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1. LEARNING THEORIES FOR ENGINEERING 
AND TECHNOLOGY EDUCATION 

INTRODUCTION 

Optimizing technical systems depends on scientifically grounded models of system 
performance. Similarly, the development of engineering and technology education 
systems fruitfully builds upon relevant learning theories. Engineering and 
technology involve complex skills and concepts embedded in rich contexts. We 
review learning theories particularly appropriate for supporting learning of such 
complex concepts in rich contexts, drawing heavily on information processing, 
distributed cognition and cognitive apprenticeship. 

OVERVIEW  

The goal of this chapter is to articulate ways in which contemporary learning 
theories drawn from the learning sciences can enhance Engineering and 
Technology Education (ETE). We believe that ETE has much to gain by grounding 
research, instructional innovation and evaluation in existing theoretical 
frameworks. Connecting to theory helps guide instructional designers in the 
construction of learning environments that are likely to be effective as they build on 
the scientific work encapsulated in well-established learning theories and they are 
also then able to contribute further to what is known in ETE disciplines by refining 
and expanding on those theories. 
 But connecting to learning sciences theory is difficult for many experienced 
engineers and engineering/technology educators who seek involvement in 
education research, but who were not trained in a social science such as psychology 
or education (Borrego, 2007). To that end, this chapter intends to explore a number 
of contemporary learning theories that could serve to ground ETE research, design 
and evaluation. Although we cannot possibly cover all such learning theories, the 
ones we have chosen may be particularly useful to the work of ETE in which 
students must learn complex skills and concepts and to use those concepts 
adaptively in rich contexts. 
 The chapter is organized around the following two questions: 
– Goals: What is ETE as something to be learned? 
– Theories: What are some currently influential learning theories that could be 

applied to ETE? 

ENGINEERING AND TECHNOLOGY EDUCATION GOALS 

In thinking about learning theories that may be relevant for ETE, it is important to 
be explicit about the outcomes that educators would like to see in their students. 
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There are two dimensions to consider with respect to ETE. The first dimension is 
that ETE naturally involves elements of science, technology, engineering and 
mathematics (STEM). While technology and engineering elements are clearly the 
most central, they inevitably draw upon science and mathematics at various points, 
and the design of effective ETE environments should take those connections into 
account. 

Second, there is the question of what fundamental form the elements to be 
learned take. Since the days of behaviorist learning theories, it has been clear that 
competent activity in a domain consists of many individual components, each of 
which must be acquired and developed through experience (Thorndike, 1913)—
addition and multiplication, for example, are separate math skills, each requiring 
their own practice. This need for decomposition of learning goals and practice on 
the components continues to receive theoretical and empirical support (Singley & 
Anderson, 1989; Anderson, Bothell, Byrne & Lebiere, 2004). However, 
developments in education, cognitive psychology and neuroscience after the days 
of behaviorism have shown that there is more to learn than just skills (or stimulus-
response associations in the language of behaviorism) and further that different 
kinds of learning involve different methods. For example, procedures and concepts 
rely on different brain areas for learning (Knowlton, Mangels & Squire, 1996); 
procedures become less introspectable with practice whereas concepts become 
more introspectable; and procedures are most robust but least flexible when 
automatized whereas reasoning is generally more flexible but requires conscious 
control (Anderson, Fincham & Douglass, 1997). Both are important for developing 
expertise in a domain. 

In engineering terms, a solving a problem in a domain involves a complex 
system requiring many skills, concepts and other competencies rather than just a 
simple list of skills. Here is a division that was first developed in mathematics 
education (Kilpatrick, Swafford & Findell, 2001) that could be applied productively 
to ETE. Success appears to require all five elements: 
– Procedural fluency—skill in carrying out procedures flexibly, accurately, 

efficiently and appropriately. This would include the use of tools, models and 
mathematics in technology/engineering problem-solving. 

– Conceptual understanding—explicit comprehension of relevant concepts from 
engineering, technology, science and mathematics, understanding what possible 
operations are available and why they work, and an understanding of the 
relationships between concepts and operations. 

– Strategic competence—ability to formulate, represent and solve complex STEM 
problems. 

– Adaptive reasoning—capacity for logical thought, reflection, explanation and 
justification. 

– Productive disposition—habitual inclination to see STEM as sensible, useful and 
worthwhile, coupled with a belief in diligence and one’s own ability to solve 
technology or engineering problems. 

 A strong ETE curriculum will help students make progress at all five levels. 
Thus, it is important to consider each of these elements and learning theories that 
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describe their acquisition. In the sections that follow, we will describe more 
concrete actions that ETE designers can use to develop more effective learning 
environments for each element. 

ENGINEERING AND TECHNOLOGY EDUCATION LEARNING THEORIES 

There are several broad theories of learning to consider that highlight some of the 
major outcomes from the learning sciences. Within each broad learning theory, 
there are more detailed theories of particular factors that influence learning, but 
here we focus only on the broad theories and the key distinctions they raise for the 
ETE teacher and designer. 
 One can roughly organize the components to be learned from more micro 
components (a large number of small pieces to be learned that are each executed 
quickly in time during problem-solving) to more macro components (a smaller 
number of larger pieces to be learned that are applied more pervasively during 
problem-solving). For example, there are many simple procedures to learn, each of 
which might only take a second to execute, whereas there are a few productive 
dispositions that need to be active through a potentially multiple-week-long process 
of solving a complex engineering problem. Similarly, one can organize learning 
theories in terms of having a more micro (short time scale focus on micro features 
of behavior) vs. macro (longer time scale focus on macro features of behavior) 
perspective (see Figure 1). This difference is more heuristic/approximate than 
absolute in that all of the theories make some contact with all of the components. 
However, a clear point of emphasis exists within each theory. 
 

 

Figure 1. Micro to macro organization of learning theories and components of competent 
behavior in ETE. 

INFORMATION PROCESSING (COGNITIVE) THEORIES OF LEARNING 

One of the key insights of Information Processing theory is that complex tasks must 
be decomposed into informational components that are encoded, stored and 
processed, and fundamental cognitive limitations exist at each step that influence 
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performance and learning. The mind, like a computer, does not have infinite 
capacity. A general flow of information is shown in Figure 2.  
 

 

Figure 2. Flow of information from the environment into the mind. 

Attention issues 

The problem-solver, especially in more complex engineering and technology 
settings, sits in a rich environment with all kinds of sensory signals impinging on 
his/her body (sights and sounds most importantly, but also smell, touch, 
temperature, pain and hunger). Well-practiced, automatic skills can make some use 
of much of this information, but more conscious, deliberate problem-solving 
depends on using information in working memory. The problem-solver actively 
selects which information to encode into working memory via an attentional filter: 
only information that is attended is moved initially to working memory, and only a 
very small bandwidth of information that is perceived can be attended. The mind 
appears to attend to locations and modalities one at time, but can switch rapidly 
between locations and modalities (Wickens & McCarley, 2008).  
 Novices often do not know what information to attend in a complex 
environment, and so the instructional designer and teacher must support the learner 
in attending to the right features at the right time. This might involve simplifying 
the environment to remove less relevant features, making critical features more 
salient, or bringing features closer together that must be encoded immediately to 
solve a problem (Wickens, 2008; van Merrienboer & Sweller, 2005). But note that 
learners will have trouble moving from a very simplified learning environment to 
the real performance environment if the information found in the simplified 
environment is perceptually different from the real environment and different 
information encoding skills are required.  
 Simply pointing out critical features to encode by itself can produce large 
speedups in learning because feature noticing can be subtle. For example, the skill 
of chicken sexing (determine a day-old chick’s sex by visual inspection) used to 
take thousands of hours to perfect, but was later learned in a matter of a few hours 
once learners were explicitly told which features were important to encode 
(Biederman & Shiffrar, 1987). Closer to ETE, Kellman, Massey and Son (2010) 
found that training middle and high school students in mathematics classes to 
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recognize patterns and fluently extract meaningful perceptual structures in 
mathematics problems greatly improved equation solving performance and solving 
novel problems. 

Working memory issues 

Moving information into attention is a first step, but not the last one in terms of 
information processing. In addition to limitations on how much can be attended at 
once, working memory is extremely limited in capacity—approximately four 
independent visual/spatial items and four independent verbal/acoustical items 
(Baddeley, 2003). Thus, as problem-solvers attend to new things, old things are lost 
from working memory; they must be mentally rehearsed (or reexamined to re-
encode them) to be kept in working memory over time.  
 With experience, problem-solvers can ‘chunk’ combinations of information so 
that these familiar combinations only consume one item, effectively increasing 
working memory capacity in that familiar situation—for example, a chess expert 
can remember a whole board because sets of pieces can be grouped into familiar 
chunks, but a chess novice is stuck thinking about each piece on its own (Chase & 
Simon, 1973). Similarly, complex devices to a novice are overwhelming to 
remember because the novice cannot encode the subsystems of the device in terms 
of familiar groupings (Moss, Kotovsky & Cagan, 2006). 
 This severe capacity limitation on working memory has a number of 
implications for the instructional designer or teacher, especially because reflection 
by the learner on the task or situation, thought to be useful for learning, also relies 
on this same limited working memory capacity (van Merrienboer & Sweller, 2005). 
First, it is important to think through how many components the task being 
performed requires for a problem-solver to consider simultaneously in working 
memory (called the intrinsic cognitive load). It is important not to overwhelm the 
learner, taking into account the chunks that a learner is likely to already have. The 
peak cognitive load moment in a task is when errors are most likely to occur 
(Carpenter, Just and Shell, 1990). Addressing this issue might involve using 
familiar situations when first introducing procedures/tasks having a higher intrinsic 
load. 
 Second, it is important to find and reduce additional features of the learning 
situation that might be adding to working memory requirements (called the 
extrinsic cognitive load). For example, cluttered displays often imply that learners 
must keep track of where key information is being kept. Somewhat counter-
intuitively, giving learners a very specific result to compute in an example produces 
a higher cognitive load than just asking students to compute a variety of results in 
the same situation because the specific goal must be stored in working memory 
(van Merrienboer & Sweller, 2005)—as a result, the specific goal situation 
produces more errors and reduces learning. Similarly, initially studying examples 
that show the solution process produces better learning outcomes than having 
students immediately solve problems on their own because the cognitive load of 
solving problems is higher than that associated with studying worked examples. 
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Consolidation/fluid fact retrieval 

As noted above, the working memory requirements of a situation are reduced when 
the problem-solvers can encode the situation in terms of larger familiar chunks. 
Where do these chunks come from? The chunks reside in long-term memory, 
which has essentially unlimited capacity (i.e., it never gets ‘full’), but information 
is stored relatively slowly in working memory through a process called 
consolidation. In addition, problems may occur in retrieving the right chunks at the 
right time (i.e., stored information can get lost in the sea).  
 Expert performance involves having rapid access to relevant long-term memory 
chunks and this rapid access is built up gradually through repeated exposure. Here 
there is no free lunch, no cognitive shortcut (Anderson & Schunn, 2000). Rather, a 
relatively simple relationship exists by which each exposure slowly increases the 
probability of retrieving the information later and decreases the rate at which 
information is forgotten. There is one important caveat: studying information 
repeatedly spread out over time, rather than cramming, can have a large effect on 
how quickly information is forgotten (Pavlik & Anderson, 2005). So, for 
foundational information that is to be used in subsequent units or courses, it is very 
useful to revisit that information repeatedly at multiple points in the curriculum, 
spaced out over time.  

Proceduralization 

Chunking and storage in long-term memory is what happens to facts or memories 
for particular task arrangements and outcomes. A different kind of learning happens 
with skills. Here, information moves from being represented as facts to being 
represented as actions, a process called proceduralization. As a simple example, 
learning to drive a car begins with being told or reading about the steps involved. 
Students might be able to recite what the steps are, but they cannot actually 
consistently execute the steps until they have practiced the steps repeatedly. Over 
time, with enough practice, a problem-solver might actually lose the ability to recite 
the steps involved verbally because he or she no longer relies on that form of 
knowledge. 
 Similar to consolidation, proceduralization is a slow learning process with no 
magic bullets other than finding ways for students to more consistently practice 
only relevant steps. If a problem-solver wants to become fast and accurate at a 
procedure, hours of practice are required. Interestingly, there does not appear to be 
any point at which improvements stop with practice: even after thousands of hours 
of practice, people appear to keep getting faster with increasing practice, although 
of course the amount of improvement with each hour of practice diminishes 
(Anderson, Fincham & Douglass, 1997). 
 Proceduralization reduces working memory requirements because elements of 
the procedure do not need to be represented in working memory. Proceduralization 
does not by itself automatize the skill in that the skill, when first proceduralized, 
depends on explicit goals found in working memory and can be easily stopped or 
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adapted through metacognitive reflection. However, with enough practice, the skills 
become automatic in the sense that they do not require any attentional resources to 
start the procedure, but they also cannot be easily stopped or adapted. For example, 
adults automatically read words as soon as they appear and cannot prevent 
themselves from reading the words. Sometimes problem-solvers need to complete 
multiple skills simultaneously; this dual task activity becomes more feasible when 
at least one of the skills has been practiced to the point of automaticity. 

Prior knowledge/misconceptions 

The previous analysis gives the sense of knowledge elements in isolation, each 
practiced in isolation. However, there are connections, particularly with respect to 
concepts. Cognitive research has found that one of the strongest predictors of how 
well a student is likely to learn something is how the new learning is related to what 
the student already knows and how their prior knowledge is organized (National 
Research Council, 1999, 2007). If the concepts to be learned and the way they are 
organized match neatly with a learner’s pre-existing knowledge base, then the 
learning is likely to be smooth and rapid. However, in science and engineering, 
students often lack relevant conceptual frameworks or have frameworks that are not 
developed enough to support new learning adequately. If students cannot relate new 
information to a meaningful framework, they will probably resort to memorizing 
terms that will be quickly forgotten or that will remain in isolation, unable to be 
connected to other knowledge or applied when relevant. 
 ETE, including supporting science education, often extends everyday 
understanding to new levels that cannot be seen directly or experienced in everyday 
life. For example, much of biology and chemistry involves learning about entities 
and processes at a microscopic level. In biology, many students correctly associate 
properties like breathing, growth and reproduction with living organisms, but their 
understanding of these properties is based on their everyday experience. They 
understand something like breathing as taking air in and out through one’s mouth 
or nose, and the need to do so is self-evidently obvious. This is correct as far as it 
goes, but a scientific understanding delves much deeper and explains these 
properties in terms of exchanges of gases that are required at the cellular level for 
cells to engage in the metabolic processes that support life. The way a person, a fish 
and a tree “breathe” may appear quite different on the surface, but the processes of 
cellular respiration unify and explain the common need to exchange gases and help 
us understand how different groups of organisms meet that need (see Chapter 5 for 
a more detailed discussion of the transfer of conceptual knowledge). To make sense 
of this, students must add new levels of concepts and explanatory systems to their 
understanding of the natural world and then work out how those levels are 
connected to their pre-existing views of the world (Smith, Maclin, Grosslight & 
Davis, 1997). 
 While some elements of ETE involve concepts very foreign to students, some 
concepts are misleadingly familiar to students. Through everyday informal 
interaction in the world, students sometimes develop misconceptions of how the 
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natural and man-made world around them actually works. For example, in physics, 
most students have very serious misconceptions that are in direct opposition to 
Newton’s Laws: students strongly believe that a table does not push up on a book 
sitting on it and they strongly believe that objects stay in motion only because a 
force continues to be applied to it (Clement, 1982). Because these informal 
understandings have been developed through years of experience, they are 
incredibly resistant to change through instruction. Instruction that ignores these 
misconceptions tends to fade quickly, leaving only the misconceptions in the 
learner’s head, whereas instruction that evokes and directly attacks these 
misconceptions has significantly improved student learning (Hammer & Elby, 
2003; Kim & Pak, 2002). 
 Because these connections and reparation of existing knowledge are so crucial to 
learning, teaching and learning strategies that involve sense-making by the students 
have often been found to be especially effective. For example, encouraging 
students to self-explain during reading (i.e., monitor whether they understand what 
was read, make connections between paragraphs or between text and diagrams, 
make predictions and provide explanations for the provided information) can lead 
to great improvements in understanding the text, in retaining the material and 
afterwards the ability to apply the information later in new contexts (Chi et al., 
1989). See Chapter 5 for a broader analysis of factors that influence this kind of 
learning. 

Cognitive task analysis 

Practice is the key to expert performance. But it is critically important that time be 
devoted to practicing all critical skills in the goal task. The benefits of practice are 
very specific to the particular skills that were practiced. For this reason, it is 
important to do a cognitive task analysis of the steps involved in completing a task. 
Note the term ‘cognitive’ in cognitive task analysis. A non-cognitive task analysis 
involves analyzing the external steps involved in completing a task. A cognitive 
analysis includes the mental steps required in the task, including mental 
calculations and retrievals from long-term memory. 
 A cognitive task analysis can be difficult to complete, especially by experts who 
have proceduralized many elements of the task, thereby losing the ability to 
articulate the procedures they execute verbally. So, one cannot simply interview 
experts to determine required skills. Instead, one must observe experts at work, 
perhaps having them give a think-aloud protocol that offers some access to the 
contents of verbal working memory (Ericsson & Simon, 1983). From this trace of 
external actions and contents of verbal working memory, one must infer the steps 
taken by the problem-solver. 
 Why is it worth the effort to do a cognitive task analysis? First, it clarifies what 
skills and concepts must be practiced, which makes it clearer as to what kinds of 
practice tasks should be assigned to ensure that all components skills and concepts 
receive some practice. Different problems can involve different subsets of skill 
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application. As a simple example, different subtraction problems may or may not 
involve particular borrowing steps.  
 Second, the cognitive task analysis creates some opportunities for improving the 
efficiency of learning with intelligent learning systems that track student 
performance at the cognitive components level. Solving problems can take 
considerable learning time. If a given student has already made considerable 
progress on skills A, B, C but not skills D, E, less efficient use of learning time 
would be made to present more problems involving A, B, C or A, B, E and more 
efficient use of learning time to present problems involving just D, E. Cognitive 
tutors that present problems in exactly this way (in addition to providing immediate 
feedback on which cognitive steps were incorrectly completed) can take students to 
the same learning outcomes in much less time (Anderson, Corbett, Koedinger and 
Pelletier, 1995). 
 Third, important transfer across tasks can happen at the level of shared cognitive 
components. So, learners can be given simplified learning tasks (to simplify 
attentional demands, to reduce working memory requirements and to focus time on 
unlearned elements) but still transfer to real tasks if the tasks share important 
cognitive components. For example, Klahr and Carver (1988) conducted a 
cognitive task analysis of program debugging skills. They then explicitly taught 
these skills to students, which they quickly mastered and practiced. Then, in a test 
of transferring these skills to a completely different task that should have shared 
important cognitive elements of debugging, Klahr and Carver found that students 
were much better at debugging errors in written instructions, such as arranging 
items, following map routes, or allocating resources. 

Summary of information processing 

From an information processing point of view, it is important to determine the 
information that students need to be processing, considering perceptual encoding, 
working memory, and long-term conceptual and skill components. Further, this 
analysis must examine both eventual fluent problem-solving and the learning 
environment. Learning takes place through accurate focus on and practice with the 
critical elements. Given the frequent complexity of ETE, it is easy to overlook 
critical skills or concepts without a careful cognitive task analysis conducted by the 
designer of the ETE learning environment. 

DISTRIBUTED COGNITION LEARNING THEORIES  

Information processing theories place a strong emphasis on the mental workings of 
individual minds. Distributed cognition generalizes the information processing 
theory framework to include the physical environment around the learner, including 
interactions with other problem-solvers. As noted in the previous section, cognitive 
load is a key bottleneck to complex problem-solving and learning. External tools 
and other problem-solvers in the environment can be used to share the load. For 
example, in a plane cockpit, the pilot uses dials to help remember the state the 
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plane is in, uses the co-pilot to help run through check-lists before take-off, and 
even uses simple perceptual features of dials and indicators to compute simple 
computations about whether to change the plane’s speed (Hutchins, 1995). 
 This distributed extension of information processing applies to ETE in a number 
of different ways. First, engineering and technological problem-solving tend to 
involve working with complex external environments and groups of individuals 
working together, rather than individuals working alone or doing purely mental 
calculations. Thus, it is not necessary for ETE learners to be able to do complex 
tasks purely in their heads because it is unlikely that they will encounter that 
performance standard later.  
 Second, problem-based learning is often implemented as group-work. By 
assigning different individuals different roles (including monitoring overall 
performance or learning of individuals), the overwhelming complexity of many 
ETE learning tasks becomes manageable. However, it is important that the tasks be 
divided such that the cognitive load is decreased rather than increased. In tightly 
coupled tasks distributed across individuals, each problem-solver has the additional 
challenge of having to keep track of their partner’s task state as well as their own 
task state. Such distribution increases rather than decreases each learner’s cognitive 
load. It is better to have multiple learners work on more independent tasks or have 
them attend to the same task state but perhaps from different perspectives (Prince, 
2004). 
 Third, engineers and technologists use thinking tools, often called models, that 
distribute thinking in another way and this requires an additional strand for 
learning. Models are tools or formalisms that represent aspects of some external 
situation for a particular purpose. Common examples from ETE include graphs, 
equations, physical prototypes, computer-aided design models and design analysis 
tools. A given situation could be represented by any and all of these examples 
(Gainsburg, 2006). Each representational tool has strengths and weaknesses. Which 
model or combination of models should be used at any given time depends upon 
the problem-solver’s purposes. Even within a given type of model (e.g., physical 
prototype), there are choices as to which features to include and which to exclude 
(e.g., color, moving parts, structural strength). 
 This last element is a critical component of strategic competence (one of the key 
components from Figure 1)—the ability to formulate, represent and solve complex 
STEM problems. Complex ill-defined problems (as frequently occurs in 
engineering and technology problem-solving) can move from being nearly 
unsolvable to trivial through the selection of the appropriate representational tools 
(Kaplan & Simon, 1990). 
 But modeling, as a skill, can be a challenge to learners. Students initially do not 
see models as representational—standing for something else—but rather just things 
on their own, serving no greater purpose. Further, students are usually given 
models rather than being allowed to modify and strategically select models, thereby 
undercutting the development of strategic competence.  
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Models & modeling perspective and model-eliciting activities  

In the mathematics education and engineering education communities, a new 
general approach to instruction is developing called the models & modeling 
perspective (M&M; Lesh & Doerr, 2003), focusing on the complexities and 
benefits of models as a particular kind of distributed cognition. Whereas the 
information processing theoretical perspective often led to careful arrangements of 
problem-solving activity, the M&M perspective has advocated a different sort of 
instructional activity exemplified by model-eliciting activities (MEAs; Hamilton et 
al., 2008). MEAs are a form of problem-based learning well matched to ETE in 
which the problem-solvers are asked to produce conceptual tools for constructing, 
describing, or explaining meaningful situations. This process of developing such a 
conceptual tool typically involves a series of express-test-and-revise cycles. The 
iterative model development process helps students both to develop more 
sophisticated ways of understanding important conceptual ideas and to acquire a 
productive disposition toward thinking about their own ideas or models of 
situations as tools—useful and adaptable for solving real problems (Lesh & Lehrer, 
2003). 
 MEAs have been developed for K-12 and undergraduate mathematics, 
technology and engineering education (e.g., http://modelsandmodeling.net). A 
number of well-defined principles for developing MEAs exist (Lesh et al., 2000). 
In addition, MEAs are typically contextualized around a problem where students 
have to sort through a wide range of quantitative data and develop a procedure or 
process for a client. For example, the Nano Roughness MEA (Moore & Diefes-
Dux, 2004) challenges students to quantify the roughness of nanoscale materials 
that a biomedical company is considering to use for artificial hip joints. One 
principle of MEAs is the Model-Construction Principle—that the problem requires 
students to create a mathematical model of the situation. In the Nano Roughness 
MEA, students examine atomic force microscope (AFM) images that provide 
quantitative data on the surface height of materials and use this information to 
generate their own procedures for quantifying roughness, of which there are many 
possibilities. 
 MEAs can result in a form of local conceptual development in which students 
make progress in a particular situation with the specific tools available in a way that 
parallels larger developmental processes of more general conceptual structures 
(Lesh & Harel, 2003). Thus, MEAs provide students with opportunities to develop 
their ways of thinking about central conceptual ideas within realistic problem-
solving contexts.  
 We have begun to explore in our own work with robotics technology classes in 
middle schools how the M&M perspective and MEAs can provide a sound 
theoretical basis for improved learning (Silk et al., 2010). For example, we provide 
middle-school aged students with the case of a robotics team that programs 
synchronized dancing Lego robots. The fictional team receives different dance 
routines from fans via the Internet. The problem is to program these various dance 
routines in a way that different sized robots will dance in synchrony. The students’ 
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task is to develop a script that the fictional team can use to program robots for these 
arbitrary scripts quickly and accurately. Since the situation is open-ended, the 
students must develop their own physical and mathematical models to determine 
how different robotics moves vary across different sized robots and then use these 
models to develop the script. Here, students are thinking about specific proportional 
relationships in the problem, and through a model refinement process, they may 
further improve their mathematical concept of proportionality or their robotics 
concept of proportional control. 

COGNITIVE APPRENTICESHIP LEARNING THEORIES  

All areas of professional education, including engineering and technology 
education, have had a long history of apprenticeship approaches to learning. At 
school, students were meant to learn the underlying principles and most 
fundamental skills/knowledge (writing, mathematics, science), and then through 
internships, co-op experiences, or on-the-job training, learn the ‘real’ skills of the 
discipline. Even instruction that was intended for all children, rather than just the 
next generation of a particular profession, has been influenced somewhat by 
applying lessons from apprenticeship learning to instruction. 

Traditional apprenticeship learning 

Analysis of learning in traditional apprenticeship situations noticed important 
common instructional features. One important feature is that much early 
apprenticeship learning involves observation by the apprentice of more expert 
performance, rather than immediately having the learner engage in problem-
solving, read about problem-solving, or hear lectures about problem-solving (Lave, 
1988).  
 The second important feature is the expert provides many supports for the 
learner during problem-solving, called scaffolds. For example, the expert may 
provide hints or do parts of the task, leaving the first or last pieces for the learner. 
Gradually over time, these scaffolds are removed, a process called fading 
(Vygotsky, 1978). A number of intelligent computer tutoring systems have 
successfully used this scaffolding and fading approach to speed up learning (Renkl, 
Atkinson & Grosse, 2004), including of engineering materials (Reisslein, Sullivan 
& Reisslein, 2007). 
 From such apprenticeship experiences related to ETE, students develop a 
productive disposition towards STEM (the last key component listed in Figure 1). 
Because they see performance of STEM in action, the usefulness of STEM 
components is made very persuasively. Observation of a diligent expert provides a 
good model for work ethics in STEM. Finally, the scaffolding and fading help to 
ensure that students develop and maintain high self-efficacy about their own ability 
to solve STEM problems. 
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Cognitive apprenticeship learning  

Although apprenticeship learning does produce expert performance, the path is 
often quite slow, and the learning that results can be somewhat fragile or specific to 
the particular learning environment of training (Suchman, 1987). This last element 
was particularly troubling for applications to school environments, which could not 
be made like work environments for large numbers of students. Information 
processing theorists examined apprenticeship learning and proposed a hybrid 
theory called Cognitive Apprenticeship that was meant to speed up and make the 
transfer from schooling to other settings more robust (Collins, Brown & Holum, 
1991). 
 One element of cognitive apprenticeship is that the expert tries to make all 
aspects of the task visible to the learners, which further supports the learner’s 
ability to engage in more adaptive reasoning across settings (the fourth key 
component from Figure 1). In traditional apprenticeship, it is up to the learner to 
figure out which features to encode and what steps are going on. For ETE, in which 
many steps are mental and abstract, traditional apprenticeship leaves the learner 
with a huge inference task. To make aspects of the task more visible to the learner, 
an instructor might think aloud during problem-solving. For example, in 
mathematics instruction, Schoenfeld (1987) found it particularly useful to show 
students the heuristics that mathematicians use for selecting among possible 
problem-solving steps rather than just the formal steps found in particular 
algorithms. In addition, an instructor might ask learners to alternate between being 
a critic or guide and a learner or doer receiving critical comments. Reciprocal 
teaching is an approach that has used this element of cognitive apprenticeship to 
great effect in reading instruction (Palinscar & Brown, 1984) and physics 
instruction (Reif, 1999). 
 A second element of cognitive apprenticeship is the importance of varying 
situations such that transfer to new situations will become more likely. Preferably 
this varying of situations is done by gradually increasing the complexity of the 
tasks and the diversity of the skills and concepts required to complete the task. That 
is, rather than simply working on complete problems as they come and providing 
scaffolding for the students, the order of selected problems is chosen purposefully 
with respect to complexity and diversity of skills and concepts (Collins, Brown & 
Holum, 1991). 
 However, the sequencing of problems does not mean instruction should begin 
with micro-problems that are completely divorced from real problem situations 
because the students will then lose the connection between what they are learning 
and the situations to which these skills and concepts should apply. Instead, 
instruction should go from global to local so problem-solvers can see the relevance. 
That is, a full problem can be introduced, but then instruction can transition to 
solving components of the larger problem. This issue of global/local is particularly 
applicable to problem-based learning approaches used in ETE. Rich problems can 
be attempted and yet students can practice critical component skills in effective 
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order by supporting the transition from the larger problem to the component sub-
problems.  
 For example, in our synchronized dancing robots problem described earlier, we 
can present the larger synchronized robots problem to students at the very 
beginning of a long sequence of lessons and then help the students break down the 
larger program into components, such as linear distance, linear speed, turn amount 
and turn speed. Each of these components can be divided further into measurement 
and programming tasks. But the students ‘see’ the larger problem at the very 
beginning, rather than beginning the unit with a discussion of measuring linear 
distances with robots, which the students see as an odd task out of context. There is 
now emerging evidence that providing a greater ‘need-to-know’ enhances learning 
in STEM (Mehalik, Doppelt & Schunn, 2008). 
 Overall, cognitive apprenticeship approaches support the development of 
adaptive reasoning in problem-solvers by encouraging students to reflect on the 
skills and strategies involved in solving larger, more complex problems. 

CONCLUSION 

Successful problem-solving in engineering and technology settings requires 
attending to five larger elements in the problem-solver: procedural fluency, 
conceptual understanding, strategic competence, adaptive reasoning and productive 
disposition. These five elements are not developed quickly and easily, and learning 
environments must be carefully organized across years of instruction to meet this 
challenge.  
 Given the complexity of what must be learned, it is not surprising that a range of 
learning theories must be used to explain how this learning happens and what 
environmental features best support it. As a rough heuristic, we have organized the 
learning goals from more micro elements to more macro elements, and have then 
shown how different learning theories connect to these elements. But the mapping 
is certainly complex and much research remains to be done. In the meanwhile, we 
strongly encourage active sense-making by the reader in terms of trying to apply 
the contents of this chapter to their own ETE setting. 
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