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ABSTRACT: Amid calls for integrating science, technology, engineering, and mathemat-
ics (iSTEM) in K–12 education, there is a pressing need to uncover productive methods of
integration. Prior research has shown that increasing contextual linkages between science
and mathematics is associated with student problem solving and conceptual understand-
ing. However, few studies explicitly test the benefits of specific instructional mechanisms
for fostering such linkages. We test the effect of students developing a modeled process
mathematical equation of a scientific phenomenon. Links between mathematical variables
and processes within the equation and fundamental entities and processes of the scien-
tific phenomenon are embedded within the equation. These connections are made explicit
as students participate in model development. Pre–post gains are tested in students from
diverse high school classrooms studying inheritance. Students taught using this instruc-
tional approach are contrasted against students in matched classrooms implementing more
traditional instruction (Study 1) or prior traditional instruction from the same teachers
(Study 2). Students given modeled process instruction improved more in their ability to
solve complex mathematical problems compared to traditionally instructed students. These
modeled process students also show increased conceptual understanding of mathematically
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modeled processes. The observed effects are not due to differences in instructional time or
teacher effects. C© 2015 Wiley Periodicals, Inc. Sci Ed 1–31, 2015

INTRODUCTION

There have been many calls for integrating science, technology, engineering, and mathe-
matics (STEM) instruction in K–12 schools to enhance student learning (Honey, Pearson,
& Schweingruber, 2014). Cited reasons include (1) make mathematics and basic science
appear more relevant to students to improve motivation during learning and thereby broaden
participation in STEM (NGSS, 2013; PCAST, 2010); (2) produce STEM undergraduates
who are better able to apply what they learn in mathematics to science, and in mathe-
matics and science to engineering (Apedoe, Reynolds, Ellefson, & Schunn, 2008; Fortus,
Dershimer, Krajcik, Marx, & Mamlok-Naaman, 2004; Litzinger, Lattuca, Hadgraft, &
Newstetter, 2011); and (3) produce a general citizenry and workforce who are more techno-
logically fluent through improved understanding of the scientific and engineering basis of
modern technologies (PCAST, 2010; Peters-Burton, 2014). Unfortunately, given the gen-
erally siloed nature of instruction, particularly in high school, there are still questions about
what constitutes productive models of STEM integration (Morrison, 2006; Peters-Burton,
2014). In this paper, we will present one instance of an integrated STEM (iSTEM) unit
taught within a high school science class and examine its effect on quantitative problem
solving and qualitative conceptual understanding.

The iSTEM unit integrates all four areas of STEM. An engineering design task moti-
vates and deepens the learning, while technological advances in molecular biology allow
students to visualize the normally invisible and indirectly measured objects of inheritance.
The primary focus of the unit and our analysis in this paper, however, is the integration
of mathematics with science. We assess whether a particular form of integration of math-
ematics with science, done via modeling of a process, enhances students’ ability to solve
problems in and improve their understanding of inheritance.

Forms of Embodiment of Mathematics in Science Education

Mathematics has long been a part of science education, particularly in chemistry and
physics. There are different ways in which mathematics can be integrated into science
education (Table 1). We review forms that are more typically present and then turn to
alternative approaches that may be more productive for learning.

Mathematics as Data Presentation and Calculated Procedures. Two of the most com-
mon embodiments of mathematics in science education are as a summary of data and as
a calculated procedure. As an example of data presentations, students might plot data on
a graph from an experiment on mass and volume. As a common example of calculated
procedures, students in physics are asked to memorize the equation for calculating the
change in position of an accelerating object (�x = 1/2at2+v0t), and taught to plug in the
values for acceleration (a), time (t), and initial velocity (v0) to get the answer. In biology,
calculated procedures are less common, but still exist. For example, students are taught
how to use a Punnett square to calculate the probability of a set of parents generating an
offspring with a specified gene combination (Appendix, Table A1).

Both of these forms of mathematics are experienced by most students as relatively
meaningless symbol manipulation (J. Stewart, 1983; Walsh, Howard, & Bowe, 2007).
They are missing either data (calculated procedure) or operation (data representation)
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TABLE 1
Embodiment of Mathematics in Science Education

Calculated
Procedure Display of Data Modeled Process

Example
represen-
tation

�x = 1/2at2 + v0t
P1*P2 where Pn is

the probability of
getting genotype
of gene n,

2H2 + O2 2H2O

W1 ∗ W2

(# egg types)(# sperm types)

where Wn is the number of
ways of getting a genotype
combination of gene n,

Example
operation

To produce a
numerical answer

To display data and the
relationships between
variables

To express and test ideas
about scientific processes

Connections
to science

Variables and
mathematical
processes do not
have to be
connected to
entities and
processes within
phenomenon

Variables are linked to
entities within
phenomenon

Variables and mathematical
processes correspond to
entities and processes
within phenomenon

(Larkin & Simon, 1987). There has been increasing awareness of the shortcomings of the
embodiment of mathematics as symbol manipulation. For example, when student problem-
solving strategies in chemistry were examined, more than half of the students failed to use
reasoning about content together with their equation-based approach and none of these
students could successfully solve a conceptual transfer problem (Gabel, Sherwood, &
Enochs, 1984). The authors argued that student “reliance on algorithms is a substitute for
understanding the concepts” (Gabel et al., 1984, p. 232). Other researchers have replicated
this finding in chemistry and physics (Chi, Feltovich, & Glaser, 1981; Mason, Shell, &
Crawley, 1997; Nakhleh & Mitchell, 1993; Salta & Tzougraki, 2011; Tuminaro & Redish,
2007; Walsh et al., 2007). Students tend to ignore connections to underlying concepts that
could allow them to transfer their understanding to superficially different, but structurally
similar problems (Chi et al., 1981). Simply exposing students to more problems does not
increase conceptual understanding (Byun & Lee, 2014; Kim & Pak, 2002). It is becoming
increasingly apparent that a more productive method for incorporating mathematics in
science is needed—one that allows students to learn science concepts and transfer problem-
solving strategies to novel problems.

Mathematics as a Modeled Process. Rooted in the theory of scientific models and
modeling (Buckley et al., 2004; Giere, 2004; Hestenes, 2010; Svoboda & Passmore, 2013),
a rarely used third embodiment of mathematics in science education holds promise for
improving student understanding: treating mathematics as a model of a scientific process.
Specifically, including mathematics as a modeled process of a scientific phenomenon
involves linking both the variables in the mathematical representation and the mathematical
operations to entities and processes in the modeled phenomenon. Such a representation
includes both data (mathematical variables connected to scientific entities) and operations
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Figure 1. Measuring the effect of mass (determined by the number of washers) on acceleration of the cart.

on that data (mathematical operations paralleling scientific processes) (Larkin & Simon,
1987). In chemistry and biology, the ubiquitous chemical equation, although more often
presented as a calculated procedure, can be an example of this modeled use. Consider the
balanced equation for producing water (H2O) from hydrogen (H2) and oxygen (O2), 2H2 +
O2 2H2O. From this equation, a student can calculate how much water will be produced
if given a certain amount of oxygen or hydrogen (data). More interestingly, however, the
equation describes an operation: Separate hydrogen and oxygen molecules are combined
(the combination process is indicated by the plus sign) to produce (as indicated by the arrow
sign) a new molecule containing both oxygen and hydrogen. Student engagement with this
aspect of the equation could increase conceptual understanding.

The critical distinction between the use of mathematics in science as a modeled process
versus either a summary of data or a calculated procedure is that the modeled process con-
tains links to scientific entities (variables) and processes (operations), encouraging students
to engage in meaning making (Hestenes, 2010; Sherin, 2001). Meanwhile, mathematics as
summary of data and calculated procedure too often devolves into manipulation of symbols
with little link to the underlying science. Therefore, even though the latter two embodi-
ments of mathematics in science education are more common and still have a purpose in
science education, it seems likely that when the goal is learning about the phenomenon,
converting mathematics use in science education to modeled processes might help students
learn scientific concepts as well as improve their problem-solving abilities.

Exemplifying the Embodiment of Mathematics in Science Education. We argue that it
is possible to transform the use of mathematics for a particular topic from data presentation
or calculated procedure to modeled process, rather than simply assuming that specific
science topics require calculation or data summary approaches. To illustrate, consider
Newton’s second law (conceptually: more effort is required to get a heavier object into
motion than a lighter one). Students can investigate this phenomenon by using a string with
weights to exert a constant force on a cart on a frictionless track (Figure 1).
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TABLE 2
Example Data Table Used in Science Instruction

Force (N) Mass (kg) Acceleration (m/s2)

1 0.1 10
1 0.2 5
1 0.3 3.3
1 0.4 2.5
1 0.5 2

Different amounts of mass can be added to the cart, and sensors are placed on the track so
that acceleration of the cart can be determined from the time required to travel the distance
between the two sensors, using the calculated procedure equation: a = 2*�x/t2. This is
a calculated procedure for two reasons: (1) the equation is only being used to derive a
quantity, rather than being used as part of some sense-making process and (2) the constant
multiplier “2” and the operation time squared have no clear process meaning. For example,
there is no entity that is time squared; instead the representation is shorthand for the more
meaningful equation, �x/t/t, which represents the change in velocity per unit time.

By changing the mass on the cart and calculating the resulting acceleration, students can
produce a data table, as shown in Table 2.

The table reveals that acceleration decreases as the mass increases for a fixed force. This
statement captures the core phenomenon, but provides no hints about the underlying causal
mechanism. By contrast, a student could present their understanding of this phenomenon
with the following statement: As mass increases, the force is distributed over more mass,
diluting the resulting acceleration. This idea could be represented mathematically by ac-
celeration = Force/mass (i.e., a = F/m). This kind of equation is a modeled process. The
symbolic form of the equation (Sherin, 2001) matches a conceptual understanding of the
physical phenomenon. First, each variable represented in the equation has meaning in the
phenomenon. Acceleration is the amount of time it takes for an object to go from the
velocity at sensor 1 to the velocity at sensor 2. Mass is the amount of stuff on the cart.
Force is the pull exerted by the string. Second, the mathematical operation (division) has
meaning as well: The pull of the string is getting distributed over the amount of stuff of the
cart. The equals sign describes the result of a physical process applied to inputs (the effects
of a force applied to a mass), rather than simply noting a mathematical equivalency that
is convenient for calculation (i.e., the force happens to be equal to the acceleration times
the mass). Such connections of variables and operations in the equation to the entities and
processes in the scientific phenomenon frame the equation in such a way that students may
be more likely to engage in physical mapping between the mathematics and science (Bing
& Redish, 2008). Participation in problem solving using this equation may therefore tend
to occur more often through the more productive epistemic game of mapping meaning to
mathematics as opposed to recursive plug and chug (Tuminaro & Redish, 2007).

Contrast this approach with the way the relationship between force, mass, and accelera-
tion is often presented in a textbook. The equation is rewritten as F = m*a, and students are
asked to memorize this equation as a way to calculate the force exerted by a given object.
It is difficult to reason how or why mass should be multiplied by acceleration to give a
greater force. It is possible to see that each particle within the object will contribute its own
acceleration—but then why is the function not addition rather than multiplication? It is
also difficult to reason how acceleration causes a force. Because the equation is presented
to rather than derived by students and the variables and mathematical processes within
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the equation have little connection to the entities and processes within the physical phe-
nomenon, this use of a mathematical equation has much more of the flavor of a calculated
procedure. Continued presentation of physics as mathematical formulas to be memorized
is one possible explanation for why students have a hard time transferring ideas in physics
(Sherin, 2001; Tuminaro & Redish, 2007) and applying their understanding to engineering
problems (Litzinger et al., 2011).

Mathematics Linked to Science Concepts Facilitates Problem Solving

Students who are able to solve more complex problems in physics and chemistry have
not only an understanding of how to use the mathematics but also an understanding of
how that mathematics is linked to the concepts (Bing & Redish, 2008; Chi et al., 1981;
Taasoobshirazi & Glynn, 2009; Walsh et al., 2007). Bing and Redish describe an attempt
at problem solving by upper level physics majors where the students, stuck in computing
the mathematics and failing to engage in connection of the mathematics to the system of
interest, are unable to solve the problem, despite their obvious facility with mathematics.
It is not until one student asks for the relationship between the equations and the physics
particles that the group is able to progress (Bing & Redish, 2008). In chemistry, a student
who successfully uses a conceptually based strategy to solve a thermochemistry problem
talks about the problem-solving process in terms of the concept first, “ . . . I need to find the
heat gained by the water first” and then applied the mathematics, whereas an unsuccessful
student expresses his algorithmic approach in this way, “I just came up with an equation
to solve for the problem, but I think I plugged in the wrong values or something . . . ”
(Taasoobshirazi & Glynn, 2009, p. 184).

Several approaches elevating the contextual element of mathematics within a K–12
scientific curriculum (e.g., problem-based learning, qualitative explanations of problem
solving, analogies, model development) have improved student conceptual understanding
and/or problem solving. (Dori & Kaberman, 2012; Lehrer & Schauble, 2004; Litzinger et al.,
2011; Novick, 1988; Savery, 2006; Wells, Hestenes, & Swackhamer, 1995). However, these
studies did not test the effect of embedding understanding of scientific entities and processes
within a modeled process mathematical equation, as opposed to simply embedding the
equation in a scientific context). The current study focuses specifically on this equation as
a modeled process approach.

Mathematics in Biology Education

Almost all of the research that has been discussed so far has revolved around the use
of mathematics in chemistry and physics, likely because mathematical representations of
phenomena have been a part of physics and chemistry instruction for a longer time (Steen,
2005). However, over the past two decades, rapid changes in biology understanding com-
bined with advances in research technologies (i.e., new measurement tools and computer
simulations) require that biology students, not just physics students, learn how to reason in
the language of mathematical symbols (Bialek & Botstein, 2004). Furthermore, the most
recent scientific standards (Next Generation Science Standards) identify using mathemat-
ics as a core practice of science that all students should learn (NGSS, 2013). Since so
many students take high school biology (Lyons, 2013), it is particularly important that
mathematics becomes a greater part of the high school biology curriculum. Thus, there
is a need both for biology curricula that incorporates mathematics as modeled processes
into instruction, and research into the effect of this approach on student understanding. We
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seek to determine whether students become better problem solvers and better understand
underlying biological processes.

Inheritance and Mathematics as a Modeled Process. Inheritance presents a good op-
portunity for researching the effects of introducing mathematics as a modeled process.
Inheritance instruction has typically involved predicting the probability of getting a par-
ticular type of offspring from a set of parents. That is, mathematics has been at least a
small part of high school instruction in heredity for a long time, and therefore we can test
the effects of changing the approach to mathematics rather than simply adding (any form
of) mathematics. Moreover, teachers report that inheritance is one of the hardest topics
for students to understand (J. H. Stewart, 1982), so there is great need and opportunity to
improve instruction on this topic.

Previous research suggests that when studying inheritance, students have difficulty un-
derstanding the underlying biological processes of inheritance (meiosis and fertilization)
and how these processes affect the units of inheritance (alleles) that are counted in the
mathematical procedures (Moll & Allen, 1987; J. Stewart, 1983; Tsui & Treagust, 2010).
Students can also struggle to connect the appearance of an organism with the underlying
combination of alleles, particularly across generations (Tsui & Treagust, 2010). One ap-
proach that has been pursued is to explicitly develop and connect the process of meiosis
with inheritance either through the use of a computer simulation (Buckley et al., 2004) or
through tracing the movement of alleles using drawings (Moll & Allen, 1987). The results
of these interventions have been mixed. When college students are instructed in how to
trace alleles through drawings of meiosis, over half continue to use an algorithmic method
to solve genetics problems (Moll & Allen, 1987). Students who draw out meiosis are more
successful at solving problems involving one gene than students who use an algorithmic
approach, but not more successful at solving problems involving two genes (Moll & Allen,
1987). As the authors point out, drawing out meiosis is a relatively labored and detailed
procedure as compared to the speed of the algorithmic approach (Moll & Allen, 1987). The
computer-based intervention resulted in higher posttest scores than traditional instruction
(Buckley et al., 2004), but studies on a different population of students using the same
computer program suggested that genetic reasoning was only improved for the easier types
of problems for most students and that a key variable was the mindfulness of student
interaction with the different representations of inheritance (Tsui & Treagust, 2003). The
computer-based intervention also requires that students have sustained access to computers
during class time, a resource that may not be available to most schools.

All of the approaches to modifying inheritance instruction have focused on enhancing
student understanding of the biological processes of inheritance. None have suggested
fundamentally altering the embodiment of mathematics within the inheritance curricu-
lum. Currently, similar to the worst examples of math–science integration in physics and
chemistry, the textbook mathematical expression for predicting inheritance outcomes em-
bodies mathematics as calculated procedure and is devoid of any meaningful connection
to biological entities or processes. Instead, as is exemplified in a commonly used high
school biology textbook (BSCS Biology: A Molecular Approach Blue Version, 2001), stu-
dents are exposed to a short didactic introduction to probability, which reminds students,
“Probability is usually expressed as a fraction. The chance of the coin landing heads up is
one out of two, or ½,” (p. 351). There is no exploration of why probability is expressed
as a fraction, or how this fractional representation relates to the entities of inheritance.
Students are then shown how to use an algorithmic procedure, the Punnett square, for
determining how the parental genes for a single trait will recombine in the offspring
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(Appendix, Table A2). When students progress to considering inheritance of two gene
combinations, they are told that they multiply the probability for getting a particular geno-
type from each separate gene because “and” means multiply. At this point, there is no
biological correlate to the probability for getting a particular genotype from each separate
gene and there is no connection drawn to the biological process by which a combination is
formed; that is, both the constituent probabilities and the mathematical operator on them
is not biologically motivated. Unsurprisingly, studies on how students solve inheritance
problems show that they tend to use an algorithmic (calculated procedure) method whether
they use a pictorial representation followed by counting (the Punnett square), or the mathe-
matical probability method outlined above (Moll & Allen, 1987; J. Stewart, 1983). Students
struggle to extend what they have learned from simple to more complex genetic probability
problems and show little ability to connect the mathematics with the biology (Cavallo,
1996; Moll & Allen, 1987; J. Stewart, 1983).

We have developed a new inheritance unit that changes the way mathematics is embod-
ied from calculated procedure to modeled processes (summarized in Figure 2). Following
the modeling cycle (Halloun, 2007; Passmore, Stewart, & Cartier, 2009), students engage
in scientific practice by analyzing modern technology-based data (e.g., polymerase chain
reaction [PCR] data) to develop a model of inheritance, which includes modeled process
mathematical representations (i.e., equations that capture data patterns but also reify the
underlying genetic process; Figure 3). Prior research in the physical sciences presented
above suggests that some form of embedding mathematics in a scientifically rich context
could improve problem solving and understanding of scientific content. We theorize that
by specifically changing the use of mathematics from (teacher-presented) calculated pro-
cedures to (student-developed) modeled processes that embed biological concepts within
the mathematics, students will be better able to solve inheritance problems and will also
demonstrate better understanding of the mathematically modeled processes. We assess the
benefits of instruction via modeled process equations on student learning. Specifically, we
asked two questions:

1. Is conceptual understanding improved when students are taught mathematics in sci-
ence as a modeled process rather than a calculated procedure?

2. Is quantitative problem solving also improved when students are taught mathematics
in science as a modeled process rather than a calculated procedure?

The benefits on both conceptual understanding and quantitative problem solving are
examined in terms of breadth and scope of benefits to help frame the extent of benefits and
the likely mechanisms of change (e.g., general engagement effects of using an iSTEM unit
vs. specific modeling of particular processes; general benefits on quantitative reasoning vs.
specific benefits to more difficult transfer problems).

The iSTEM Unit and Mathematical-Modeled Processes of Inheritance

The iSTEM inheritance unit begins and ends with an engineering challenge: design a
breeding plan to develop a rare gecko so that a zoo can attract visitors (Figure 2). The
initial exposure to the design challenge is designed to help students see genetics knowl-
edge as useful in a real-world context and therefore serve as a motivation to understand
the phenomenon of inheritance. The unit is constructed as a modeling cycle (Halloun,
2007; Passmore et al., 2009) to develop increasingly complex conceptual models, inter-
connected ideas, and representations that describe or explain a simplified version of the
phenomenon which can be used to make predictions (Etkina, Warren, & Gentile, 2006).
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Figure 2. Unit overview of iSTEM inheritance unit. The unit begins and ends with the engineering challenge that
is revisited at the end of Tasks 2, 3, and 4. The colored boxes show the product of each task. The numbers indicate
their order in the unit. The white boxes show a phenomenological representation provided to students, the key
questions students engage with and the target student resolution.

Each nascent model is developed through analysis of data, followed by argumentation with
peers to resolve differences in interpretation and representation and reach a consensus (i.e.,
Task 2 in Figure 2). Revisiting the engineering challenge after the development of each
model permits students to test the model’s sufficiency. For example, the design challenge
specifically asks for a rare gecko to push students beyond a simple one gene breeding design
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10 SCHUCHARDT AND SCHUNN

Figure 3. (A) PCR diagram, (B) egg/sperm table, (C) prediction pedigree, and (D) initial mathematical modeled
process equation. F, Female; M, male; O, offspring.

to more complex multigene models. This move to multigene modeling of outcomes makes
the need to quantitatively predict outcomes more salient and thus serves as a motivation for
mathematical representation becoming a key part of the inheritance models (Tasks 3 and 4
in Figure 2).

The development of this mathematical representation occurs in Tasks 3 and 4. However,
the groundwork is laid in Task 2, when students are shown the physical entities of inheritance
(the genes), which are revealed in parents and their offspring via a technological application
(polymerase chain reaction or PCR) (Task 2 in Figure 2). Students are asked to analyze
the gene patterns they observe and derive basic qualitative rules that summarize the way in
which genes are transferred from one generation to the next. These rules both preview the
predictability of inheritance patterns and encapsulate part of the biological processes that
will later be represented mathematically (Figure 3A).

Using their newly generated rules, students are directed to work with manipulatives
depicting biological entities of inheritance, such as sperm, eggs, and genes, to make pre-
dictions about the outcomes of breeding two parents. The manipulatives are designed to
enable students to see the relationships between the entities of inheritance (genes, eggs,
and sperm), the processes of inheritance (i.e., the packaging of genes and joining of egg
and sperm) and the quantitative inputs (number of genes in parents) and outputs (number
of offspring types). However, using manipulatives to make predictions is relatively time
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consuming. The unit asks students to recognize this constraint and introduces the affor-
dances of developing a mathematical model of the process to make predictions. The relation-
ships between entities, processes, inputs, and outcomes are maintained through the inclusion
of pictorial representations (Figures 3B egg/sperm table and 3C prediction pedigree).

In their first attempt at modeling the process mathematically, students are directed to ex-
amine a data table showing the offspring outcomes for three different combinations of par-
ents. They are then instructed to develop equations that fit the data available to them and map
on to the biological processes and entities that they have represented pictorially. Only two
possible equations fit these requirements: number of different offspring outcomes = (num-
ber of egg types) * (number of sperm types) or number of different offspring outcomes =
(number of gene types for trait in female) * (number of gene types for trait in male) (Task 3,
Figure 2). The pictorial representations shown in Figure 3 make connections to the symbolic
form of the mathematical equation (Sherin, 2001). Specifically, they support connections
of mathematical operations (multiplication as combination) to the biological entities and
processes (the sperm can join with either egg to produce two new entities).

The engineering design challenge is designed to push students to consider multiple traits,
which then encourages refinement of the mathematical model. As part of the application of
the single gene model to multiple genes, students are expected to deduce that the equation,
number of different offspring outcomes = (number of sperm types)*(number of egg types),
is the only one which generalizes, because in the inheritance process, the genes for each trait
are packaged independently into sperm and eggs before they are combined in an offspring.
This process of testing and subsequent refinement of mathematical representations for
inheritance is thus supposed to allow students to gain a deeper understanding of one of
the fundamental processes of inheritance. The unit then asks students to recognize that the
probability of a desired event is equal to the number of desired outcomes as a proportion
of the total number of possible outcomes, to allow the development of the final equation
shown in Figure 3, Task 4.

Table A1 (Appendix) compares the modeled process equation to the calculated procedure
methods that are used in traditional inheritance instruction, which uses the Punnett square.
In this traditional instruction, there is little connection provided to the underlying biology
as no biology is needed to teach the approach or solve a given problem. The purpose is not
to model an idea about how inheritance of genes occurs, but rather only to calculate the
correct answer.

In contrast, the modeled process equation makes explicit connections between the biology
and the mathematical process (Figure 3). For example, the variables in the equation are
expressed as eggs and sperm, entities in the inheritance process. Egg types are multiplied
by sperm types, because each egg could theoretically join with each sperm. Furthermore,
the explicit purpose of the equation within the unit is to model ideas about how inheritance
occurs and therefore multiple equations are initially developed and tested against additional
data, allowing students to refine their ideas about the biological process of inheritance.

It is important to note that the context of the mathematical representation is a big
determinant of whether it is a calculated procedure or a modeled process. The modeled
process inheritance equation could be a calculated procedure if students were just shown the
equation and taught a formulaic approach for plugging in the variables. The embodiment
of mathematics in science and education is not simply about the structure and use of the
mathematics, but rather about how it is taught to and taken up by students.

We present two studies that examine the effects on student learning (conceptual under-
standing and problem solving ability) of changing from traditional instruction to using
an iSTEM unit. The first study involves comparison between teachers implementing the
iSTEM or traditional instruction and the second study focuses on teachers implementing
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12 SCHUCHARDT AND SCHUNN

TABLE 3
Characteristics of Participants Within Each Group

iSTEM Unit Traditional Instruction

Participants 12 Teachers, 745 students 6 Teachers, 321 students
Percent of students eligible

for free/reduced lunch
program

38% 41%

Grade and biology level Ninth and tenth grade,
First-year biology

Ninth and tenth grade,
First-year biology

Teacher biology education 80% masters or
undergraduate degree in
biology

80% masters or
undergraduate degree
in biology

Years teaching biology 80% more than 6 years 80% more than 6 years
Professional development Yes (4–25 hours) None
Instructional hours 820 minutes (4 weeks,

planned)
890 minutes (4.5 weeks,

average)

both the iSTEM unit and traditional instructional approaches. The iSTEM unit involves
several types of instructional changes (e.g., inclusion of engineering challenges and use of
technologies like PCR), and thus the intervention is broadly labeled iSTEM. However, in
this paper, we focus our analytic lens on changing the treatment of mathematics in inheri-
tance instruction from a calculated procedure to a modeled process. This focus is achieved
by examining in detail the nature of changes on student learning (e.g., broadly on all aspects
of inheritance or more narrowly on aspects of inheritance most directly connected to the
modeled processes).

STUDY 1

Methods

Participants. All teachers were from public school districts in a midwestern state, drawn
from urban, suburban, and rural areas. A local educational agency sent out notices inviting
teachers to an exposure meeting. Teachers who attended this meeting signed up to par-
ticipate in professional development. A subset of the teachers who finished professional
development volunteered to implement the iSTEM unit in their classrooms and participate
in our study. These volunteers recruited additional teachers from their schools as imple-
menters (Table A2, Appendix). The implementing teachers helped to recruit other teachers
within their school to serve as controls, using their usual instructional unit for inheritance
(described below). Characteristics of the iSTEM and traditional samples are shown in
Table 3. Generally, the teachers and students were well matched. Both groups taught hon-
ors and nonhonors classes for ninth- and tenth-grade first-year biology students. Additional
individual teacher and school characteristics (including standardized test scores) are shown
in Table A2 in the appendix. Professional development was conducted by the research
team and primarily focused on teachers experiencing the unit as learners, although some
pedagogy was covered in the longer professional development sessions.

Teachers who implemented the iSTEM unit received a curricular plan that included daily
instructions for lessons, and teachers were observed at least once. Teachers who engaged
in traditional instruction kept a daily lesson journal consisting of a two to three sentence
summary of the day’s events for each class. Five of six teachers submitted a journal. An

Science Education, Vol. 00, No. 0, pp. 1–31 (2015)



MATHEMATICS AS MODELED PROCESS IN SCIENCE INSTRUCTION 13

analysis of these journals revealed that the traditional teachers were indeed engaging in
inheritance instruction as usual:

• All five teachers showed or instructed students on how to set up Punnett squares to
solve probability problems (e.g., “students were shown how to do single trait crosses
using Punnett squares”).

• The phrases used by all five teachers suggested that the inheritance laws were learned
as a set of dictates handed down by Gregor Mendel (e.g., “We revisited the notes and
added to them with Mendel’s laws of segregation and independent assortment.”).

• Four of five teachers did not mention basic objects and processes of inheritance
(including eggs, sperm, fertilization, and gamete formation) in their journals, let
alone linking them with mathematical solutions.

Instruments.

Assessments. Pre- and posttests were administered to students to examine the effects
on student learning. To allow for a sufficiently broad set of questions for each knowledge
subcategory but still use only one class period for the assessment, a matrix sampling protocol
was used, drawing from a pool of 42 inheritance questions (genetics terminology, genetic
processes, genetic probability) and 11 mathematical probability questions. The question
categories were chosen a priori for the reasons outlined below. An exemplar question from
each category is shown in Table 4.

Genetics Terminology. Because terminology changes were not part of the intervention,
genetics terminology questions provide convergent evidence that teaching ability and stu-
dent ability were roughly equivalent across conditions.

Genetic Processes. Genetics process questions assessed whether students qualitatively
understood genetic processes, and were divided into two subtypes: processes that were
mathematically modeled (packaging of genes into sperm and eggs and combining eggs and
sperm to form offspring, Tasks 2 and 3 in Figure 2) and processes that were not modeled
mathematically (how an organism’s appearance is determined by its genes, Task 5 in
Figure 2). Larger condition effects for the processes that were mathematically modeled
would provide evidence in favor of the effects of modeling mathematical processes in
particular.

Genetic Probability. Genetic probability questions required students to make probabilis-
tic predictions in the context of inheritance. These questions were also subdivided into
two categories: Simple genetic probability questions asked about simple probability in a
genetics context; and complex probability questions required students to apply compound
probability to a genetics context, which is then necessarily more complex.

Mathematical Probability. Because students’ ability to make predictions in a genetics
context might be influenced by their understanding of probability in a mathematics context,
a category of questions assessing students’ understanding of and skill with simple and com-
pound probability in a mathematical context was included. Based on state standards, simple
and compound probability had been covered by ninth grade (Comparison of Mathematics
Michigan K–8 Grade Level Content Expectations (GLCE) to Common Core Standards,
2010), but that did not mean their performance was universally high.

Because no single previously published assessment contained a sufficient number of
questions in all of the categories, the pool was constructed by aggregating questions
from previously published assessments (Adamson et al., 2003; Blinn, Rohde, & Templin,
2002; delMas, Garfield, Ooms, & Chance, 2007; Garfield, 2003; Nebraska Department of
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TABLE 4
Question Categories on Pre- and Post assessments

Category Number of
Questionsa

Example Question

Genetic
processes

Mathematically
modeled

7 The genotypes of the sperm from one male and the
genotypes of the eggs from one female are shown
below

Male Sperm Female Eggs
FQ FQ
fQ fQ

Fq
fq

Which answer lists all the possible genotypes that could
be expected in the offspring:

a. FFQQ, ffQQ
b. FFQQ, FfQQ, FFQq, FfQq, ffQQ, ffQq
c. FFQQ, FfQQ, FfQq, ffQq
d. FFQQ, FFQq, FFqq, ffQQ, ffQq, ffqq, FfQQ, FfQq,

Ffqq
Unmodeled

mathematically
20 Flies can have red or brown eyes and straight or curly

wings. Red eyes (R) is dominant to brown eyes (r)
and straight wings (S) is dominant to curly wings (s).
If you have a fly which has brown eyes and straight
wings, what combination of genes could it have?

a. Rrss c. rrss
b. RrSs d. rrSs

Genetic
probabilities

Simple 3 In dogs, the gene allele (e) for drooping ears is
recessive to E for erect ears. A male dog with
genotype Ee was mated to a female dog with
genotype ee and gave birth to a litter of 10 puppies.
What is the expected proportion of drooping-eared
puppies (ee) in the litter?

a. 1/4 c. 1
b. 1/2 d. Don’t know

Complex 7 If organisms of type BbSs and type bbSs are crossed,
what is the probability that the offspring would be
BbSs?

a. 1/16 d. 1/2
b. 1/8 e. 9/16
c. 1/4

Genetics
terminology

5 The appearance resulting from a given gene
combination is referred to as the:

a. Genotype d. Allelotype
b. Prototype e. Stereotype
c. Phenotype

Mathematical probabilities 11 Charlie is playing a game with two spinners.

All four sections on spinner A are the same size, and
all three sections on spinner B are the same size.
Charlie spins Spinner A and Spinner B one time and
adds his results. What is the probability of getting a
sum of six?

a. 1/12 c. 1/4
b. 1/6 d. 1/2

aNumber of questions refers to the number of questions in the pool.

Science Education, Vol. 00, No. 0, pp. 1–31 (2015)



MATHEMATICS AS MODELED PROCESS IN SCIENCE INSTRUCTION 15

Education, 2010; “Project 2061: AAAS Science Assessment Beta,” 2013; Tobin & Capie,
1984; Tsui, 2002)

Based on two posttests of 26 and 27 questions, average KR-20 is 0.72 (average discrim-
ination = 0.46; average difficulty = 0.50). For a subset of students (N = 365), there were
no student identifiers on pretests; therefore, it was not possible to match up student posttest
score with student pretest score, even though a teacher average could be calculated. The
deidentified pretest scores were calculated using multiple imputation. The coefficients for
multiple imputation were based on hierarchical linear modeling (HLM; Raudenbusch &
Byrk, 2002) results involving the variables that best predicted student posttest scores: (1)
membership in an honors biology class and (2) participation in unit implementation as well
as (a) student posttest score, (b) the average of student pretest scores for each teacher, and
(c) the difference between the teacher’s average posttest scores and average pretest scores.
When deidentified pretest scores were imputed using these variables, the observed average
difference between the observed mean student pretest score for each teacher and the mean
calculated from averaging the identified and imputed student pretest scores for each teacher
was only 0.0023 (range: –0.03 to 0.05, SD = 0.02).

Mathematics in Biology Survey Questions. As part of a larger survey asking students
about their attitudes toward the unit, students were asked two questions about the use of
mathematics in the unit. Matrix sampling was used with the four survey versions distributed
equally across all implementing teachers. Out of the approximately 630 students who took
the survey, one quarter of them (157) answered a survey containing these two questions
about mathematics use: (1) Did your group find math to be useful in solving the design
challenge? YES or NO. (2) If yes, list examples of the types of math you used. The examples
the students provided were content coded by two independent raters into biology connected
mathematics versus unconnected mathematics with 91% agreement. Table 7 in the results
section provides code definitions and example statements.

Results

Overall Effects on Student Problem-Solving Ability and Understanding of Science
Content. Generalizability of the effects of an intervention can either be assessed by
examining consistency of patterns across teachers and students, as is typically done, or
by examining consistency of patterns across test questions. Statistically significant results
can derive from effects limited to one strong teacher or subgroups of students (e.g., only
the more interested students or only students in honors sections) or to a few particular
questions within a conceptual subgroup of questions. More persuasive results are ones that
show consistent and significant effects across students and teachers and across questions.
We use both analytic approaches, but with statistical methods adapted to each given the
constraints of the matrix sampling approach (e.g., individual students can have topic means
but not question means) and the nature of the contrast (e.g., students are nested within
teachers, but questions are not nested within teachers).

For the analysis of cross-question generalizability, a percent correct score was calculated
for each teacher for each question, pre and post. An analysis of covariance (ANCOVA)
was conducted examining the effects of instructional condition on posttest scores within
each test category, using category pretest score as a covariate. All critical assumptions for
ANCOVA were met, including independence of variables, homogeneity, normality, and
homoscedasticity.

Both instruction conditions generally showed gains in understanding from pre to post
(Figure 4, dark bars compared to light bars). However, students from iSTEM teachers
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Figure 4. Pre–post teacher-level means (with SE bars) within each instructional condition for student problem
solving and understanding of different forms of biology content knowledge. NS >.1, *p <.05, ***p <.001.

showed significantly greater adjusted posttest scores in their ability to make quantitative
predictions about genetics outcomes (F(1, 146) = 6.4, η2 = 0.03, p = .015; Figure 4,
genetic probability). Students who received instruction in the iSTEM unit had an average
16 point gain on genetic probability questions, approximately two times the 7 point gain
showed by students who were taught using traditional curricula.

Given the iSTEM unit’s focus on mathematical modeling, the increased gain in quantita-
tive problem solving is perhaps not surprising. But, we also theorized that mathematically
modeling scientific processes by explicitly connecting mathematical symbols and functions
with scientific entities and processes would help students understand scientific processes
better (i.e., influence nonquantitative questions). When compared to teachers who used
traditional curricula to teach genetics, students of iSTEM teachers showed significantly
greater adjusted posttest scores for understanding of inheritance processes (F(1, 419) =
23.1, η2 = 0.045, p < .001; Figure 4, genetic processes). The average gain in understanding
of inheritance processes for traditional teachers was 8 points, whereas classes taught by
iSTEM teachers had an average gain of 21 points, an almost three-fold improvement.

The adjusted posttest scores for understanding of genetics terminology for both tradi-
tionally instructed and ISTEM groups of students was approximately equal (corresponding
to gains of approximately 20 points; Figure 4, genetic terminology), suggesting that both
sets of teachers were similarly effective at helping students learn basic new material.

Specificity of Problem-Solving Benefits. Others have found that students taught using
traditional instruction do not struggle with calculating simple genetic probability (Moll &
Allen, 1987; J. Stewart, 1983), whereas they often do struggle to transfer this ability to
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Figure 5. Mean pre- and posttest scores (with SE bars) within each instructional condition on simple and complex
genetic probability problems.

more complex genetic probability problems (Moll & Allen, 1987; J. Stewart, 1983). Thus,
it is likely that the problem-solving benefits of the iSTEM instruction were only found in
more complex probability problems. However, there are too few questions within subtypes
to use the generalizability across question analytic approach. To approach this more fine-
grained analytic question, we (1) switch to a two-level HLM analysis (733 students nested
within 12 teachers) examining student means on simple and complex probability problem
categories and (2) include as an additional covariate a measure of ability to solve probability
problems in general (i.e., with no biology content). Because of the sparse matrix sampling
protocol for probability problems, individual students’ pretest scores in mathematics with
only a few questions each were not meaningful. Therefore, in this HLM analysis, we use
a teacher mean score for mathematical probability, obtained from averaging all of the
students’ scores for the teacher. Five implementing teachers were dropped at this stage of
the analysis because the version of the posttest that was administered to these classes had
too few questions to generate reliable genetic probability scores for each student. To further
reduce noise across the posttest variations used in the matrix sampling protocol, posttest
scores were standardized within each test version. The variables included in the analysis
were (1) instructional condition, (2) mean pretest mathematical probability score of each
teacher’s students (Teacher Pretest Probability Score), (3) honors designation, and (4) each
student’s pretest score (Student Pretest Score). Condition and honors variables were left
uncentered; all other variables were grand mean centered. All key statistical assumptions
of HLM were met (e.g., homoscedasticity, normality, independence, and linearity).

The HLM results confirm findings from prior research that most students can solve sim-
ple genetic probability problems. Traditionally instructed students and iSTEM-instructed
students were not significantly different (posttests of 69% vs. 76% correct, HLM b = –0.02,
p = .85, honors and Teacher Pretest Probability Score as covariates). This null result for
simple genetic probability problems held across all of the statistical models that were tested.
By contrast, iSTEM-instructed students were significantly more able to calculate genetic
probabilities for complex problems (52% vs. 34% correct; see Figure 5; HLM b = 0.27,
p = .02, honors and Teacher Pretest Probability Score as covariates). The condition effect
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TABLE 5
Regression Coefficients and Model Fit Statistics for HLM Models Predicting
Complex Genetic Probability Student Posttest Scores

Fixed Effect Regression Coefficients (Standard Error)

Variable Name Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Teacher level
Instructional Condition .27* .30* .32* .30+

(0.094) (0.104) (0.137) (0.142)
Honors .41* .40* .45* .76*** .43+

(0.139) (0.155) (0.199) (0.147) (0.214)
Teacher Pretest

Probability Score
.20* .19* .19+ .34*** .18+

(0.066) (0.072) (0.089) (0.063) (0.038)
Intercept –.17 –.19 –.01 .02 –.36* –.15

(NS) (NS) (NS) (NS) (0.120) (NS)
(0.098) (0.109) (0.119) (0.106) (0.123)

Student level

Student Pretest Score .08* .08*

(0.038) (0.038)

Estimation of Variance Components
Teacher level 0.23 0.009 0.015 0.034 0.036 0.040 0.043
Student level 0.87 0.87 0.86 0.87 0.87 0.87 0.86
Degrees of freedom (df) 11 8 8 9 9 9 9
Chi square 133.56 14.49 16.62 25.95 31.97 32.86 29.13
p value <.001 .069 .034 .002 <.001 <.001 <.001

Deviance 2,007 1,989 1,992 1,995 1,995 1,994 1,999
Estimated parameters 2 2 2 2 2 2 2

NS > .1, +p < .1, *p < .05, **p < .01, ***p < .001.

on the difference between standardized mean question gains for simple versus complex
probability (by teacher) was statistically significant (F = 5.4, p = .03).

To explore the robustness of these results across statistical assumptions and covariate
choices, a number of different statistical models were tested (Table 5). Models are arranged
in order of best fit. The best fitting model, Model 1, includes the covariates of ability
grouping (honors) and the classes’ prior understanding of mathematical probability (Teacher
Pretest Probability Score). It shows that implementation of the unit has an effect size of
0.27. This effect size of approximately 0.3 is maintained in the other models.

Mean pretest score for simple genetic probability problems is significantly greater for
the iSTEM-instructed group as compared to the traditionally instructed group, which may
better position them to learn complex genetic probability. Therefore, prior understanding of
simple genetic probability (mean of student scores for each teacher, due to the matrix sample
approach) was added as a covariate. However, it was not found to be a significant predictor
of complex genetic probability scores in any of the models. This finding is supported by the
literature, which has shown that students have difficulty transferring their understanding of
simple genetic probability problems to more complex problems (J. Stewart, 1983).

Specificity of Benefits for a Qualitative Understanding of Genetic Processes. The
test items for qualitative understanding of genetic processes included both those processes
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Figure 6. Mean (and SE bars) for pre- and posttest scores within each condition for modeled and unmodeled
genetic processes.

that were modeled in the mathematical equations of the unit and those that were not.
To distinguish between the effect of mathematical process modeling versus a general
effect of the methods of iSTEM instruction (e.g., via improvements in overall student
engagement or quality of classroom/group discussion), the effect of iSTEM instruction
versus traditional methods was examined separately on modeled versus unmodeled genetic
processes. If explicitly linking mathematical variables and processes with scientific entities
and processes promotes student understanding of those processes, then there should be a
differential effect of iSTEM instruction on modeled versus unmodeled processes. Again,
given the more refined focus of analysis, significance testing was performed using a two-
level HLM analysis on student means across questions with 975 students nested in 17
teachers, and controlling for various other student or contextual factors.

Both traditional and iSTEM instruction showed improvement in student understanding
of unmodeled processes (Figure 6). However, the HLM results show that the adjusted
posttest scores for traditionally instructed students and iSTEM-instructed students were
not significantly different (69% vs. 76%, b = 0.10, p = .55, honors and Student Pretest
Score as covariates). This null result for unmodeled process questions held across all of the
statistical models that were tested.

By contrast, only iSTEM-instructed students showed a gain in their ability to answer
questions about the mathematically modeled genetic processes (Figure 6). Moreover, HLM
results show that the adjusted posttest scores for iSTEM-instructed students were signif-
icantly different from traditionally instructed students (b = 0.34, p = .025, honors and
Student Pretest Score as covariates). To explore the robustness of results across statistical
assumptions and covariate choices, a number of different statistical models were tested
(Table 6). Models are arranged in order of best fit.

Model 1, which is the simplest model that best explains both teacher- and student-
level variance, shows that implementation of the unit has an effect size of 0.34. Across
models, iSTEM instruction continues to be a significant predictor of modeled genetic
process posttest scores, with an effect size of approximately 0.3 or greater across all models
tested; removing the variable of iSTEM instruction from the model produces a worse fit
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TABLE 6
Regression Coefficients and Model Fit Statistics for HLM Models for Predict-
ing Modeled Genetic Process Posttest Scores

Fixed Effect Regression Coefficients (Standard Error)

Variable Name Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Teacher level
Instructional

Condition
.34* .31* .38* .40*

(0.137) (0.138) (0.141) (0.144)
Honors .51** .43* .34 .42

(0.145) (0.160) (NS) (NS)
(0.229) (0.267)

Teacher Pretest
Probability Score

.07
(NS)

(0.066)
Teacher Pretest

Score
.31 .68** .10 .54*

(NS) (0.205) (NS) (0.235)
(.317) (0.362)

Intercept –.31* –.25* –.27+ –.19 –.03 –.19
(0.124) (0.095) (0.128) (NS) (NS) (NS)

(0.117) (0.108) (0.117)
Student level

Student Pretest
Score

.21*** .21*** .20*** .20*** .20*** .20***
(0.037) (0.037) (0.037) (0.037) (0.037) (0.037)

Estimation of Variance Components
Teacher level 0.14 0.045 0.043 0.045 0.048 0.070 0.077
Student level 0.91 0.882 0.883 0.882 0.883 0.883 0.884
Degrees of freedom 16 14 13 13 14 14 15
Chi square 129.86 59.05 51.75 53.95 59.87 68.47 76.75
p value <.001 <.001 <.001 <.001 <.001 <.001 <.001

Deviance 2,712 2,673 2,678 2,675 2,674 2,677 2,680
Estimated

parameters
2 2 2 2 2 2 2

Teacher pretest score is the mean student pretest score for each teacher.
NS > .1, +p < .1, *p < .05, **p < .01, ***p < .001.

(e.g., Models 5 and 6). Other explored covariates that did not have a consistent significant
effect for either genetic process or genetic probability analyses included: teacher means of
genetic process or genetic probability score and school measures such as American College
Testing (ACT) scores and state test scores, and school socioeconomic status (SES).

Student Perception of Mathematics in iSTEM Unit. One hundred and forty-five students
distributed across all teachers who implemented the iSTEM unit were asked if they thought
mathematics was useful in designing a plan to breed a rare gecko and to give an example
of how it was useful. Seventy-nine percent of students thought mathematics was useful
in the design challenge and gave an example of its use. The examples these students
provided were content coded into biology-connected mathematics versus unconnected
mathematics (see Table 7 for definitions and example statements). On average, 40% of
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TABLE 7
Codes for Student Examples of How Mathematics Was Used to Design a
Breeding Plan for a Rare Gecko

Code Definition Example Statements

Unconnected
mathematics

Statements mention the
calculations that would be
performed (multiply, divide) or
that math is used for
calculating financial profit. No
biological terms are used.

“We added and subtracted the
cost of the geckos to the
budget.”

“Probability, multiplication,
fractions.”

Biology-
connected
mathematics

Statements about the use of
mathematics make reference
to biological entities or
processes.

“We use egg type x sperm type
to get the number of offspring.”

“We used a math equation to find
out different possible ways that
the genes could move (or
combinations) when offspring
was produced.”

these examples involved a biological connection, and this rate was no lower than 30% for
any teacher. Thus, we have evidence that many, although perhaps not all, of these students
made connections between the mathematics they used and the biological phenomenon of
inheritance.

STUDY 2

Methods

Participants. After receiving data on the effect of iSTEM instruction on student learning,
two of the teachers in the traditional group volunteered to undertake 20 hours of professional
development during the summer and used the iSTEM unit with their classes the subsequent
year. In both years, the classes were nonhonors classes. Only students who took both the
pretest and the posttest were included in the analysis (Year 1: Teacher 4, N = 55; Teacher
9, N = 45. Year 2: Teacher 4, N = 39; Teacher 9, N = 29).

Assessments. The assessments used were the same as described for Study 1, except that
the genetics terminology category was eliminated in Study 2. Performance in each category
or subcategory was calculated by obtaining a percent correct score for each question for
each teacher and averaging.

Results

There were too few students total to conduct generalizability analyses across questions
given the matrix sample approach, and therefore we focus on generalizability across stu-
dents. Because there were only two teachers and the instructional contrast was within
teacher, we conducted simple ANCOVAs (rather than HLMs) of the effect of instructional
condition on student posttest scores in each subcategory. Only those variables that were
shown to be significant in the larger sample were used as covariates with this smaller sample
(class mean of mathematics probability score, student composite pretest score). There were
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Figure 7. Pre–post means (and SE bars) within each instructional condition for student problem solving and
understanding of different forms of biology content knowledge for traditional teachers who subsequently adopted
iSTEM instruction. NS > 0.1, *p < .05.

no honors classes in the second study. Assumptions for ANCOVA were met (i.e., normality,
homoscedasticity, and independence of variables).

Genetics process results were consistent with our between-teacher findings from Study
1 (Figure 7). Students showed gains for unmodeled processes with both traditional and
iSTEM instruction (traditional gain = 17, SE = 5; iSTEM gain = 22, SE = 5). However,
only iSTEM instruction produced gains in student understanding of modeled processes
(traditional gain = –4, SE = 6; iSTEM gain = 22, SE = 6). With student compos-
ite pretest score as a covariate, adjusted student standardized posttest scores for iSTEM
instruction were significantly different from traditional instruction for modeled (tradi-
tional M = 34, iSTEM M = 56, F(1, 165) = 6.3, η2 = 0.04, p = .01), but not un-
modeled processes (traditional M = 54, iSTEM M = 62, F(1, 165) = 2.20, η2 = 0.01,
p = .14).

Similarly, both traditional and iSTEM instruction produced gains in students’ ability
to solve simple genetic probability problems (traditional gain = 39, SE = 7; iSTEM
gain = 21, SE = 4). For complex genetic probability problems, only iSTEM instruction
showed significant gains based on standard error of gain (traditional gain = 6, SE = 4;
iSTEM gain = 14, SE = 4). When the mean for math pretest scores for each teacher by
instructional condition was included as a covariate, adjusted posttest scores for complex
genetic probability problems were significantly greater after iSTEM instruction (traditional
M = 32, iSTEM M = 45, F(1, 193) = 4.7, η2 = 0.02, p = .03). Posttest scores for simple
genetic probability were similar for both types of instruction (traditional M = 63, iSTEM
M = 67, F(1, 95) = 0.79, η2 = 0.008, p = .38, with math pretest score included as a
covariate).

GENERAL DISCUSSION

We examined a curriculum that included many critical iSTEM practices that are typically
absent from science instruction: It was organized around an engineering design problem,
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students had to develop explanations from data, and iteratively develop and elaborate vari-
ous models. Most intensely, the curriculum focused on mathematical modeling of processes
in biology. Using both between teacher comparison (Study 1) and within teacher compar-
isons (Study 2), students who were taught inheritance using this curriculum performed at
higher levels on assessments than did traditionally instructed students. Differences were
found on measures of solving quantitative inheritance problems (particularly more com-
plex problems) and of answering qualitative questions about genetics process (particularly
related to the processes that were modeled in the unit).

Because there was not random assignment to condition, one might argue that prior differ-
ences in instructional ability (e.g., experience in teaching biology) or student characteristics
(e.g., prior performance in mathematics and science) accounted for the results in Study 1.
However, a number of factors argue against such possible confounds as the source of the
performance differences: (1) Teachers were closely matched in a number of categories,
including teaching experience and level of education; (2) traditional teachers came from
five of the same schools as teachers implementing the iSTEM condition; (3) school char-
acteristics were not significant covariates in any of the HLM analyses; (4) The effect of
iSTEM instruction on quantitative problem solving and qualitative understanding of genet-
ics processes were robust even with the addition of prior ability covariates in the analytic
models; and (5) Teachers that switched from traditional to iSTEM instruction showed an
increase in student performance after the switch.

A different concern might relate to possible differences in time on task. Often inquiry-
based instruction requires more time than does traditional instruction. However, from the
teacher logs, the traditional-instruction teachers reported spending a mean of 890 minutes
(approximately 22 days) on inheritance; in contrast, the iSTEM instruction only involved
820 minutes (approximately 20 days). By focusing on a major instructional target in the
traditional curriculum, it was possible to engage students in many practices of science with
the core science content without extending the length of instruction.

Thus, we have good evidence that instructional reform in high school science using
the reform practices can significantly improve student understanding and problem-solving
ability. These improved instructional outcomes occurred in a range of instructional contexts
and appeared on relatively traditional measures of student performance (i.e., multiple
choice), similar to ones used for accountability purposes in many settings. Although rich
instruction is likely to produce even stronger results on rich performance assessments, the
results on simpler multiple-choice assessments are practically important for influencing the
reform movement in the United States and beyond.

Theoretical Implications

This iSTEM intervention in inheritance was designed around mathematical modeling
of genetic processes, based on the theory that asking students to develop a mathematical
model of genetic processes and subsequently refine and use that model would cause them to
connect mathematical variables and processes with scientific entities and processes, leading
to a better understanding of the modeled scientific processes (Hestenes, 2010). In support
of this theory, we demonstrate that a plurality of students who have been asked to develop a
mathematical model of a biological phenomenon do indeed connect the use of mathematics
with that biological phenomenon. Prior research in physics and chemistry also found that
students who are able to link their mathematical equations with scientific concepts are
better able to solve more complex problems (Bing & Redish, 2008; Taasoobshirazi &
Glynn, 2009).

Science Education, Vol. 00, No. 0, pp. 1–31 (2015)



24 SCHUCHARDT AND SCHUNN

The current findings extend the prior research on quantitative problem solving in science
by showing that deliberate instruction in modeled process mathematics can improve student
problem solving as problems increase in complexity. That is, even with quantitative problem
solving, there are benefits to linking equations to scientific concepts that are revealed on
more complex problems. In inheritance, traditionally instructed students typically can solve
simple genetic probability problems with ease, but struggle with more complex problems
(J. Stewart, 1983). J. Stewart (1983) argued that students could not solve complex problems
because they lacked an understanding of the underlying genetic processes and were using
an algorithmic approach to solving the single gene problems that did not transfer well.
The currently obtained results show a qualitative interaction between method of instruction
and change in student scores for simple and complex genetic probability problems. Both
traditionally instructed and iSTEM-instructed students show a comparable and significant
change pre to post in their ability to solve simple genetic probability problems, which
if anything is slightly smaller for iSTEM compared to traditionally instructed students.
However, traditionally instructed students show little to no change in their ability to solve
complex genetic probability problems, whereas iSTEM-instructed students show a signifi-
cant increase pre- to postinstruction. The finding of a qualitative interaction between simple
and complex genetic probability gains for students in the two conditions means that the
difference in gains is significant. Indeed, the condition effect on the difference between
standardized mean question gains for simple versus complex probability (by teacher) was
statistically significant (F = 5.4, p = .03). This interaction suggests a deeper explanation
than that proposed by Stewart (1983): Mathematical procedures that are directly connected
to processes provide a method for students to generalize a learned procedure to more com-
plex problems. In other words, it is not that understanding of scientific processes turns an
algorithm into something that is generalizable; rather, we suggest that understanding must
be connected to the mathematical procedures themselves to obtain generalizable perfor-
mance. The mechanism of action is not fully resolved. Perhaps by framing the mathematical
equation as rooted in and derived from the scientific phenomenon, students are more likely
to engage in more productive problem-solving procedures such as blended processing, by
mapping meaning to the mathematical equation itself (Bing & Redish, 2008; Kuo, Hull,
Gupta, & Elby, 2012; Tuminaro & Redish, 2007). Alternatively, the modeling cycle used
to develop and modify the mathematical equation may foster a better understanding of the
connections between mathematics and the scientific phenomenon allowing for a “working
forwards” approach to problem solving where students can represent and solve the prob-
lem in different ways and check their answers (Chi et al., 1981; Taasoobshirazi & Glynn,
2009).”

We postulated that inclusion of modeled process mathematics would not only increase
student quantitative problem solving ability but also increase their understanding of the
mathematically modeled scientific processes. Curriculum and instructional units that ask
students to mathematically model scientific concepts have previously shown improved
understanding of the modeled concepts (Lehrer & Schauble, 2004; Liang, Fulmer, Majerich,
Clevenstine, & Howanski, 2012; Wells et al., 1995). Our study extends these findings in
two ways. First, instead of embedding mathematical equations within a rich scientific
context, this intervention specifically asks students to model scientific processes within the
mathematical equation. Second, the study shows that within the same unit, processes that
were modeled mathematically were better understood than those that were not modeled
mathematically. This specificity of which qualitative understandings showed improvements
suggests that benefits are unlikely to be due to a generalized effect of iSTEM instruction
(e.g., increased student discussion, increased use of scientific practices such as analyzing
data or developing an argument from evidence). However, we should note that the gains
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from pre- to postinstruction for nonmodeled processes were directionally larger for the
iSTEM instruction (an effect size of 0.1 SD). Given the sample size of the current studies,
we cannot rule out that a larger sample size of teachers might also reveal a generalized, if
perhaps smaller, effect of the iSTEM instruction.

The current studies did not directly address how the mathematical modeling of scientific
processes increases student understanding of those processes. One possible explanation is
that by embedding scientific processes within the mathematical model for solving quan-
titative problem solving, teachers and students are forced to spend more time on those
scientific processes. Indeed, in the iSTEM unit, more time is spent on the modeled pro-
cesses than in traditional instruction. Unlike in traditional instruction where teachers report
only briefly presenting in PowerPoint or lecture format these key processes for understand-
ing inheritance, in the iSTEM unit, students are forced to discuss these processes each
time they engage in quantitative problem solving. Another possible explanation is that by
asking students in the iSTEM unit to develop, and later refine, a mathematical model that
is connected to entities and processes in the phenomenon of inheritance, students have to
engage in deeper thinking about which entities and processes within the phenomenon are
important and how they are linked to one another. Then, in the process of refining the model,
students are asked to confront misconceptions about the processes. Thus, students work to
construct and refine their understanding of the mathematically modeled processes. Other
model-centric approaches could similarly have such benefits through deeper reflection.
For example, Cartier (2000) used a model-evaluation approach to provide students with
opportunities to develop a better understanding of how knowledge claims are structured in
genetics.

Practical Concerns

Instructional approaches to science education that use mathematics raise questions about
whether students’ mathematics ability then serves as a barrier to accessing science (Maerten-
Rivera, Meyers, Lee, & Penfield, 2010). Indeed, physics was historically placed last in the
high school sequence because of concerns that the required mathematics was beyond the
abilities of many ninth graders (Sheppard & Robbins, 2005). We argue that some forms of
mathematics are well within the reach of most ninth graders and can serve a productive basis
of science instruction, especially when treated in a modeling approach (i.e., not relying
on previously memorized complex mathematical algorithms). The unit was effective in
classrooms with relatively low prior ability in solving probability problems, and prior
mathematical ability was not a strong predictor of performance, especially not qualitative
understanding.

Furthermore, the improved outcomes did not require large increases in instruction on
mathematical techniques. Traditional instruction teachers reported spending on average
260 minutes on genetics probability instruction, as compared to approximately 270 minutes
in the iSTEM unit. It was the nature of the quantitative instruction that was the larger differ-
ence. Traditional teachers report teaching only calculated procedures methods for problem
solving versus the scientifically connected modeled process used in the iSTEM unit.

Others have designed instructional interventions that have increased student quantitative
problem solving ability and/or understanding of the inheritance processes modeled math-
ematically in the iSTEM unit. One approach asked students to pictorially represent the
processes (Moll & Allen, 1987). While students showed an increase in understanding of
the pictorially represented processes, half of the students chose not to pursue the draw-
ing method when engaging in quantitative problem solving. Moreover, those who used
a calculated procedure method were more successful at solving complex problems. The
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authors speculated that this was because representing the processes pictorially became more
cumbersome as problem complexity increased.

Two other groups have shown that students increase their understanding of genetics
processes (Buckley et al., 2004; Tsui & Treagust, 2003), and one has shown that students
also increase their ability to solve genetics probability problems (Buckley et al., 2004),
following instruction using a computer simulation that models genetics processes (described
in Horwitz, Gobert, Buckley, and O’Dwyer, 2010). However, many science classrooms do
not have regular access to computers. Thus, the mathematical modeling of processes in
the iSTEM inheritance unit described here provides a low-tech alternative, at least for the
biology concepts that could be modeled with relatively simple mathematics. Other aspects
of biology, involving more complex mathematics, might be best supported with computer
simulation methods.

CONCLUSIONS

We have provided evidence that mathematical modeling of inheritance processes can
increase students’ ability to solve quantitative genetic probability problems and to answer
qualitative questions about the modeled genetics processes. Thus, we have generalized prior
findings (Bing & Redish, 2008; Taasoobshirazi & Glynn, 2009), which have suggested
that making connections between a mathematical equation and the underlying scientific
processes increases the ability to solve mathematical problems in a scientific context.
Furthermore, we have provided support for a theoretical idea that modeling scientific
processes and entities mathematically through explicit connections between mathematical
variables and processes and the entities and processes within a scientific phenomenon
increases understanding of the scientific phenomenon. While further research needs to be
done into how including modeled process mathematics increases problem-solving ability
and student understanding of science, the unit on inheritance presented here provides a
successful model of iSTEM instruction that integrates mathematics and biology in an
engineering context.
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APPENDIX

TABLE A1
THREE WAYS MATHEMATICS CAN BE USED IN INHERITANCE
INSTRUCTION

Embodiment OF Mathematics in Inheritance Instruction

Name Punnett Square Probability Rules Method Modeled Process

Type of
embodi-
ment

Calculated procedure Calculated procedure Modeled process

Summary Depiction of the rule that
each parent will give one
gene from each trait to
offspring combined with
an algorithm.

Treat the problem as
purely a mathematical
probability problem.

Apply a modeled process
equation that makes
explicit connections
between the biology and
the mathematical process.

Represen-
tation

P1*P2

where Pn is the probability
of getting genotype of
gene n

W1 ∗ W2

(# egg types)(# sperm types)

where Wn is the ways of
getting genotype
combination of gene n

Worked
example

Calculate the probability of producing an offspring with the genes �� from breeding a male with
�� genes and a female with �� genes.

Step 1 Separate the 2 genes in
the parents.

The male contains two
types of alleles so the
probability of passing on
one of them is ½.

Determine the number of
types of eggs and the
number of types of sperm
that can be produced
(each parent can only
contribute 1 gene for each
trait): 2 sperm types and 1
egg type.

Step 2 Combine the genes from the
parents in the inner
squares.

The female contains one
type of allele so the
probability of passing on
one of them is 1.

Because each egg type can
join with each sperm type,
multiply the number of egg
types times the number of
sperm types to obtain 2
possible offspring types.

Step 3 Count how many of the
inner squares contain
the gene combination of
interest: �� = 2

Apply the appropriate
probability rule: If both
events are required then
multiply the probability of
the two events together.

Refer to the rule that each
parent can only contribute
one gene for each trait to
determine the number of
ways that each offspring
genotype can be obtained.

Step 4 Count the number of total
cells: = 4

½*1 = 1/2 For �� offspring, the female
can only contribute �, the
male must contribute �: 1
way to get �� offspring.

Step 5 Place the number found in
step 3 over the number
found in step 4 = 2/4 and
reduce the fraction = ½.

The probability of a desired
event equals the number
of desired outcomes as a
proportion of the total
number of possible
outcomes. Place the
answer from step 3 over
the answer from step
4 = ½.
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