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Scientific Data Analysis 
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One of the reasons science is so complex is that it involves many layers 
of uncertainty, as scientists struggle to convert into fact that which is 

not yet understood at all using instruments and techniques recently devel­
oped or newly applied. For this reason, the psychology of science is deeply 
connected to uncertainty, especially with studies of science in real contexts. 
As a research strategy, psychologists of science have often chosen to study 
situations with much uncertainty removed. But, in the end, there must be 
some consideration of how uncertainty complexities the psychology of the 
scientist, for every layer of science. 

Studies of behavior in the real world have consistently found that 
uncertainty has a large influence on behavior. For example, there is a whole 
subdiscipline of naturalistic decision making focused on judgment under 
uncertainty (Klein, 1989). Scientific data analysis, as a relatively complex 
instance of judgment under uncertainty, similarly has a large role for uncer­
tainty as something that needs to be represented (mentally and physically), 
as something that needs to be diagnosed in particular situations, and as 
something that needs to be addressed through problem solving. This chap­
ter will address each of these elements beginning with a large contextual 
description of what uncertainty is. 

WHAT IS UNCERTAINTY? 

Uncertainty is not an undifferentiated concept. There is the subjective uncer­
tainty a person feels, and there is the objective uncertainty in the informa­
tion a person has, which we call information uncertainty. This objective 
uncertainty could be about the past, current, or future state of the world. 
Uncertainty in scientific data analysis is primarily about informational 
uncertainty for the past (i.e., the data in hand). However, as data analysis 
is often an ongoing iterative component and because the goals of some 
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scientific data analyses involve predictions about the future, there can be 
informational uncertainty about the future component as well. Regardless 
of the cause, increases in objective uncertainty in the data makes scientific 
data analysis much more complex, requiring more time and producing lower 
rates of success (Gorman, 1986; Klayman, 1986; Penner & Klahr, 1996). 

Schunn (2010) argued for a distinction not previously emphasized in dis­
cussions of uncertainty: the difference between psychological uncertainty 
and psychological approximation. Uncertainty is the lack of knowledge 
about possible states (e.g., is the temperature 18°C or 19°C?). Approximation 
declares a state as falling with a range (e.g., the temperature is between 18°C 
and 19°C). At first blush, this distinction appears bizarre and without con­
ceptual merit. From a theoretical information or logical perspective, there is 
no difference between the two. However, a number of elements suggest it is 
a critical psychological distinction in science problem solving. Sometimes in 
science, an approximate level of precision is good enough, whereas some­
times it is not, and the uncertainty versus approximation distinction is criti­
cal for differentiating those circumstances. Several different datasets suggest 
that uncertainty and approximation are discriminable constructs in behav­
ior (from both scientist speech and gestures), that they systematically occur 
in different places and that common problem solving strategies in science 
serve primarily to convert from uncertainty into approximation (Trickett & 
Trafton, 2007; Trickett, Trafton, & Schunn, 2009). 

In this chapter, to organize the psychology of science literature on 
uncertainty and to characterize its bounds, we present comprehensive tax­
onomies of sources of informational uncertainty, strategies for diagnosing 
informational uncertainty, and strategies for reducing informational uncer­
tainty. These taxonomies were developed from cognitive anthropological 
work (Hutchins, 1995; Suchman, 1987) we have done over several years, con­
ducting careful observations of many scientists and scientists in training, 
working in scientific domains with high levels of informational uncertainty 
(e.g., astronomers, neuroscientists, physicists, and geologists). It came from 
hundreds of hours watching researchers analyze their data (Schunn, Saner, 
Kirschenbaum, Trafton, & Littleton, 2007; Trickett, Fu, Schunn, & Trafton, 
2000; Trickett, Trafton, Saner, & Schunn, 2007; Trickett et al., 2009), interviews 
with dozens of experts about the ways in which uncertainty enters into their 
domain and how they deal with it, attending colloquia and conferences in 
the domains, and working with developers (e.g., computer scientists, physi­
cists, and mathematicians) of new visualization tools. 

Although the taxonomies were developed from observations of many 
domains, to be efficient here, it will be presented with concrete examples 
from two domains: cognitive neuroscience using functional magneti~ re~­
onance imaging (fMRI) and meteorological forecasting, one more baslC sci­
ence and one more applied science, which are briefly described first to set 
the context. The goal of fMRI in cognitive neuroscience is to discover bo~h 
the location in the brain and the time course of processing underlying dif­
ferent cognitive processes. fMRI is a domain of high uncertainty because 
it has very noisy data with complex data analysis procedures. The proce­
dure of fMRI is as follows: Imaging data are collected in research fMRI scan­
ners hooked to computers that display experimental stimuli to their human 
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subjects. Generally, fMRI uses a subtractive logic technique, in which the 
magnetic activity observed in the brain during one task is subtracted from 
the magnetic activity observed in the brain during another task, with the 
assumption that the resulting difference can be attributed to whatever cog­
nitive processes occur in the one task but not the other. Moreover, neuronal 
activity levels are not directly measured, but rather one measures the changes 
in magnetic fields associated with oxygen-rich blood relative to oxygen­
depleted blood. The main measured change is not the depletion due to neu­
ronal activity, but rather the delayed overresponse of new oxygen-rich blood 
moving to active brain areas. The delay is on the order of 5 seconds, with the 
delay slightly variable by person and brain area. Data is analyzed visually 
by superimposing color-coded activity regions over a structural image of the 
brain, looking at graphs of mean activation level by region and/or over time 
or across conditions, or looking at tables of mean activation levels by region 
across conditions. Elaborate, multistepped, semiautomated computational 
procedures are executed to produce these various visualizations, and given 
the size of the data (gigabytes per subject), many steps can take up to several 
minutes per subject. Inferential statistical procedures (e.g., t-test, analysis of 
variance [ANOVA]) are applied to confirm trends seen visually. 

The problem in weather forecasting is that there is considerable uncer­
tainty in meteorology data, both in observations and numerical forecast 
models. Forecasters must make judgments that account for and accommodate 
that uncertainty, although uncertainty is not typically displayed in any of 
their tools. Weather forecasters examine observations, summaries of those 
observations, and predictive forecast models that use those observations 
as input. While they do explicitly examine actual observations by examin­
ing satellite pictures or local wind speed, the majority of their information 
comes from tools that summarize or use those observations. They see satellite 
images and loops uploaded onto the Internet. They view predictions made by 
complex models with varying underlying assumptions. The models are also 
based on possibly unreliable or sparsely sampled observations. Weather is 
also extremely chaotic (the "butterfly effect"), and no current numerical fore­
casting model is able to accurately depict the complete dynamic structure of 
the atmosphere. The associated uncertainty, unreliability, data sparsity, and 
underlying assumptions are not explicitly provided to the forecasters. The 
forecasters must infer the uncertainty, either from experience and training, 
or because the values are not stable across time or across different instances 
of the "same" data (e.g., different weather models). The data are transformed 
in one of many ways (e.g., direct transformation, modeling, combination, and 
multiple representations) and displayed to the decision maker as stimuli. 

WHY DOES SCIENTIFIC DATA ANALYSIS INVOLVE UNCERTAINTY? 

A Taxonomy of Sources of Scientific Uncertainty 

There are several taxonomies of sources of uncertainty in existence. Some 
come from psychology and judgment and decision-making research 
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(Berkeley & Humphreys, 1982; Howell & Burnett, 1978; Kahneman & Tversky, 
1982; Krivohlavy, 1970; Lipshitz & Strauss, 1997; Musgrave & Gerritz, 1968; 
Trope, 1978). Others come from a broad array of particular disciplines, such 
as geography (Abbaspour, Delavar, & Batouli, 2003), finance (Rowe, 1994), 
law (Walker, 1991, 1998), medicine (Brashers et al., 2003; Hall, 2002), consumer 
choice (Sheer & Cline, 1995; Urbany, Dickson, & Wilkie, 1989), negotiation 
(Bottom, 1998), and military tactics (Cohen, Freeman, & Thompson, 1998). 
The taxonomies from the disciplines are typically armchair analyses rather 
than from observations of experts in the field. 

We divide sources of information uncertainty into four broad classes: 
physics uncertainty, computational uncertainty, visualization uncertainty, 
and cognitive uncertainty. Experimental studies of uncertainty in scientific 
problem solving have focused on just a small subset of these sources; our 
taxonomy shows that informational uncertainty stems from many different 
complex sources and is the norm in science. 

Physics Uncertainty 

Sometimes uncertainty in scientific data comes from uncertainty in the raw 
measured information itself. When uncertainty was experimentally intro­
duced in lab studies, it was usually conceptualized as physics uncertainty 
(Gorman, 1986; O'Connor, Doherty, & Tweney, 1989; Penner & Klahr, 1996; 
Schunn & Anderson, 1999; Tweney, Doherty, & Mynatt, 1981). This measure­
ment uncertainty subdivides into three subtypes, roughly corresponding 
to a signal not being measured, signal noise, or noise in the way the sig­
nal is being transduced, each of which is described in further detail below 
(Figure 19.1). 

Not measured uncertainty. In many complex domains, the measured sig­
nal is inherently ambiguous because key information is not measured either 
because the information is not recorded or the information is not measurable 
(with existing technology). Unrecorded information can be a general state of 
the equipment, or a temporary error producing some missing data points. 

In fMRI, the most central unmeasured information is actually the brain 
activity itself. Instead, fMRI measures the blood oxygenation levels that 
respond with variable lag by person and brain region to brain activity levels. 
The variable lag is technically the unmeasured element that causes uncer­
tainty. Because it is not always clear which regions will be important and it 
is not always feasible to measure the whole brain, some brain regions can be 
unmeasured in a given study. 

Figure 19.1 Types of uncertainty 
coming from physical factors. 
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In weather forecasting, weather models make very detailed predictions 
using previous measurements. These measurements can be very sparse due 
to weather satellite blind spots and other measurement device placements 
(especially at sea); point observations may not be very representative of what 
happens outside the point. 

Signal noise uncertainty. The information signal, before it reaches the mea­
surement device, can have stochastic variability, unknown levels of bias, and 
extraneous signal sources, which introduces additional information uncer­
tainty. In fMRI, electromagnetic noise in the surrounding environment, the 
participant's body beyond the brain (especially the eyes), and the way the 
signal moves from the brain through the skull introduce considerable signal 
noise uncertainty. The bias produced from some of these effects is only par­
tially predictable (e.g., there are weaker signals from deeper in the brain, and 
there are artifactual signals near the eyes due to eye movements). In weather 
forecasting, cloud base height (the bottom of the cloud deck) and cloud height 
are measured by a device called a ceilometer. The ceilometer measures par­
ticulates in the atmosphere and, thus, smoke, dust, and even precipitation 
can lead to an inaccurate reading. The reading may also be erroneous if there 
is a small break in the clouds above the instrument. Such problems are not 
the fault of the measurement device, but inherent in a noisy signal. 

Transduction uncertainty. The third subtype of physical uncertainty is a 
function of the measurement device itself. In the process of transduction (con­
verting incoming physical energies such as light, sound, magnetic fields, and 
heat into data), a measurement device may reduce the quality of the incom­
ing information by simply misreading an incoming signal or compressing 
dimensionality. Alternatively, the instrument might just fail for a period of 
time; this form of transduction uncertainty appears to be especially difficult 
to resolve (O'Connor et al., 1989). 

In fMRI, even the latest equipment is still not as spatially precise as some 
researchers would like and not as temporally precise as other researchers 
would like. Further, many fMRI researchers share the very expensive device, 
and this high-use equipment can move out of alignment across participants. 
In weather forecasting, a radiosonde (weather balloon) may transmit uncer­
tain information about relative humidity under some situations. When the 
radiosonde gets very dry or very cold, its ability to transmit accurate relative 
humidity degrades by more than 10%. 

Computational Uncertainty 

When large amounts of data are measured, many scientists use a number of 
potentially elaborate computation procedures on that data before they see 
the data. These computational procedures can add new sources of uncer­
tainty in three general ways (Figure 19.2). Psychology -of science has tended 
to ignore this source of uncertainty. 

Future prediction uncertainty. Data is collected at a certain point in time, 
and the world continues to change beyond that point in time. The computa­
tional procedures either make no corrections for these changes or they make 
only partially accurate corrections, and this introduces a potentially large 
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Figure 19.2 Types of 
uncertainty coming from 
computational factors. 
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source of uncertainty. Weather forecasting has a large degree of future pre­
diction uncertainty because the forecasters must make predictions for times 
that are hours, days, weeks, or even months away. In fMRI, brain structural 
images are collected typically only at the beginning of a scanning session. 
These structural images are crucial for interpreting the functional location of 
a given area of activation. Yet, the head often moves slightly during the exper­
iment and the brain itself undergoes minor deformations over time (e.g., the 
areas near the nasal passages deform during breathing). These changes over 
time since last measurement introduce uncertainty into the analyses. 

Statistical artifact uncertainty. Many statistical algorithms/procedures are 
applied to scientific data to deal with physics or future prediction uncer­
tainty. These statistical algorithms have the potential of introducing artifacts 
in the displayed data. We distinguish two main subtypes of statistical arti­
fact uncertainty. 

The first subtype is aggregation/smoothing uncertainty that removes real 
features from the data. Statistical algorithms typically try to find a simpler, 
smoother underlying explanation of the data, filtering out "noise" and possi­
bly aggregating data across larger spatial or time scales than when the data 
was collected. However, sometimes the features being filtered out are in fact 
real features of the external world rather than noise. In weather forecasting, 
microclimates occur in protected valleys, atop high mountains, adjacent to 
large bodies of water, and so on. These may be more sharply defined than the 
analysis model predicts. In fMRI, the search for activated regions uses a sta­
tistical thresholding procedure that can require sustained activation. acr?ss 
time and across adjacent areas. Thus, single, very small areas of act1vatton 
are removed by this procedure. 

The second subtype is statistical assumption uncertainty. To infer under­
lying properties or to further filter out the noise, the computational algo­
rithms/procedures often depend upon certain statistical assumptions. T?ese 
assumptions can be globally very accurate (i.e., correct most of the twe), 
?ut locally inaccurate (i.~., untrue for a particular time and place). They~ 
mtroduce false features mto the data, as well as remove true features. 
most common statistical assumptions across domains are linearity (changes 
over time and space are linear) and persistence (things tend to stay the same 
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over small units of time). In weather forecasting, a good predictor of future 
weather is current weather. Thus, persistence is included into weather mod­
els and all weather models make heavy use of the current weather in their 
predictions. Yet on a local basis, some areas can change weather much more 
quickly than the models would normally predict. In fMRI, there are algo­
rithms that correct for head motion. The algorithms often assume linear 
movement over time (e.g., a head gradually sinking into a pillow). Yet, head 
movements can often be nonlinear (e.g., sudden or back-and-forth). 

Fast+cheap uncertainty. In many complex domains, there exist elaborate 
algorithms that have very high levels of accuracy. Unfortunately, even on 
modern high-power computers, these elaborate algorithms require consid­
erable time to complete and often longer than the problem solver usually 
wants to wait. Thus, in these scientific domains, there exist many algorithms 
that are more approximate in accuracy but much faster to run. 

In fMRI, data analysis is very much an iterative process. Before conduct­
ing the most detailed and accurate analyses, researchers will typically use 
more approximate but significantly faster analyses. In weather forecasting, 
some weather models use exact, micro models of the physics of weather 
change, but it is not possible to run such models for even medium-sized 
regions. The time to run the algorithms for even medium-sized regions 
would introduce additional future prediction uncertainty because it will 
have been a long time since the last data input to the model. 

Visualization Uncertainty 

After data are measured and processed through procedures and algorithms, 
the information must be conveyed somehow to the problem solver, most 
typically with a visualization (e.g., map, table, graph). Correspondingly, a 
large spectrum of psychology of science work falls under the use of visual 
representations (Shah & Hoeffner, 2002). But sometimes the visualizations 
introduce informational uncertainty about what information can be logically 
derived from a visualization (this section), or uncertainty regarding human 
errors or confusions about how to interpret information from the visualiza­
tion (see the next section on cognitive uncertainty) (Figure 19.3). 

Non represented information. The most obvious form of visualization uncer­
tainty occurs when information (that is logically necessary for developing 
an accurate understanding of a situation) is missing from the visualization 
entirely. In fMRI, sometimes key regions of activation may be missing from 
the current visualization because a subset of the brain slices is being dis­
played. In weather forecasting, some of the displayed measures are not very 
stable over the time window being displayed, but the visualization provides 
no information about the certainty of the displayed means. 

Composite information uncertainty. Sometimes multiple dimensions that 
are typically correlated in value are represented with a single composite 
measure. When the functional combination and the correlation among val­
ues are not perfect, this composite measure introduces uncertainty. The most 
common composite is one that shows a combination of duration and amount 
so that one does not know whether it was actually a very large amount for 
a small percentage of the given time interval, or a smaller amount for the 
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Figure 19.3 Sources of 
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full time interval. In fMRI, one sometimes has tables that show total signal 
change of an area (relative to baseline); one does not know whether just a 
few voxels are very active or whether many voxels are moderately active. 
In weather forecasting, the display of rain levels does not tell you whether 
it was 1 em of rain gradually over 10 minutes, or an onslaught of 1 em in 1 
minute followed by 9 minutes of no rain. 

Inconsistent information uncertainty. In many complex domains, there are 
multiple visualizations shown at the same time. Similar to the joke about 
the man with two watches never knowing what time it is, multiple displays 
produce uncertainty when the displays do not match. In weather forecasting, 
the forecaster frequently examines predictions of different models and these 
predictions often do not agree in all their details. In fMRI, there are different 
ways of slicing the data. For example, one can examine which regions acti­
vate by time or which regions activate by condition. Sometimes these differ­
ent visualizations do not agree. 

Cognitive Uncertainty 

In most psychology of science investigations of uncertainty, the uncertainty 
sources that were explicitly discussed were external, as in the previous catego­
ries. However, humans are a key part of the information system, especially in 
the complexity of science situations. Humans act as encoding devices, infor­
mation storage/retrieval devices, and procedure enactors. Correspondingly, 
they are also a common source of information uncertainty, as possible errors 
can be introduced in encoding, retrieval, or procedural enactment. In fact, 
one reaction to external uncertainty is to attribute it to cognitive factors like 
misencoding or other human error (Chinn & Brewer, 1992). Cognitive uncer­
tainty can reside in the focal problem solver or it can come from the informa­
tion that team members provide (Hutchins, 1995) (Figure 19.4). 

Perceptual error. Early astronomers noted a human perceptual source of 
uncertainty, referring to a "personal equation" (Schaffer, 1988). In general, 
information from measurement devices and computers is conveyed to the 
scientist through perceptual input, typically visually. The scientist must then 
perceive this information, which includes a transduction process, an atten­
tion process and a pattern recognition process. Each step of perception. ~an 
introduce errors. Particularly important to science, the pattern recogmt: 
process is highly influenced by experience (Biederman, 1987; Polk & Far f 
1995) and expectations (Brewer & Treyens, 1981) and can produce errors 
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Figure 19.4 Sources of uncertainty in data analysis coming from cognitive factors. 

commission (i.e., miscategorizations). This expectation-driven mispercep­
tion may be connected to confirmation bias (Penner & Klahr, 1996). 

In fMRI, sometimes the researcher will not notice certain areas of acti­
vation on the display in front of them, especially if the activation is in an 
unexpected area. Sometimes, researchers misperceive what condition is 
being displayed in an activation map-the font size on the condition labels 
is often too small. In weather forecasting, many of the weather models show 
quantitative data by displaying a color legend. Unfortunately, different color 
schemes can cause different perceptual illusions or cause some colors to be 
perceived incorrectly. 

Memory encoding error. In many sciences, truly impressive amounts of 
information are often directly displayed in front of a person across large 
and multiple monitors. However, at any one time, only a very small amount 
of information is directly perceived. This deep limit on visual input implies 
that complex inputs must be stored and retrieved from memory. The human 
memory encoding process can be error prone in two different senses: sto­
chastic selection and biased selection. First, only a small, fairly unpredict­
able subset of information that a person encounters is encoded correctly in 
memory. Second and especially relevant to confirmation biases in science, 
sometimes only particular aspects of the encountered situation are correctly 
entered into memory. Highly familiar information that can be grouped 
into familiar, meaningful chunks, for example, is more likely to be encoded 
(Chase & Simon, 1973). Information that violates expectations or is perceptu­
ally distinctive is more likely to be encoded (Bower, Black, & Turner, 1979). 
Information of emotional relevance is also more likely to be encoded (Cahill 
& McGaugh, 1995). Human memory encoding errors include both failures to 
encode information and misencodings of information. 

In fMRI, patterns that occur in regions of the brain that a researcher is 
more familiar with are more likely to be encoded, whether they be expected 
patterns (and thus decomposable into familiar chunks) or unexpected pat­
terns (and thus violations of expectations). In weather forecasting, the fore­
caster must compare and contrast not only different weather models with 
each other, but also must examine different weather models with "truth" from 
some time in the recent past. Most of these comparisons occur when the fore­
caster can only see one visualization at a time (i.e., it is difficult to geo- and 
time-reference different visualizations). 

Information overload. A scientist can consider or be aware of only so much 
information at once, and many sciences involve large amounts of potentially 
relevant information. Although it is thought that there are no hard limits on 
how much information can be kept in working memory, the more information 
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that is kept in working memory, the harder it is to rehearse all the elements 
to keep them there. By organizing information into templates for a particular 
situation (e.g., like the method of loci), experts are able to include keep truly 
impressive amounts of information in working memory. However, even 
expert working memory has clear limits that complex domains often exceed, 
and disconfirming evidence that does not "fit" into an overall model might 
be more likely to be dropped. 

In fMRI, there are many regions of the brain that can become active, and 
most thought processes activate a number of areas in the brain. A given par­
ticipant's brain activation is displayed across 10 to 30 brain slice images, and 
a given study often has 10 or more participants. In weather forecasting, the 
forecaster has access to thousands of weather visualizations showing differ­
ent weather models, blends, satellite images, time courses, and so on. Because 
many of these variables interact with other variables at different geographical 
or atmospheric levels, the forecaster needs to keep track not only of different 
weather models, but also different variables within each weather model. 

Retrieval error. Once information is actually encoded in memory there is 
no guarantee the information will be retrieved at a later point in time due to 
either inference and/or decay processes (Baddeley & Scott, 1971; Gillund & 
Shiffrin, 1984). Moreover, not only can information fail to be retrieved at all 
but also erroneous information could be retrieved instead. In either case, the 
retrieval errors might reflect a stochastic factor reflecting neural firing vari­
ability, or a bias toward remembering particular information (e.g., consistent 
with current expectations or the current theory under test, or more recently 
or frequently encountered information). 

In fMRI, data from participants are often examined from one participant 
at a time because each participant can generate gigabytes of data and the 
computers can often process only one participant at a time. These memory 
retrievals for across-participant comparisons are prone to error, and research­
ers will bring back on the screen old images (or recompute images) to double 
check for such errors. In weather forecasting, forecasters will frequently 
attempt to retrieve a similar situation to the current forecasting problem. For 
example, a hurricane forecaster may attempt to retrieve a similar case but 
because there are very few tools for this kind of case-based reasoning, the 
forecaster's memory will likely be quite faulty. 

Background knowledge error. Uncertainty can also be caused by failing to 
bring in appropriate background knowledge that changes the interpretation 
or prediction for a particular situation. These errors contrast with retrieval 
errors in that retrieval errors are information about a particular state of the 
world, whereas background knowledge errors are either a lack of knowl­
edge or failed retrievals of knowledge about the general state of the world. 
In general, the same factors that produce episodic memory retrieval err~rs 
also produce semantic memory retrieval errors, and similarly confirmatiOn 
biases can influence data analysis through selective retrieval of relevant 
semantic memories. 

In fMRI, even experts will forget what particular regions on a brain map 
are. There are several different taxonomies for labeling brain are~s, a_nd r:; 
ticular researchers specialize in particular brain circuits. But activatiOn. t ~ 
occurs in a new experiment could involve a region not previously examme 
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by the particular researcher. In weather forecasting, background knowledge 
is required to adjust weather predictions, and experts sometimes forget (or 
not have) the relevant background knowledge for a particular situation. For 
example, one might not know that a given power plant is off on Sundays and 
this changes local weather patterns. 

Skill error. Uncertainty can also arise from procedural errors in the data 
transformation or interpretation processes. For example, the scientist may 
fail to do a mental or external transformation step. Here the informational 
uncertainty is whether the transformation was done, not the error itself. Skill 
errors are more likely to occur in steps that are less practiced (Singley & 
Anderson, 1989; Woodrow & Stott, 1936), less recently practiced (Kyllonen 
& Alluisi, 1987), or when hurried (Grice & Spiker, 1979), fatigued (Krueger, 
1994), or stressed (Alkov, Gaynor, & Borowsky, 1985; Beilcock & Carr, 2001). 

In fMRI, the analysis process has many steps, is quite complex, has pro­
cedures that can vary depending on the situation, and is continually chang­
ing as new procedures are being introduced. Many researchers immediately 
want to use the latest innovations in analysis techniques. As a result, they 
will put up with having to do many steps by hand and suffer poorly designed 
and poorly documented software. In weather forecasting, coordination of 
weather models can be complex and errors occur in this coordination pro­
cess. For example, predictions from the global weather model are provided 
as inputs to the mesoscale model. Sometimes forecasters, in their haste to 
develop a prediction, fail to verify accuracy of the global inputs before run­
ning the mesoscale model, or they (mistakenly) assume that their partner 
already validated the global inputs. 

INDICATORS OF UNCERTAINTY IN SCIENTIFIC DATA ANALYSIS 

Although scientific data always have some level of informational uncer­
tainty in them, the level of uncertainty does fluctuate over time. Indeed, 
one dimension of expertise is the ability to detect moments of relatively 
high uncertainty in data analysis (Schunn, 2010; Schunn & Anderson, 1999; 
Schunn et al., 2007). What kind of indicators do scientists use to track the 
level of informational uncertainty? Our cognitive anthropology suggests 
there are four general kinds of indicators that scientists can use, which can 
be cast in terms of a general process of trying to find meaningful patterns in 
the data (see Figure 19.5), although they al.so allow for systematic biases to be 
introduced by the scientists. 

See No or Unusually Weak Pattern 

Not seeing any pattern or highly noisy patterns in data are good indicators of 
informational uncertainty. The world around us contains innumerable pat­
terns at various levels, and when we do not see patterns in the data, we have 
good grounds to be suspicious of what we are seeing-perhaps the sensory 
equipment is broken or disconnected, perhaps an analysis transformation 
step was forgotten, and so on. 
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Figure 19.5 Indicators used to detect relatively high lev.els of uncertainty. 
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There are two important notes about this indicator. First, different sciences 
can have very different kinds of patterns to be seen, and being able to see pat­
terns in a given scientific domain is a part of expertise in that domain (Kaplan 
& Simon, 1990; Kulkarni & Simon, 1988). That is, what appears as just noise to 
the novice may be highly ordered and informative to the expert. Second, most 
sciences have some level of noise, and another component of expertise is know­
ing what level of noise is acceptable or normal (Schunn & Anderson, 1999). 

In fMRI, the activation profile (change in activation levels of a region 
over time) can follow a nice smooth curve or can be very jagged, indicating 
high uncertainty. Alternatively, an activation map (topographic map of areas 
of activation in a condition) can have clear clumps of activity or there can be 
many small points of activity with no clear organization, again indicating 
high uncertainty. 

See an Impossible Pattern 

A second important indicator of high levels of uncertainty is when an 
observed pattern clearly violates domain expectations. The most common 
form is an observation with values that are out of an acceptable range. 
However, sometimes the values are out of range for the particular type of 
situation being examined. In fMRI, it is not good to see data displays with 
extra coronal areas of activation (i.e., apparently activated brain areas outside 
the skull), and it makes one uncertain about all of the data one is seeing. In 
weather forecasting, the detectors of impossible patterns are sometimes auto­
mated. There is a program that notices anomalies in the data. Also, weather 
satellites sometimes have out of range tests in their instruments and will 
flag a probable error state when those ranges are exceeded (e.g., ground tem­
perature readings that are much too high or much too low). The detection of 
impossible patterns also occurs in the meteorologist (e.g., noting predictions 
of snow over Georgia in the summer). 

See a Pattern That Mismatches the Known State of the World 

Not all data are considered equal; some data are considered to be ~irect 
measures of truth, whereas other data are considered as much more mfer~ 
ential and subject to issues of uncertainty. Thus, an important indicator 0 
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uncertainty is when a pattern from one of the less direct measures mis­
matches the pattern considered a known state of the world-it makes the 
problem solver doubt all of the patterns being currently displayed in the 
mismatching display. The difference between mismatching the known state 
of the world and being an impossible pattern is that the impossible pattern 
requires no reference to other data collection or manipulation of the world, 
whereas the mismatch to the known state of the world does require refer­
ence to some other data about the current state that is considered truth. One 
of the strongest forms of known truth comes from a manipulation of the 
environment-if the problem solver manipulates the environment, the prob­
lem solver may have very clear expectations for some of the impacts of this 
manipulation and these expectations are considered a known truth about 
the state of the world (cf. Baker and Dunbar [2000] on known control trials). 
But sometimes the current facts and laws in science that are taken as known 
truths are not completely accurate, and requiring all new data to fit existing 
facts and laws can be problematic. Even more problematic is the case when a 
scientist considers his or her own theory as a "fact," ignoring disconfirming 
evidence (Chinn & Brewer, 1992; Mitro££, 1974). 

In fMRI, good researchers typically include validity tests in their 
designs-conditions for which the impact on brain activation is so well 
established that it is treated as a known. For example, one might have a sim­
ple visual stimulus and expect to see activation in early visual areas of the 
brain. In weather forecasting, there is less opportunity for manipulation 
but some sources of data are considered truth. For example, forecasters will 
sometimes overlay weather model predictions for a current or past time on 
top of a satellite image for that same time to see whether the weather model 
predictions match the current "truth." 

See a Pattern That Is Inconsistent Across Data Sources 

Finally, scientists can also use mismatches across multiple (equal status) data 
sources or (equal status) analysis methods. If a mismatch across data sources 
or analysis methods is detected, then data from all sources/methods are 
considered uncertain until further problem solving resolves which source 
is more likely to be correct. In fMRI, a scientist might use different analysis 
procedures and see whether the different analysis procedures produce simi­
lar results. In weather forecasting, forecasters will compare different data 
sources (e.g., National Oceanic and Atmospheric Administration [NOAA] vs. 
Navy sources) or different weather model predictions. 

TAXONOMY OF STRATEGIES FOR DEALING WITH UNCERTAINTY 

Having diagnosed the situation as being uncertain, what kind of strategies 
do scientists use to deal with uncertainty? In scientific data with high levels 
of uncertainty, much of problem solving can be focused on reducing uncer­
tainty. In generat actively manipulating one's environment allows for greater 
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success in finding patterns in uncertainty data (Klayman, 1986). Strategies 
can be used to reduce uncertainty but they are heuristic and can introduce 
other forms of information uncertainty (e.g., statistical uncertainty or cogni­
tive uncertainty). Thus, it is not surprising that there are at least seven differ­
ent kinds of strategies that we have observed. There is" no strict chronological 
ordering or preference of use among these strategies. The order listed below, 
however, is roughly descriptive of the order in which strategies are likely to . 
be applied (Figure 19.6). 

We use the term strategies to refer to the kinds of responses experts use 
to deal with or reduce uncertainty. We prefer the term strategies to heuris­
tics, algorithms, procedures, or methods because the term strategies high­
lights the facts that (a) scientists typically have multiple behaviors they can 
and do use to deal with uncertainty in data, (b) the choice of behavior is 
influenced by situation features, and (c) the behaviors are generally adaptive 
but not necessarily optimal. 

Check for Likely Errors 

When results are particularly surprising and especially toward the begin­
ning of a problem-solving episode, the common first step is to look for likely 
sources of error. The particular sources to look for can depend upon the par­
ticular tools one is using-not all tools have the exact same set of common 
errors. However, we list some typical kinds of errors to look for in each of the 
three domains. 

In fMRI, problem solvers typically look for common skill errors. For 
example, problem solvers often double check the splitfile-the way the 
data is parsed by condition. Conditions can be mislabeled, copied to incor­
rect directories, or be out of temporal phase with the brain imaging data. 
Here, the problem solver will reexamine the process by which the data were 
generated, and perhaps redo the splitfile from scratch. Weather forecasters 
also will look for skill errors. For example, sometimes a satellite picture or 
weather model may be mislabeled either on a weather portal or on the title 
of the visualization. 

Focus on More Reliable Sources 

Some data sources are more reliable than others, and a common response 
to high levels of uncertainty is to focus on the sources or kinds of data con­
sidered more reliable. It is worth noting, however, that reducing the kinds 

Figure 19.6 Strategies commonly used to reduce uncertainty in data analysis. 
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of information being examined can introduce other kinds of informational 
uncertainty or perhaps introduce confirmation biases (Gorman, 1992). In 
fMRI, scientists often focus on more reliable aspects of the data. For example, 
the scientist will typically adjust statistical thresholds in cases of high uncer­
tainty so that only the most reliable results are displayed. Another common 
approach is to throw out high noise or low signal participants-in fact, it is 
not uncommon to throw out 10% to 40% of participants because of high noise 
or low signal problems. In weather forecasting, a forecaster will learn from 
experience that some weather models are particularly good at certain situa­
tions. For example, the forecaster may use weather model A when there is a 
low off the coast of Florida and a large Nor' easter (a storm blowing from the 
northeast) coming in December, but rely on weather model B when there is 
not a Nor' easter. Because of the relatively tight coupling between the forecast 
and truth (i.e., it is usually easy to determine if a forecast was correct), a fore­
caster quickly gains faith in certain models in certain conditions. 

Adjust for Known Deviations From Truth 

When some sources of data can be considered the true state of the world, 
then the expert problem solver often uses this information to adjust clear 
deviations from truth in more inferential, indirect sources of data. This 
adjustment can be done externally in software or it can be done mentally by 
the problem solver (Trickett & Trafton, 2007; Trickett et aL, 2007). In weather 
forecasting, there are cases of both external and mental adjustments. Some 
software allows the forecaster to move features on the display by hand (e.g., 
move the locations of predicted lows). Another key activity is adjusting past 
state descriptions that weather models take as input. But verbal protocols 
of forecasters also show that forecasters will mentally adjust features in 
a predicted model that they consider in need of adjustment. In fMRI, the 
manipulations are primarily mental because it is considered unethical to 
manipulate data subjectively by hand (rather than clearly described and 
objective algorithms). 

Average Across Sources/Analyses 

When there are multiple sources of data and they are equally suspect, prob­
lem solvers can average (weighted or unweighted) across the sources of 
data to produce what they consider a more certain outcome. This averaging 
process, like the adjustment process, can be done in software or mentally 
(Trickett et aL, 2007; Trickett et al., 2009). In fMRI, a common approach with 
high uncertainty is to move from individual participant data displays to 
group level average data displays, which is done in software. Weather fore­
casters will frequently average mentally across different weather models, 
producing not just a simple numerical average, but rather a complex combi­
nation mediated by a qualitative mental model of the overall situation that 
is developed (Trafton et al., 2000). Recently, forecasters have begun using 
statistical combinations of different models, a practice that is called ensem­
ble forecasting. 
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Acquire Additional Data of the Same Kind 

To deal with uncertainty, often patience is required; the problem solver must 
merely wait for more data of the same kind to resolve the'·uncertainty. A 
common effect of introducing noise into data is that many more trials are 
required to discover a pattern (Gorman, 1986; Penner & Klahr, 1996). It is 
important to note that waiting for more data can introduce additional uncer­
tainty in the form of possible retrieval errors (forgetting what happened 
before) and future prediction uncertainty (increasing temporal lag since last 
collection of key data, like just after a maneuver in submarine operations). In 
fMRI, the researcher will often decide to collect data from additional partici­
pants, in order to see whether unexpected trends will continue or noisy data 
will average out more clearly. A weather forecaster can examine more time 
slices of recent data, or even reexamine the same data again to refresh his/ 
her memory of the data. 

Gather More Reliable Data 

Some sources of data are less reliable than others, but may be used at a par­
ticular point in time because of cost/accuracy tradeoffs or may just happen 
to be the data that is currently available. When examining highly uncertain 
data that cannot be resolved through the simpler strategies described above, 
scientists often choose to gather more reliable data, which they may not have 
done prior to this point because of resource management issues. There have 
been some arguments about what kind of data is selected in response to the 
possibility of error, but in general there is not an increase in confirmation 
bias (or H+ tests), but there may be an increase in replication trials (Baker & 
Dunbar, 2000; Gorman, 1986; Penner & Klahr, 1996). 

In fMRI, the researcher can use more detailed/accurate analysis proce­
dures that are slower to run and thus not used first. Also, the researcher can 
decide to change the experiment to a more conservative structure and then 
collect more data (Schunn & Klahr, 2000). The more conservative experiment 
may have more trials per condition, collect baseline data more often (to deal 
with motion correction issues), or somehow make the manipulation stronger. 
A weather forecaster can request a weather balloon to be launched, which 
provides highly accurate and more recent information for a particular small 
region. Some more detailed models produce more accurate predictions, but 
are much slower to run, and thus are not typically used first. 

Bound Uncertainty in Final Solution 

Uncertainty does not always get resolved by the end of data analysis. Pap:rs 
must be submitted to conferences and journals, and complete resolutiOn 
of uncertainty is not necessary. The final common strategy that we ha~e 
observed scientists use is to give explicit bounds on the uncertainty of thell' 
final solution. In fMRI, observed results are categorized as clear or o:ar­
ginal. For example, the researcher might state that the location of a part~cu­
lar activated region may actually be in this or another adjacent brain region. 
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In weather forecasting, ranges of values are often given (e.g., winds between 
4 and 7 knots). 

MEASURING PSYCHOLOGICAL UNCERTAINTY IN SCIENTISTS 

To measure psychological uncertainty during science, one can use surveys, 
speech cues, or gestures. Using surveys is relatively straightforward. Speech 
and gesture are more complex and this is described in more detail. 

Speech Coding of Uncertainty 

One approach to coding uncertainty and approximation is syntactical with 
verification. Uncertainty hedge words include "probably," "sort of," "guess," 
"maybe," "possibly," "don't know," "(don't) think," "(not) certain," and 
"believe." Each instance of the hedge words should be examined to make 
sure it was being used in an uncertainty sense. 

For example, we have been involved in coding of speech uncertainty in 
two different domains of science (Schunn et al., 2007; Trickett et al., 2009). 
The first domain involved conversations of earth scientists working at the Jet 
Propulsion Lab analyzing data as it came down from Mars from two robotic 
rovers-the Mars Exploration Rovers. The coded conversations were of 
impromptu meetings held throughout the day between groups of 2 to 10 sci­
entists from several different disciplines (soil and rock scientists, geochem­
ists, geologists, and atmosphere scientists). There were a number of video 
cameras off to the sides of the large data analysis rooms. The scientists had 
given informed consent for this video collection but the cameras were rela­
tively small, discretely located, and constantly present. Thus, the scientists 
generally forgot about the existence of the cameras and the transcripts likely 
capture very typical problem-solving behaviors in this context. 

The second domain involved cognitive neuroscientists analyzing fMRI 
data. After 30 to 45 minutes of data analysis, they were then shown three or 
four different minute-long snippets of the videotape that corresponded to 
critical decision-making moments during data analysis. The scientists were 
asked to explain what they knew and didn't know at that moment in time. 
Sometimes problem solvers given think-aloud instructions fall silent exactly 
at the interesting moments in time, especially when the task is long and com­
plex. This cued recall method was designed to capture additional informa­
tion about these more interesting moments. Across these two domains, we 
used the same hedge word technique for coding uncertainty from the tran­
scribed speech, with interrater reliability Kappas greater than 0.8. 

One source of validation involves the temporal reoccurrence of uncer­
tainty statements: If one line had an uncertainty word, the next line was 
more likely to have an uncertainty word-here approximation terms were 
also coded and these terms were not temporally associated with uncertainty 
terms. The know/don't know probes in the study of fMRI provide another 
validation of the uncertainty codes (and coding was done blind to question 
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context). One would expect that there would be more uncertainty speech 
cues in response to the "what did you not know?" question than in response 
to the "what did you know?" question. This is exactly what was found. 

Gesture Coding of Uncertainty 

In science and engineering, much of the data is inherently visual-spatial 
or is displayed in spatial format (e.g., graphs of temperature varying with 
time). Thus, much of the uncertainty is expressed about visual-spatial 
quantities. Because sciences have usually formalized much if not all of the 
quantities and relationships in symbolic formats (e.g., terms for particu­
lar quantitative data patterns, equations to represent quantitative data pat­
terns), much can be studied from coding speech from conversations and 
think-alouds. However, it is likely that considerable representing, reason­
ing, and problem solving in science are also happening in a visual-spatial, 
nonverbal format. 

How does one measure internal problem solving on visual-spatial 
content? All measures of mental representations and problem solving are 
necessarily indirect. Verbal report is one general source of data regarding 
mental representation and problem solving. However, for visual-spatial 
content, it is a suspect source, as verbal data are generally thought to cap­
ture the contents of verbal working memory, not spatial working memory 
(Ericsson & Simon, 1993). Another approach is to use spontaneous gestures. 
In addition to serving a communicative act between speaker and listener, 
spontaneous gestures are thought to be an online measure of mental rep­
resentations much like verbal protocols (Alibali, Bassok, Solomon, Syc, & 
Goldin-Meadow, 1999; Alibali & Goldin-Meadow, 1993; McNeill, 1992). In 
spatial tasks, in fact it is disruptive to the problem solver to prevent gestur­
ing from occurring. 

In addition to coding gestures for complex representational content, ges­
tures can also be used as a measure of uncertainty or approximation. There 
are a number of taxonomies of gesture. One common distinction (McNeill, 
1992) is between beat gestures (rhythmic, repetitive gestures often cotimed 
with speech), deictic gestures (pointing to things in the world around the 
speaker such as the clock on the wall over there), iconic gestures (gestures 
that are literal physical presentations of things absent, such as hand sh~pe 
holding an implied glass), and metaphoric gestures (a spatial representah~n 
of a nonspatial object, such as pointing behind oneself to represent back m . 
time). All of these gestures can have many phases (McNeill, 2005): prepa­
ration (optional), prestroke hold (optional), stroke (obligatory), stroke h?ld 
(obligatory if the stroke is static), poststroke hold (optional), and retr~ctiOn 
(optional). Uncertainty gestures are typically wiggling movements. m ~he 
stroke of an iconic or metaphoric gesture that represents some quantity (I.e., 
normally would be static). For example, a pinch indicating a size toge:her 
with wavering the size or wiggling the hand. In this way, the uncertam:; 
gesture is discriminable from a beat gesture in that there is content to he 
gesture beyond the movement in an uncertainty gesture of this type bu~ t e 
beat gesture does not have content beyond the movement (i.e., the hand oes 
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not indicate a size or distance or volume). However, another common form 
of an uncertainty gesture involves a shoulder shrug. In this case, one must 
rely on speech or perhaps another gesture to determine which quantity is 
producing uncertainty. 

How do we know such gestures correspond to psychological uncertainty? 
We have examined the overlap between uncertainty gesture and speech in 
the four science/applied science domains mentioned earlier. In every case, 
uncertainty gestures were statistically more common when there was uncer­
tainty in the speech than when there was not uncertainty in the speech. 

SUMMARY 

To further validate that there is indeed something called an uncertainty 
gesture that signals an internal state of uncertainty, we can examine gesture 
data from the fMRI study, focusing on the relative frequency of uncertainty 
gestures in response to the Know and Not-Know questions. Two percent of 
segments co-occurred with an uncertainty gesture during the response to 
the Know question. In response to the Not-Know question, rate of uncer­
tainty gestures more than doubled. 

Uncertainty plays a very complex role in basic and applied science. From 
the in-depth analysis of the sources of informational uncertainty, it is clear 
that uncertainty can come from many sources and is likely to be high in 
most basic and applied science domains-at least in the real world cases, 
as opposed to the more simplified cases studied in the lab. Importantly, the 
scientist himself/herself can act as a source of information uncertainty, and 
this source may be particularly relevant to cases of confirmation biases, in 
which simple misencodings or misrememberings may occur in favor of a 
tested hypothesis rather than unethical behaviors. 

To influence behavior, the scientist must diagnose states of informa­
tional uncertainty, and there are number of strategies that scientists have for 
making this diagnosis. Here expertise in science overall and in a particular 
domain of science can play a large role. The second layer of behavior involves 
mitigation: actions taken to reduce the informational uncertainty. Studies 
that have manipulated noise in the data even in simple tasks have found 
large effects on number of trials or probability of success. In complex science 
domains, there· are many different strategies scientists can follow to reduce 
the informational uncertainty. 

Finally, to measure psychological uncertainty, psychologists of science 
have many measurement tools at their disposal, most prominently speech 
and gesture. It is likely that the future of the psychology of science of uncer­
tainty will include neuroscientific techniques, such as Evoke Response 
Potentials and fMRI, which have been used to study uncertainty in other 
domains such as language processing and simple task learning. And more 
cognitive anthropology, like the type that produced these presented taxono­
mies, will be useful to better understand how scientific tasks are constructed 
to deal with the ever-present informational uncertainty in science. 
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THE FUTURE OF UNCERTAINTY IN SCIENCE 

The taxonomies of uncertainty, especially the indicators and strategies taxono­
mies, can be used to guide the development of additional automation to sup­
port problem solving in science domains with high uncertainty. Consider the 
case of indicators. Each of the four categories of indicators in our taxonomy 
can be automated to some degree, and thus one now has four different kinds 
of indicators that one can try to automate in any domain of high uncertainty. 
There are already some measures of noise in many domains (e.g., error bars 
on graphs), but other measures of noise in more complex visual displays can 
be developed. For example, one can make use of information theoretic mea­
sures of the degree of patterns in data. One can develop measures of mismatch 
across data sources. One can develop measures of mismatch from a particular 
source that is considered the known current state of the world. Finally, one can 
develop measures of deviations from theoretically possible states. 

Similarly, one can develop automation for the strategies for dealing 
with informational uncertainty, and our taxonomy provides a set of gen­
eral strategies that one might wish to automate. The value of automating the 
strategies is not as clear as in the case of indicators because doing automa­
tion (like automatic error correction in typing) is always more controversial 
than informing automation (like automatic underlining of errors in typ­
ing). Whether a given strategy should be automated in a given domain will 
depend upon two factors: (a) how simple the strategy is to automate relative 
to how effective people are already at implementing the strategy on their 
own (e.g., people are good at spatial transformations) and (b) how accurate 
the automated transformations are. 

Another use of the uncertainty taxonomies is for psychology science 
research. Many researchers are interested in behavior in science domains of 
high uncertainty but tend to focus on particular sources, particular indica­
tors, or particular strategies. There is certainly nothing wrong with focus­
ing on particular elements in a complex situation. But these taxonomies help 
specify the contrast set the set of alternative elements that might be consid­
ered as also contributing to performance and perhaps possible confounds in 
the research on the given element. For researchers beginning work in a previ­
ously unstudied domain with high uncertainty, these taxonomies provide a 
starting place for understanding the ecology of the presumably important 
uncertainty aspect of the domain. 

REFERENCES 

Abbaspour, R. A., Delavar, M. R., & Batouli, R. (2003). The issue of uncertainty propaga­
tion in spatial decision making. InK. Virrantaus and H. Tveite, (Eds.), ScanGIS'2003: 
Proceedings of the 9th Scandinavian Research Conference on Geographical Information Science 
(pp, 57-f>S). Espoo, Finland. Helsinki, Helsinki University of Technology. 

Alipali •. M. W., Bassok, M., Solomon, K. 0., Syc, S. E., & Goldin-Meadow, S. (1999). 
Illuminating mental representations through speech and gesture. Psychological 
Science, 10(4), 327-333. 

r 
I 
" f 



CHAPTER 19. PSYCHOLOGY OF UNCERTAINTY IN SCIENTIFIC DATA ANALYSIS 481 

Alibali, M. W., & Goldin-Meadow, 5. (1993). Gesture-speech mismatch and mechanisms 
of learning: What the hands reveal about a child's state of mind. Cognitive Psychology, 
25(4), 468-523. 

Alkov, R. A., Gaynor, J. A., & Borowsky, M. S. (1985). Pilot error as a symptom of inade­
quate stress coping. Aviation, Space, and Environmental Medicine, 56(3), 244-247. 

Baddeley, A. D., & Scott, D. (1971). Short term forgetting in the absence of proactive inter­
ference. Quarterly Journal of Experimental Psychology, 23(3), 275-283. 

Baker, L. M., & Dunbar, K. (2000). Experimental design heuristics for scientific discovery: 
The use of "baseline" and "known standard" controls. International Journal of Human 
Computer Studies, 53(3), 335-349. 

Beilcock, S. L., & Carr, T. H. (2001). On the fragility of skilled performance: What governs 
choking under pressure? Journal of Experimental Psychology: General, 130(4), 701-725. 

Berkeley, D., & Humphreys, P. (1982). Structuring decision problems and the "bias heuris­
tic". Acta Psychologica, 50(3), 201-252. 

Biederman, I. (1987). Recognition-by-components: A theory of human image understand­
ing. Psychological Review, 94(2), 115-117. 

Bottom, W. P. (1998). Negotiator risk: Sources of uncertainty and the impact of reference 
points on negotiated agreements. Organizational Behavior and Human Decision Processes, 
76(2), 89-112. 

Bower, G. H., Black, J. B., & Turner, T. J. (1979). Scripts in memory for text. Cognitive 
Psychology, 11(2), 177-220. 

Brashers, D. E., Neidig, J. L., Russell, J. A., Cardillo, L. W., Haas, S.M., Dobbs, L., ... Nemeth, 
S. (2003). The medical, personal, and social causes of uncertainty in HIV illness. Issues 
in Mental Health Nursing, 24, 497-522. 

Brewer, W. F., & Treyens, J. C. (1981). Role of schemata in memory for places. Cognitive 
Psychology, 13(2), 207-230. 

Cahill, L., & McGaugh, J. L. (1995). A novel demonstration of enhanced memory associ­
ated with emotional arousal. Consciousness and Cognition: An International Journal, 4(4), 
410-421. 

Chase, W. G., & Simon, H. A. (1973). The mind's eye in chess. In W. G. Chase (Ed.), Visual 
information processing (pp. 215-281). New York, NY: Academic Press. 

Chinn, C. A., & Brewer, W. F. (1992). Psychological responses to anomalous data. Paper pre­
sented at the 14th Annual Meeting of the Cognitive Science Society, Bloomington, IN. 

Cohen, M. S., Freeman, J. T., & Thompson, B. (1998). Critical thinking skills in tacti­
cal decision making: A model and a training strategy. In J. A. Cannon-Bowers & 
E. Salas (Eds.), Making decisions under stress: Implications for individual and team training 
(pp. 155-189). Washington, DC: American Psychological Association. 

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (2nd ed.). 
Cambridge, MA: MIT Press. 

Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. 
Psychological Review, 91, 1-67. 

Gorman, M. E. (1986). How the possibility of error affects falsification on a task that mod­
els scientific problem solving. British Journal of Psychology, 77, 85-96. 

Gorman, M. E. (1992). Simulating science: Heuristics, mental models and technoscientific think­
ing. Blpbmington, IN: Indiana University Press. 

Grice, G. R., & Spiker, V. A. (1979). Speed-accuracy tradeoff in choice reaction time: Within 
conditions, between conditions, and between subjects. Perception and Psychophysics, 
26(2), 118-126. . ' 

Hall, K. H. (2002). Reviewing intuitive decision-making and uncertainty: The implica­
tions for medical education. Medical Education, ·36, 216-224. 

Howell, W. C., & B\.\rnett, S. A. (1978). Uncertainty measurement: A cognitive taxonomy. 
Organizational Behavior and Human Decision Processes, 22(1), 45-68. 

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press. 
Kahneman, D., & Tversky, A. (1982). Variants of uncertainty. Cognition, 11(2), 143-157. 
Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology, 22, 

374-419. 



482 SECTION V. APPLIED PSYCHOLOGIES OF SCIENCE 

Klayman, J. (1986). Cue discovery in probabilistic environments: Uncertainty and exper­
imentation. Journal of Experimental Psychology: Learning, Memory and Cognition, 14(2), 
317-330. 

Klein, G. A. (1989). Strategies of decision making. Military Revieiv, May, 56-64. 
Krivohlavy, J. (1970). Subjective probability in experimental games. Acta Psychologica, 

34(2,3), 229-240. 
Krueger, G. P. (1994). Fatigue, performance, and medical error. In M. S. Bogner (Ed.), 

Human error in medicine (pp. 311-326). Hillsdale, NJ, England: Lawrence Erlbaum 
Associates, Inc. 

Kulkarni, D., & Simon, H. A. (1988). The process of scientific discovery: The strategy of 
experimentation. Cognitive Science, 12, 139-176. 

Kyllonen, P. C., & Alluisi, E. A. (1987). Learning and forgetting facts and skills. In G. 
Salvendy (Ed.), Handbook of human factors (pp. 124-153). Oxford, England: John Wiley 
& Sons. 

Lipshitz, R., & Strauss, 0. (1997). Coping with uncertainty: A naturalistic decision-making 
analysis. Organizational Behavior and Human Decision Processes, 69(2), 149-163. 

McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago, IL: University 
of Chicago Press. 

McNeill, D. (2005). Gesture and thought. Chicago, IL: University of Chicago Press. 
Mitro££, I. I. (1974). The subjective side of science. New York, NY: Elsevier. 
Musgrave, B. S., & Gerritz, K. (1968). Effects of form of internal structure on recall and 

matching with prose passages. Journal of Verbal Learning and Verbal Behavior, 7(6), 
1088-1094. 

O'Connor, R. M., Doherty, M. E., & Tweney, R. D. (1989). The effects of system failure error 
on predictions. Organizational Behavior and Human Decision Processes, 44(1), 1-11. 

Penner, D. E., & Klahr, D. (1996). When to trust the data: Further investigations of system 
error in a scientific reasoning task. Memory & Cognition, 24(5), 655-668. 

Polk, T. A., & Farah, M. J. (1995). Late experience alters vision. Nature, 376(6542), 648,649. 
Rowe, W. D. (1994). Understanding uncertainty. Risk Analysis, 14, 743-750. 
Schaffer, S. (1988). Astronomers mark time: Discipline and the personal equation. Science 

in Context, 2(1), 115-145. 
Schunn, C. D. (2010). From uncertainly exact to certainly vague: Epistemic uncertainty 

and approximation in science and engineering problem solving. In B. Ross (Ed.), 
Psychology of learning and motivation (Vol. 53, pp. 227-252).Burlington, IN: Academic 
Press. 

Schunn, C. D., & Anderson, J. R. (1999). The generality/specificity of expertise in scientific 
reasoning. Cognitive Science, 23(3), 337-370. 

Schunn, C. D., & Klahr, D. (2000). Discovery processes in a more complex task. In D. Klahr 
(Ed.), Exploring science: The cognition and development of discovery processes (pp. 161-199). 
Cambridge, MA: MIT Press. 

Schunn, C. D., Saner, L. D., Kirschenbaum, S. K., Trafton, J. G., & Littleton, E. B. (2007). 
Complex visual data analysis, uncertainty, and representation. In M. C. Lovett & 
P. Shah (Eds.), Thinking with data (pp. 27-64). Mahwah, NJ: Erlbaum. 

Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications for 
instruction. Educational Psychology Review, 14(1), 47-69. 

Sheer, V. C., & Cline, R. J. (1995). Testing a model of perceived information adequacy 
and uncertainty reduction in physician/patient interactions. Journal of Applied 
Communication Research, 23, 44-59. 

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: 
Harvard Press. 

Suchman, L. A. (1987). Plans and situated action: The problem of human-machine communica­
tion. New York, NY: Cambridge University Press. 

Trafton, J. G., Kirschenbaum, S. S., Tsui, T. L., Miyamoto, R. T., Ballas, J. A., & Raymond, 
P. D. (2000). Turning pictures into numbers: extracting and generating information 
from complex visualizations. International Journal of Human Computer Studies, 53(5), 
827-850. 



CHAPTER 19. PSYCHOLOGY OF UNCERTAINTY IN SOENTIFIC DATA ANALYSIS 483 

Trickett, S. B., Fu, W. T., Schunn, C. D., & Trafton, J. G. (2000). From dipsy-doodles to 
streaming motions: Changes in representation in the analysis of visual scientific data. 
Proceedings of the 22nd Annual Conference of the Cognitive Science Society. Mahwah, NJ: 
Erlbaum. 

Trickett, S. B., & Trafton, J. G. (2007). "What if ... ": The use of conceptual simulations in 
scientific reasoning. Cognitive Science, 31(5), 843-875. 

Trickett, S. B., Trafton, J. G., Saner, L., & Schunn, C. D. (2007). "I don't know what's going 
on there": The use of spatial transformations to deal with and resolve uncertainty in 
complex visualizations. In M. C. Lovett & P. Shah (Eds.), Thinking with data (pp. 65-85). 
Mahwah, NJ: Erlbaum. 

Trickett, S. B., Trafton, J. G., & Schunn, C. D. (2009). How do scientists respond to anoma­
lies? Different strategies used in basic and applied science. Topics in Cognitive Science, 
1(4), 711-729. 

Trope, Y. (1978). Inferences of personal characteristics on the basis of information retrieved 
from one's memory. journal of Personality and Social Psychology, 36(2), 93-106. 

Tweney, R. D., Doherty, M. E., & Mynatt, C. R. (Ed.). (1981). On scientific thinking. New York, 
NY: Columbia University Press. 

Urbany, J. E., Dickson, P. R., & Wilkie, W. L. (1989). Buyer uncertainty and information 
search. Journal of Consumer Research, 16(2), 208-215. 

Walker, V. R. (1991). The siren songs of science: Toward a taxonomy of scientific uncer­
tainty for decision makers. ConnecticutLaw Review, 23, 567. 

Walker, V. R. (1998). Risk regulation and the "faces" of uncertainty. Risk: Health, Safety, & 
Environment, 27, 27-38. 

Woodrow, H., & Stott, L. H. (1936). The effect of practice on positive time-order errors. 
journal of Experimental Psychology, 19, 694-705. 




