82 0.79
Boys 1.79 (0.13) 1.70* (0.08) 1.33 (0.07)
Girls 1.58 (0.14) 1.29 (0.07) 1.29 (0.07)
Low interest 1.42 (0.14) 1.26 (0.08) 0.79 (0.05)
High interest 1.96* (0.14) 1.93* (0.08) 1.84* (0.07)
Low self-efficacy 1.53 (0.14) 1.33 (0.08) 0.94 (0.05)
High self-efficacy 1.88 (0.14) 1.92* (0.09) 1.73* (0.07)
Low achievement 1.32 (0.08)
High achievement 1.43* (0.08)

*p< 0.01.
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motivation. Although research onmotivations fostering choice is prolific, the prior conceptualiza-

tion and measurement of science choices had a number of important challenges, with respect to

pragmatics of efficient data collection, measuring the child rather than the context, taking into

account competition among free choice time and resources, and broadly measuring diverse

aspects of choice.

The new science choice preference scale is more inclusive than those in the existing research

on choices in terms of construct spectrum.Almost all existing studies we have reviewedmeasured

students’ science-related choices simply by a single item, and restricted choices within two

options (e.g., choosing science courses or not). Our scale expands the existing choice

Figure 2. Mean choice preference (SE bars) as a function of binned science self-efficacy and interest across ages and
locations.
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measurement from the following three aspects. The first aspect is quantitative. The current scale

contains five survey items rather than single item. In terms of psychometric quality of survey

instruments, a construct is better measured by a number of different items that converge on the

theoretical meaning of the construct, as according to psychometric theory, no single item is a pure

measure of the construct of interest (Braithwaite & Scott, 1991). Indeed our IRT analyses reveal

problems in relying on anyone of the particular items across important subgroups of students.

The second aspect is that this quantitative expansion enables us to investigate the extent to

which children tend tomake a science-related choice from awide range of alternatives rather than

merely two options adopted in past research, particularly when the alternatives not only include

apparently non science-related options like art, music, history, etc., but subjects that look like

science in some people’s conceptions such as math, engineering, or medicine. The real world in

which children live is diverse and complex, so the conditions under which they need to make a

choice are also diverse and complex. The strategy ofmeasuring science choice preference adopted

here reflects more of that diversity and complexity, and thus provides a scale with greater external

validity.

Third, the new scale captures diversity of science choices available to students along three

important dimensions to further improve scale external validity: choice content (activity, course,

or career), time (immediate, proximal, or distant future choice), and settings (in school versus out

of school). The multi-faceted nature of science learning opportunities requires a multi-faceted

measurement tool to enable researchers and teachers to more accurately grasp the nature of

children’s choice pattern as a critical expression of theirmotivation to learn science.

Implications for Science Education

In validating this choice preference scale, we have learned that students’ choices of

mathematics classes and activities, and engineer or doctor careers are not a part children’s

preferences toward science at this age, even though they belong to an integrated notion of STEM.

This empirical finding not only indicates the scope of valid science choice preference

measurement, but also a feasible approach to looking into the boundary of early adolescents’

conception of science, which in turn can help us study the development of their science identity.

Science identity plays a considerable role in predicting students’ actual choices of science-related

college majors or careers (Hazari et al., 2010). Repeating such IRT analyses with data collected

across science experiences (e.g., ones showing connections of engineering, mathematics, or

medicine to science) could be used to track changing choice-relevant conceptions of science.

The strong difference in choice preference patterns between various forms of science and

mathematics, engineering, and medicine in the minds of late elementary/early middle school

student may seem puzzling. For example, STEM is tightly integrated at the adult level where

science uses mathematics quite heavily, and engineering andmedicine uses science quite heavily.

Further, there is considerable emphasis on STEM as a whole in the policy sphere and STEM

integration as new pedagogical/curricular approach. But the data reported here clearly indicated

that choice preferences in children reveal they treat engineering, mathematics, and medicine as

different. Theories and research of decision making (Williams, 1998; Reyna et al., 2005) suggest

that choice making is rooted in individuals’ existing knowledge and perception of the choices

themselves. Moreover, children’s perceptions of science are formulated in a great variety of

science-related experiences in school, at home, during extracurricular activities, and so on

(Mantzicopoulos et al., 2009). It may be that children with greater exposure to science in

applicationswill see clearer STEMconnections andmake choices that reflect those connections.

The IRTanalyses also showed that two items, science activity in school and science activity at

home, have the highest relevance to one’s science choice preference (i.e., high discrimination), the
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relevance of the scientist item is middling, and the items of science class and science museum

visits have the lowest relevance to science choices. This pattern was consistent across ages and

locations. This difference in discrimination values may reflect the reality that children of this age

(10–12 years old) face in which theymay not havemuch freedom in choosing intended courses in

school, and choosing to visit science museums. In other words, for them, choosing a course or

visiting museums may be construed as heavily controlled by parents or other adults. By contrast,

choosing to be scientist as future career is as a distant outcome that may reflect a child’s true

attitude toward science or true level of science identity. These patterns highlight the importance of

culturally/situationally relevant choices in measurement. They also highlight the challenges for

educators, parents, and communities in providing equal access and some child autonomy in

diverse optional science learning opportunities.

The scientist itemhas the highest difficulty across ages and locations (i.e., required the highest

levels of science choice preferences in order to endorse this item; see Table 4). Overall,

commitment to a science career is only common among individuals with very high levels of

science choice preference. Pragmatically, this points to the importance of measuring more than

career choice because the choices of science career discriminate only students at the high end of

choice preferences; thus it is unfortunate that much of the literature has focused on this particular

choice alone. Multidimensional choice instruments including “less difficult” items are psycho-

metrically needed like the one developed in the present study.

In a broader pragmatic sense, brief optional learning activities in science are only powerful

learning experiences when the choices are at least semi-regularly made, and thus measuring

choice preferences at themedium to high end are themost practically important. That is, theremay

be no difference in self-efficacy, interest, or learning outcomes between one child who would

never consider an optional science learning experience and another child whowould almost never

consider an optional science learning experience. But, for research purposes, it may be useful to

study effects along the whole range, and thus future measures should explore adding items with

even lower difficulties levels, perhaps through more non-forced alternative items. This is a

limitation of the present study.

In general, research within various theories of motivation revealed that both competence

beliefs (expectances for success, self-efficacy) and interest are two good predictors of students’

choices of activities/tasks, courses, or careers (Schunk et al., 2008). But, it was still open

whether the two are equally important. In examining the concurrent validity of the choice

preference scale in the current study (see Figure 2), science interest seemed to play a more

significant role than science self-efficacy in predicting their science choice preferences across

ages. Moreover, it seems that the younger children are the weaker association between self-

efficacy and choice preferences. It may be that these relatively low stakes free choice situations

are less psychologically risky for failure, and thus more influenced by interest. In addition,

the concurrent validity of the CP instrument is also manifested in its positive relation with the

students’ science learning achievement (see Table 6). The finding that the boys as a whole

reported higher CP score than did girls (see Table 6) is in accordance with the pattern of gender

effect on science learning that has been discovered by numerous studies in the literature (Britner,

2008; Patrick et al., 2009; Simpkins et al., 2006), suggesting a strong concurrent validity of the

CP scale aswell.

The IRT analyses also revealed the limitations of the past single-choice or unidimensional

choice instruments (Archer et al., 2012; DeWitt et al., 2014; Simpkins et al., 2006). The present

study illustrated the complexity and diversity of children’s psychological processes in choice

making for science learning; any one particular type of choice is not broadly indicative of student

choice preferences across the subgroups that science educators and science education researchers
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frequently examine. The complexity and diversity stem from a variety of sources such as

individual adolescents’ inclusive conception of science, settings whereby choices may occur, or

time-oriented choices (immediate, proximal, distant future choices). Either single-item or

unidimensional choice scales cannot capture the complexity and diversity of children’s science

choice preferences. For researchers seeking to understand the ways in which motivation and

situation factors explain differences in choice behaviors, it is critical to have robust measures that

are valid across situations andmotivation levels. Similarly, teachers need instruments that work in

thewidevariety of contexts inwhich they teach.

With this new developed CP scale, researchers can now examine more comprehensively the

ways in which motivation influences long term learning outcomes (e.g., through enabling more

optional learning experiences). Researchersmight also use the CP scale for studying the effects of

such choice preference tendencies on later motivation levels (e.g., are students who are high on

science CP more likely to grow in self-efficacy or develop deeper interests in science than those

who are low on science CP?). While actual choices are likely important factors, they are much

harder to study in quantitative ways given the large number of possible optional science learning

experiences to document, theways inwhich the list of possibilitieswill vary great by demographic

and geography, and the likely poormemory that studentswith have formanyof them in retrospect.

For science teachers, the current science CP scale can function as reliable and convenient

formative assessment of motivational interventions. For example, did a visit to the science

museum or an extended science project result in effectivemotivational changes? For teachers and

informal science learning providers, the CP scale could provide information about current student

appetite for additional science learning experiences. For example, the scale provides information

onwhich groups of students aremost interested in additional opportunities.

Taken together, the present study goes beyond developing and validating a science choice

preference scale, in that it provides a conceptualization of the multidimensional nature of student

science choices, as well as providing additional insights into the relations between motivational

factors and choices in science learning.

Work on this project was supported by grants #2820 and #3341 from the Gordon and Betty

MooreFoundation and bygrantDRL-1348468 from theNational ScienceFoundation.
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