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On the Benefits and Pitfalls of
Analogies for Innovative Design:
Ideation Performance Based
on Analogical Distance,
Commonness, and Modality
of Examples
Drawing inspiration from examples by analogy can be a powerful tool for innovative
design during conceptual ideation but also carries the risk of negative design outcomes
(e.g., design fixation), depending on key properties of examples. Understanding these
properties is critical for effectively harnessing the power of analogy. The current
research explores how variations in analogical distance, commonness, and representa-
tion modality influence the effects of examples on conceptual ideation. Senior-level engi-
neering students generated solution concepts for an engineering design problem with or
without provided examples drawn from the U.S. Patent database. Examples were crossed
by analogical distance (near-field vs. far-field), commonness (more vs. less-common),
and modality (picture vs. text). A control group that received no examples was included
for comparison. Effects were examined on a mixture of ideation process and product var-
iables. Our results show positive effects of far-field and less-common examples on novelty
and variability in quality of solution concepts. These effects are not modulated by modal-
ity. However, detailed analyses of process variables suggest divergent inspiration path-
ways for far-field vs. less-common examples. Additionally, the combination of far-field,
less-common examples resulted in more novel concepts than in the control group. These
findings suggest guidelines for the effective design and implementation of design-by-anal-
ogy methods, particularly a focus on far-field, less-common examples during the ideation
process. [DOI: 10.1115/1.4004396]
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1 Introduction

Innovation, defined as the capacity to generate ideas or products
that are both novel and useful, is a critical component of success-
ful design in today’s economy [1,2]. A number of investigators
have argued that innovation can be best managed in the “fuzzy
front end” of the design process [3,4], notably in the ideation
phase, where concepts are created either intuitively or through
systematic processes. While many approaches exist to create ideas
and concepts as part of ideation, the search for and use of analo-
gies have been shown to be quite powerful [5–8]. Analogy is a
mapping of knowledge from one domain to another enabled by a
supporting system of relations or representations between situa-
tions [9]. This process of comparison between situations fosters
new inferences and promotes construing problems in new insight-
ful ways. This process likewise is dependent on how the problem
is represented, encouraging multiple representations to more fully
enable analogical reasoning [10,11]. As an illustrative example,
the design concept for the bipolar plate of a fuel cell could be use-
fully informed by analogy to a plant leaf due to its similarity in
functionality. The most significant functions affecting the current
generation capability of a bipolar plate are “distribute fluid,”
“guide fluid,” and “disperse fluid.” The plant leaf possesses a sim-
ilar function chain, where the veins and lamina perform the func-

tions. As a result of this analogy, the bipolar plate flow field can
be designed to mimic the structure of a leaf [10,11].

Design-by-analogy is clearly a powerful tool in the conceptual
design process, and a number of methods have been developed to
harness its power, such as Synectics [12]—group design through
analogy types; French’s work on inspiration from nature [13];
Biomimetic concept generation [14]—a systematic tool to index
biological phenomena that links to textbook information; and
analogous design using the Function and Flow Basis [15,16]—
analogous and nonobvious product exploration using the func-
tional and flow basis. However, fundamental questions surround
the proper use of design-by-analogy methods. Most critical, and
the problems that are the focus in our work, are what should one
analogize over, and what reasoning modalities and associated rep-
resentations make innovative design-by-analogy more likely?

While these questions have remained largely unanswered in
specific knowledge domains such as engineering design, there is
related research literature in the domain of psychological studies
of creativity, reasoning, and problem solving. In what follows, we
review the relevant literature that motivate our present hypothe-
ses, describe the methods and findings of our cognitive study, and
then discuss the insights and implications of our work.

2 Background

2.1 Analogical Distance of Example Designs. One key vari-
able of interest with respect to the question of what one should
analogize over is analogical distance. This variable can be
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conceptualized as ranging over a continuum from far-field (from a
different problem domain) to near-field (from the same or very
similar problem domain), where analogies closer to the far-field
end point share little or no surface features with the target domain,
while analogies closer to the near-field end point share a signifi-
cant number of surface features. The potential for creative insights
seems clearest when the two domains being compared are very
different on the surface [17]. Classic accounts of creative discov-
eries and inventions often highlight the potential of far-field anal-
ogies for creative insights, including George Mestral’s invention
of Velcro via analogy to burdock root seeds, and Niels Bohr’s dis-
covery of the structure of atoms via analogy to the solar system.
Empirical work has also supported a link between far-field analo-
gies and innovative outcomes. For instance, it has been shown
that the number of far-field analogies used by designers during
ideation is positively related to the originality of proposed solu-
tions, as rated by a sample of potential customers [18]. Further,
exposure to surface dissimilar design examples increases idea
novelty relative to using no examples, and exposure to surface
similar examples decreases the variety of ideas generated relative
to surface dissimilar examples [19].

On the other hand, far-field analogies can be difficult to retrieve
from memory [20] or notice as relevant to one’s target problem
[5]. In addition, some investigators have disputed the privileged
role of far-field analogies in prominent inventions and discoveries
[21,22]. As such, it is an open question whether far-field analogies
are always beneficial to the design process. One way to tease apart
possible ways in which far-field and near-field analogies might
help or hinder designers is to use multiple measures of ideation
processes, including novelty and variety of ideas, as well as aver-
age quality and variance in idea quality. An initial testable hy-
pothesis is that providing far-field examples would allow one to
generate more novel ideas relative to near-field or no examples.

2.2 Commonness of Example Designs. Another potential
variable of interest is the commonness of example designs (i.e.,
how common the designs are found in designers’ worlds). The
commonness of the example design in its respective design space
increases the probability that a designer would have had prior ex-
posure and/or experience with the design. Psychologically, the
commonness of an example design is related to the degree to
which it activates relevant prior knowledge of a designer. This
knowledge can come from exposure to instances (since designed
objects exist in the world), or from deliberately structured experi-
ences, such as in engineering coursework or in the course of pro-
fessional design [23]. The psychological literature on creativity
and problem solving suggests that prior experience with an artifact
might influence one’s ability to flexibly re-represent and use it and
combine it with other concepts in a novel fashion. Take for
instance, Duncker’s [24] classic candle problem, where the task is
to fix a lighted candle on a wall in such a way that the candle wax
will not drip onto a table below, and the given materials are a can-
dle, a book of matches, and a box of thumb-tacks. A correct solu-
tion involves emptying the box of tacks and using it as a platform
for the candle; however, this solution eludes most solvers because
it requires recognizing an unconventional use of the box as a plat-
form. In fact, when the box is presented to solvers empty, with the
tacks beside it, solvers are much more likely to find the unconven-
tional solution [25]. Similarly, in Maier’s [26] two string problem,
where the task is to tie two strings together that are hanging from
the ceiling just out of arm’s reach from each other using various
objects available (e.g., a chair, a pair of pliers, etc.), people often
fail to recognize the solution of tying the pair of pliers to one
string and swinging it like a pendulum and catching it while stand-
ing on a chair between the strings. These findings demonstrate the
phenomenon of “functional fixedness,” where individuals have
difficulty seeing unusual alternative uses for an artifact.

Another potentially relevant finding in the psychological litera-
ture is that individuals who acquire experience with classes of in-

formation and procedures tend to represent them in relatively
large, holistic “chunks” in memory, organized by deep functional
and relational principles [27–29]. Many researchers have argued
that this ability to “chunk” underlies expertise and skill acquisi-
tion [27,30,31]. However, if the task at hand requires the individ-
ual to perceive or represent information in novel ways, e.g., to
stimulate creative ideation in design, representation of that infor-
mation in chunks might become a barrier to success, particularly
if processing of component parts of the information chunks helps
with re-representation [32–34].

These findings lead to a hypothesis that less-common example
designs, which designers are less likely to have been exposed to,
might present a unique advantage over more-common example
designs in terms of the potential for stimulating creative ideation.
Specifically, it could be that less-common examples are more
likely to support multiple interpretations, and thus facilitate
broader search through the space of possible solutions. Addition-
ally, given that the commonness of example designs in the world
(e.g., in practice, curriculum, etc.) is related to its representation
in designers’ long-term memory, e.g., ease/probability of recall,
one could hypothesize that less-common examples might confer
an advantage in terms of the novelty of solution paths they inspire.
However, the literature gives no a priori reason to expect effects
of commonness on mean quality of solution concepts.

2.3 Modality of Example Designs. With respect to the
question of optimal reasoning modalities, a potential variable of
interest is the contrast between pictorial and text-based represen-
tations of examples. One possible reason to investigate this con-
trast is that pictorial representations, e.g., sketches, photographs,
and engineering drawings, often contain a higher degree of su-
perficial features than text-based representations of the same in-
formation. This might be detrimental to conceptual design, as
the presence of representations with a high degree of superficial
detail, such as in detailed prototypes, in the physical design envi-
ronment tend to restrict the retrieval of far-field analogies from
memory [7]. On the other hand, some investigators argue that
pictorial-based representations are better for conceptual design;
for example, it has been shown that novice designers who are
presented with sketches of example designs produce more novel
and higher quality solution concepts on average relative to being
presented with text-based example designs [35]. At a pragmatic
level, too, in creating design-by-analogy tools, one ultimately
has to decide on a representation format for potential analogies;
thus, it is important to investigate if it matters whether they are
represented in pictorial or text-based formats [10,11]. Addition-
ally, it is important to know if the effects of example analogical
distance or commonness are modulated by their representation
modality.

2.4 Summary. In summary, a review of the relevant psycho-
logical literature suggests that investigating variations in example
analogical distance, commonness, and modality might shed some
important light on the questions regarding what to analogize over
and whether there are optimal reasoning modalities. Prior work
tentatively supports a hypothesis favoring far-field over near-field
examples. With respect to commonness, to our knowledge, no
studies have directly tested the effects of example commonness
on conceptual ideation; however, the literature does suggest a hy-
pothesis favoring less-common over more-common examples.
Importantly, the theoretical and empirical literature suggest that
there might be different effects of example analogical distance
and commonness along different dimensions of the ideation pro-
cess, thus motivating a fine-grained analytic approach to ensure
that the effects of these variables can be clearly understood.
Finally, the literature appears to be relatively equivocal about the
contrast between pictorial and text-based representations; thus,
our investigation of this variable in the present study is more ex-
ploratory than hypothesis-driven.
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3 Experimental Methods

3.1 Design. To investigate the effects of example analogical
distance and commonness on conceptual design processes and
possible interactions with modality, we conducted a 2 (distance:
far-field vs. near-field) �2 (commonness: more-common vs. less-
common) �2 (modality: pictures vs. text) factorial experiment,
where participants, i.e., senior-level engineering students, were
given a real-world design problem and were asked to generate so-
lution concepts first briefly without examples, such that they
understood the problem, and then with examples, to evaluate the
effects of examples on problem solving. To establish whether
examples of different types enabled or hindered problem solving,
a control group of students executed a similar procedure but
received no examples.

3.2 Participants. Participants were 153 students (predomi-
nantly mechanical engineering undergraduates) enrolled at two
research universities in the United States. Participants were
recruited from classes and were given either extra credit or com-
pensation of $15 for their participation. Participants ranged from
20 to 38 years in age (M¼ 22, SD¼ 1.89). 70% were male. 87%
were undergraduate engineering students (95% mechanical engi-
neering, 5% electrical engineering and others) and 13% masters
students in disciplines related to product design (e.g., mechanical
engineering, product development, business administration). 66%
of the participants had at least 1–6 months of engineering intern-
ship experience, and all but 2 out of the 153 students had experi-
ence with at least one prior design project in their engineering
curriculum. Approximately 82% of the students had taken at least
one course where a structured approach to design was taught.
Thus, most of the participants had relevant mechanical engineer-
ing domain knowledge and design experience.

Participants were randomly assigned to one of the nine possible
conditions in each class by distributing folders of paper materials
prior to students arriving in class. The obtained distribution of par-
ticipants across the nine conditions is shown in Table 1—the sam-
ple populations, Ns, are unequal not because of dropout but rather
from stochasticity in where students chose to sit down. With these
sample populations, statistical power for detecting three-way
interactions (not our theoretical goal) is modest, but power for
detecting two-way interactions and main effects is good.

3.3 Design Problem. The design problem was to design a
low cost, easy to manufacture, and portable device to collect
energy from human motion for use in developing and impover-
ished rural communities, e.g., India, many African countries. This
design problem was selected to be meaningful and challenging to
our participants. The problem was meaningful in the sense that

real-world engineering firms are seeking solutions to this problem
and the problem involves social value; thus, students would be
appropriately engaged during the task [36–38]. The problem was
challenging in the sense that a dominant or accepted set of solu-
tions to the problem has yet to be developed (so students would
not simply retrieve past solutions), but it was not so complex as to
be a hopeless task requiring a large design team and very detailed
task analysis.

3.4 Selection of Examples. Examples were patents selected
from the U.S. Patent Database. Candidate patents were retrieved
using keyword search on the U.S. Patent and Trade Office web-
site. The keywords used were basic physical principles, such as
induction, heat transfer, potential energy, as well as larger cate-
gorical terms like mechanical energy. The final set of eight patents
was selected by two PhD-level mechanical engineering faculty
based on two sets of criteria: (1) balanced crossing of the analogi-
cal distance and commonness factors, such that there would be
two patents in each of the four possible combinations, and (2)
overall applicability to the design problem, over and above ana-
logical distance and commonness. Each participant in the analogy
conditions received two examples of a particular type, roughly
balanced across conditions for applicability. The patents for each
of the conditions are shown in Table 2.

With respect to the first set of criteria, the specific guidelines
for selection were as follows:

1. Distance: Far-field patents were devices judged to be not
directly for the purpose of generating electricity, while near-
field patents were those judged to be directly for the purpose
of generating electricity.

2. Commonness: More-common patents were devices judged
likely to be encountered by our target population in their
standard engineering curriculum and/or everyday life, while
less-common patents were those judged unlikely to be seen
previously by the participants under typical circumstances.

With respect to the modality factor, in the picture conditions,
participants received a representative first figure from the patent,
which typically provides a good overview of the device, while in
the text conditions, participants received the patent abstract. In
some cases, abstracts differed substantially in length; to equate for
quantity of text across conditions, overly brief abstracts were aug-
mented with additional text from the body of the patent, which
elaborated on the details of the design and technology. To provide
some foundational context, all text-and-picture-condition partici-
pants also received the patent title.

3.5 Experimental Procedure. The experiments were con-
ducted during class. Participants generated solution concepts in
three phases and subsequently completed a background survey.
Participants proceeded through the phases using a sequence of
envelopes to carefully control timing of the task and exposure to
examples across conditions. In particular, we wanted to ensure
that design examples were received only after participants had
made some substantial progress in ideation, since prior work has
shown that examples and potential analogies are most helpful
when received after ideation has already begun [39,40]. The over-
all time allowed for this task was sufficient to allow for broad ex-
ploration of the concept space, but not enough to develop

Table 1 Distribution of participants across conditions

Near-field Far-field

More-common Less-common More-common Less-common

Picture 13 17 15 16
Text 17 16 16 17
Control 24

Table 2 Patents for each condition

Near-field Far-field

More-common -Waterwheel-driven generating assembly (6208037) -Escapement mechanism for pendulum clocks (4139981)
-Recovery of geothermal energy (4030549) -Induction loop vehicle detector (4568937)

Less-common -Apparatus for producing electrical energy from ocean waves (4266143) -Accelerometer (4335611)
-Freeway power generator (4247785) -Earthquake isolation floor (4402483)

Journal of Mechanical Design AUGUST 2011, Vol. 133 / 081004-3

Downloaded 12 Dec 2011 to 130.49.138.239. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



particular ideas in depth, matching our focus on the ideation
process.

Analogy and control groups executed the same overall
sequence, but differed in the particular activities in the second
phase of ideation (see Fig. 1 for a comparison of the procedures).
In general, the sequence of phases was to: (1) read design problem
and generate solution concepts, (2) either (a) review two patents
and write/draw solutions/ideas that come to mind when looking at
the patents or (b) continue generating concepts, and (3) generate
more solution concepts. Each phase lasted 10 min.

With respect to idea generation, participants were instructed to
generate and record as many solution concepts to the design prob-
lem as they could, including novel and experimental ones, using
words and/or sketches to describe their solution concepts.

4 Ideation Metrics

The experiment generated 1321 total ideas. To thoroughly
explore the range of effects of varying the analogical distance,
commonness, and modality of design examples on conceptual
design processes, we applied a range of ideation metrics to these
ideas: (1) the extent to which solution features were transferred
from examples, (2) quantity of ideation, (3) breadth of search
through the space of possible solutions, (4) quality of solution
concepts, and (5) novelty of solution concepts. The first three met-
rics provided measures of the ideation process of participants and
how they processed the examples: examining solution transfer
provides insight into the mechanisms by which participants might
be stimulated by the examples, e.g., did they actually use solution
elements; measuring quantity of ideation gave a sense of how par-
ticipants were exploring the design space, i.e., whether they were
generating and refining a small number of ideas, or exploring mul-
tiple concepts and variations of concepts, which is associated with

higher likelihood of generating high-quality concepts [4]; finally,
breadth of search was taken to be a measure of the ability to gen-
erate a wide variety of ideas, which is associated with the ability
to restructure problems, an important component of creative abil-
ity [41–43]. The final two metrics focused on the ideation prod-
ucts of participants. We investigated quality because in design, a
baseline requirement is that concepts must meet customer specifi-
cations; design concepts that are novel but do not meet customer
specifications cannot be considered acceptable designs, let alone
creative ones [41]. We investigated novelty because there is a
high degree of consensus in the literature that creative products
are at least novel [41,42].

4.1 Data Preprocessing. The raw output of each participant
was in the form of sketches and/or verbal descriptions of concepts.
Examples of participant-generated solution concepts are shown in
Fig. 2. A number of preprocessing steps were necessary to prepare
the data for coding and analysis.

First, each participant’s raw output was segmented by a trained
coder into solution concepts. A sketch and/or verbal description
was segmented as one solution concept if it was judged to
describe one distinct solution to the design problem. Variations of
solutions (e.g., with minor modifications) were counted as distinct
solution concepts. Segmentation was independently checked by a
second coder. Inter-rater agreement was high (96%), and all dis-
agreements were resolved by discussion. Next, sets of two senior
mechanical engineering students rated each solution concept as
meeting or not meeting the minimum constraints of the design
problem, as described above, to remove off-topic inspirations gen-
erated by the patent examples, especially in the second phase.
Inter-rater agreement was acceptable, with an average Cohen’s
kappa of 0.72. All disagreements were resolved through discus-
sion. The 1066 solution concepts remaining after preprocessing
constituted the final data set for analysis.

4.2 Solution Transfer. Solution transfer was defined as the
degree to which a given participant’s idea set contained solution
features from the examples she/he received. The process of pro-
ducing a solution transfer score for each participant was as fol-
lows. First, key features were generated by one of the co-authors
for each of the eight patent examples, and the list was cross-
checked for relevance by the other co-authors. Recall that each
participant received two examples; however, since picture and
text examples were essentially the same examples (only in differ-
ent representations), the 2� 2� 2 design reduced to a 2� 2
design, leaving a total of eight examples. A total of 39 key fea-
tures were identified. Because some features overlapped across
examples (e.g., “built into ground, stationary, or permanent” was

Fig. 1 Comparison of experimental procedures for analogy vs.
control groups

Fig. 2 Example participant solution concepts
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associated with four patent examples), there was not a simple one-
to-one mapping of features to examples. The number of features
associated with each of the eight examples ranged from 4 to 7
(M¼ 4.9, SD¼ 1.0). Second, each participant solution concept
was coded for the presence or absence of a set of the features
found in the full set of patent examples presented to participants.
The first 50% of solution concepts was double-coded by two sen-
ior mechanical engineering students to establish reliability. Later,
all coding was completed by one student only. Test-retest meas-
ures of reliability were obtained in lieu of inter-rater reliabilities.
Cohen’s kappa averaged across features was 0.57. Because some
features had low coding reliability or high overlap of features
across many of the patents or simply were common elements of
most proposed solutions across all conditions, the initial set of 39
features was filtered down to 23 features according to three
criteria:

1. Acceptable inter-rater agreement, i.e., Cohen’s kappa greater
than 0.4.

2. Not shared by more than three examples.
3. Not too common, i.e., base rate (collapsed across conditions)

less than 0.5.

After filtering, the number of features ranged from 1 to 5
(M¼ 2.9, SD¼ 1.4) per example and from 4 to 8 (M¼ 5.8,
SD¼ 1.7) per each of the four conditions in the distance by com-
monness 2� 2 design. Cohen’s kappa averaged across the filtered
set of features was 0.66.

To produce solution transfer scores for each participant, the fol-
lowing procedure was used. First, for each cell in the 2� 2
(distance� commonness), we computed for each participant the
proportion of his/her ideas that had at least one solution feature
from the examples she/he received. Next, this proportion was con-
verted into a standardized z-score by subtracting the mean and
dividing by the standard deviation of proportion scores for all par-
ticipants who were not in that 2� 2 cell. The reason for using this
transformation was that solution features from examples could
occur in participants’ ideas even if they never saw the relevant
examples; this transformation allows us to separate the probability
of participants using solution features from examples they have
seen from the probability of using those solution features even if
they had never seen the examples. For each participant, the trans-
fer score was the z-score of each feature relevant to the examples
they actually received.

The solution transfer score thus gave a measure of the degree to
which a given participant’s idea set differed from “normal” in
terms of the proportion of ideas with at least one feature from the
examples she/he received. To illustrate, suppose participant 1001
had a z-score of 1.34 for far-field, more-common examples. This
number would say that the proportion of 1001’s ideas with at least
one solution feature from the examples s/he received was 1.34
standard deviations higher than the mean proportion of ideas with
at least one solution from those examples under “normal” circum-
stances (i.e., without having seen either of the two far-field, more-
common examples).

4.3 Quantity of Ideation. Quantity of ideation was defined
as the number of solution concepts generated post analogy, i.e.,
from the second phase of ideation onwards, that met the minimum
constraints of the design problem, viz. (1) the device generates
electricity, and (2) it uses human motion as the primary input. As
noted in the introduction, quantity is often taken to be a key com-
ponent of creativity. Quantity was defined at the level of the par-
ticipant, i.e., each participant received a single quantity score.
Because we were primarily interested in the effects of examples
on quantity, analyses concentrated on the number of solution con-
cepts generated after receiving examples (i.e., after the first phase)
adjusting for the number of solution concepts generated in the first
phase (which acted as a covariate to adjust for baseline variation
in quantity across participants).

4.4 Breadth of Search. Breadth of search was conceptual-
ized in our study as the proportion of the space of possible solu-
tions searched by a given participant. To determine the space of
possible solutions, the design problem was first functionally
decomposed into potential subfunctions by one of the authors,
drawing from the reconciled function and flow basis of Hirtz and
colleagues [16].

Due to the open-ended nature of the design problem, a rela-
tively large number of subfunctions were initially generated, as
follows:

1. Import/accept human interaction
2. Transform human energy to mechanical energy
3. Transform human energy to alternative energy
4. Import other material
5. Contain/store other material
6. Transfer other material
7. Import alternative energy source
8. Transform alternative energy source into mechanical

energy
9. Transform alternative energy source to alternative energy

10. Transform collected energy to mechanical energy
11. Transmit mechanical energy
12. Transform mechanical energy
13. Store mechanical energy
14. Transform mechanical to alternative energy
15. Transform alternative energy to electrical energy
16. Actuate/deactuate energy
17. Transform mechanical energy to electrical energy
18. Condition electrical energy
19. Store electrical energy
20. Supply electrical energy
21. Transmit electrical energy
22. Convert electrical to light or EM

Each subfunction solution consisted of a how and what compo-
nent, where the former specifies the component of the solution
concept that implements the subfunction, and the latter specifies
either the input or the output of the subfunction (whichever is the
less specified). For example, a solution for the subfunction
“import human” might be “foot with pedals.”

Two senior mechanical engineering students independently
coded the solutions to the subfunctions for each solution concept.
The solution types for the how and what components of each sub-
function were generated bottom-up by the students as they coded,
with each new solution type being added to a running list of solu-
tion types; the running list of solution types for each subfunction
constituted the coding scheme. Inter-rater reliability was high,
with an average Cohen’s kappa across subfunctions of 0.84. All
disagreements were resolved by discussion.

While the nature of the design problem was open-ended, a core
set of subfunctions emerged from the dataset: only a small subset
of the initial set of subfunctions occurred often enough for stable
estimates of breadth and novelty (i.e., base rate greater than 0.1,
collapsed across conditions):

1. Import human
2. Transform human energy to mechanical energy
3. Import alternative energy
4. Transform alternative energy to mechanical energy
5. Transform mechanical energy to electrical energy
6. Store electrical energy

Upon more detailed analysis, it turned out that there were only
two solution types for the subfunction “store electrical energy,”
namely “battery” or “capacitor,” and the frequency of occurrence
for each solution type was relatively equivalent; thus, novelty
scores for this subfunction would be unlikely to differentiate
between participants. Furthermore, since the design problem was
focused on the problem of harvesting (vs. storing) energy, data
for this subfunction were not included in computations of
breadth.
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We defined the space of possible solutions for each of the what
and how components of each subfunction by enumerating the
number of distinct solution types generated by participants across
all phases of ideation. A breadth score bj for each participant on
subfunction j was then computed with

bj ¼
Xn

k¼1

wjk �
Cjk

Tjk
(1)

where Cjk is the total number of solution types generated by the
participant for level k of subfunction j, Tjk is the total number of
solution types produced by all participants for level k of subfunc-
tion j, and wk is the weight assigned level k. To give priority to
breadth of search in the what space (types of energy/material
manipulated), we gave a weight of 0.66 to the what level (which
was assigned to k¼ 1), and a weight of .33 to the how level (which
was assigned to k¼ 2). An overall breadth score for each partici-
pant was given by the average of breadth scores for each of the
three subfunctions j.

4.5 Quality. Quality of solution concepts was measured
using holistic ratings on a set of subdimensions of quality. Two
other senior mechanical engineering students independently coded
solution concepts on 5-point scales ranging from 0 to 4 (0 is unac-
ceptable and 4 is excellent) for six subdimensions of quality, cor-
responding to a set of possible customer specifications:

1. Cost
2. Feasibility of materials/cost/manufacturing
3. Feasibility of energy input/output ratio
4. Number of people required to operate device at a given

moment
5. Estimated energy output
6. Portability
7. Time to set up and build, assuming all parts already avail-

able at hand

These subdimensions were generated by the second author, who
is a Ph.D. candidate in mechanical engineering focusing on design
methods and cognition, and checked for validity by two other
authors, who are mechanical engineering faculty specializing in en-
gineering design. For each subdimension, each point on the 5-point
scale was anchored with a unique descriptor. For example, for the
“feasibility of energy input/output ratio” subdimension, 0 was
“unfeasible design or input energy completely dwarfs output,” 1 was
“input less than output”, 2 was “I/O about even,” 3 was “sustainable/
little surplus output; human input easy,” and 4 was “output signifi-
cantly higher than input.” Inter-rater agreement was computed using
a Pearson correlation between the ratings of the two coders for each
subdimension. The average of correlations across subdimensions
was 0.65, and the range was from 0.49 to 0.77. An overall quality
score was computed for each solution concept, as given by

Q ¼

Pn

j¼1

qj � rj

Qmax

(2)

where qj is the quality score for quality subdimension j, rj is the
reliability of the coding for that subdimension, and Qmax is the max-
imum possible overall quality score, which would be given by set-
ting qj to 4 for each subdimension. The contributions of
subdimension scores to the overall quality score were weighted by
reliability to minimize the influence of measurement error. Since
the overall quality score was a proportion of the maximum possible
quality score, the score ranged from 0 to 1. Agreement between
coders at the level of this composite score was acceptable
(r¼ 0.68).

4.6 Novelty. Novelty was defined as the degree to which a
particular solution type was unusual within a space of possible

solutions. This approach allowed us to avoid the difficulties of
judging the novelty of thousands of solution concepts via holistic
rating methods. Recall that for the breadth metric, the space of
possible solutions was defined in terms of a set of five core sub-
functions for the design problem; recall further that each subfunc-
tion was decomposed further into what and how components,
where the former specifies the component of the solution concept
that implements the subfunction, and the latter specifies either the
input or the output of the subfunction (whichever is the less speci-
fied). Rather than computing novelty scores for solutions to each
level of each subfunction (the what and how levels), we chose to
compute novelty scores for the conjunction of what and how solu-
tion components for each subfunction. For example, rather than
computing the relative unusualness of the solution components
“foot” and “pedals” separately for the solution “foot with pedals”
for the subfunction “import human interaction,” the relative
unusualness of the solution “foot with pedals” relative to other
solutions would be computed. The rationale for this choice was
that these words in conjunction as a solution have a specific mean-
ing that needed to be considered. Novelty scores were computed
for each subfunction solution using Eq. (3), which is a formula
adapted from Ref. [39]

Ni ¼
Ti � Ci

Ti
(3)

where Ti is the total number of solution tokens generated for sub-
function i in the first phase of ideation (collapsed across all partic-
ipants), and Ci is the total number of solution tokens of the current
solution type in the first phase of ideation. Because this measure
was essentially a measure of proportion, the novelty score for
each idea ranged from 0 to 1, with 0 representing solution types
found in every solution (this extreme was never observed) and 1
representing solution types that never occurred in the first phase.
The initial set of solution concepts (generated in the first phase of
ideation) was taken to be the original design space of the partici-
pants since it corresponded to concepts generated prior to receiv-
ing examples. The final novelty score for each solution concept
was the average of its subfunction novelty scores.

5 Results

5.1 Relationships Between Metrics. Analysis of the inter-
relationships between the ideation metrics suggested a preliminary
process model that could account for these correlations and help
to conceptually organize the results (see Fig. 3). Of course, corre-
lations per se do not guarantee causation and other causal models
are possible.

The preliminary process model is as follows:

• Increased solution transfer results in decreased quantity, pos-
sibly because many participants had trouble thinking of solu-
tions beyond the ones presented.

• A high quantity of ideation allows for greater breadth of
search, even if only on a statistical sampling basis.

Fig. 3 Summary of intermetric correlations. Numbers shown
are Pearson’s r. All correlations are significant at p < 0.01.
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• Greater breadth of search, perhaps also only on a statistical
sampling basis, in turn allows for the generation of higher
novelty and higher quality solution concepts.

• Repeatedly searching on the fringes of the design space (as
measured by high average novelty) further increases the
probability of finding a highly novel concept.

• Finally, increasing the variability of the quality of solution
concepts increases the probability of generating a high-qual-
ity solution concept. This last relationship is in accord with
the work of Ulrich and colleagues in the field of innovation
management, who have argued and showed empirically that
one way to increase the likelihood of finding high market
potential product concepts is to increase the variance of the
quality of the concepts that are generated [4,44].

5.2 Effects of Analogy Manipulations on Ideation
Metrics. We now present our findings by manipulation (distance,
commonness, and modality), using the preliminary process model
as an organizational framework. Effects of manipulations on the
ideation metrics will be described following the flow of the process
model, first considering solution transfer, quantity, and breadth,
followed by consideration of effects on quality and novelty of
ideation. Separate 3-way (distance� commonness �modality)
analysis of variance (ANOVA) models were computed for each
process variable in the model. In some cases (indicated in each
case), the level of that variable during the pre-analogy phase was
used as a covariate in the analysis because the baseline measure
was a significant predictor of postanalogy performance.

5.2.1 Analogical Distance of Examples. There was a main
effect of example distance (p< 0.01, g2¼ 0.08) on solution trans-
fer, where participants who received far-field examples were
much more likely than participants who received near-field exam-
ples to use solution elements from the examples they received
(d¼ 0.60);1 in fact, solution features from near-field examples
were no more likely to be present in participant solutions after
processing examples relative to the pre-example phase (see Fig. 4,
bottom left).

There was also a main effect on quantity (p< 0.01, g¼ 0.05),
where participants who received far-field examples generated sig-
nificantly fewer solution concepts relative to participants who
received near-field examples (p< 0.05, d¼�0.30; see Fig. 4, upper
left). There were no significant differences in terms of quantity
between receiving no examples (control) and receiving either far- or
near-field examples. However, the small effect of distance on quan-
tity did not translate into an effect on breadth: there were no reliable
effects of distance on breadth of search (p¼ 0.78, g2¼ 0.00).

With respect to quality of solution concepts, there were no
effects of distance on either mean or maximum quality. However,
there was a main effect of distance of the variability in quality of
participants’ solution concepts (p< 0.05, g2¼ 0.06; see Fig. 4,
lower right), where participants who received far-field examples
had a larger standard deviation in quality of solution concepts

Fig. 4 Summary of effects of example distance. *p < 0.05 and **p < 0.01. Control group data are
shown in white bars. Error bars are 61 standard error.

1d statistics estimate the size of the difference in group means in terms of the av-
erage standard deviation of the two groups in the contrast; in this case, d¼ 0.60 esti-
mates that the mean probability of transfer is greater with far-field vs nearfield
examples by 0.60 of a standard deviation (a moderate to large difference).

Journal of Mechanical Design AUGUST 2011, Vol. 133 / 081004-7

Downloaded 12 Dec 2011 to 130.49.138.239. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



than participants who received either near-field examples
(p< 0.05, d¼ 0.64) or no examples (p< 0.05, d¼ 0.78). There
were no significant differences between receiving near-field
examples vs. no examples.

Finally, there was a main effect of distance on mean novelty
(p< 0.05, g2¼ 0.04), where participants who received far-field
examples generated solution concepts that were more novel on av-
erage relative to participants who received near-field examples
(p< 0.05, d¼ 0.56; see Fig. 4, upper right). Similar patterns of
effects were found with maximum novelty of solution concepts
(p< 0.05, g2¼ 0.04), where the most novel solution concept of
participants who received far-field examples was more novel on
average relative to the most novel solution concept of participants
who received near-field examples (p < 0.05, d¼ 0.56). There
were no significant differences between participants who received
no examples (control) vs. near- or far-field examples on either
mean or maximum novelty.

In summary (see Fig. 4), example distance appeared to have
significant effects on multiple aspects of ideation. Specifically,
novelty and variability in quality of concepts increased as a func-
tion of receiving far-field examples, although only in the latter
case was the contrast with control statistically significant. The so-
lution transfer metric suggests that these increases might be asso-
ciated with incorporating solution elements from the far-field
examples. However, the benefits of far-field examples came with
a slight cost, viz. a reduction in quantity: in meaningful terms, the
cost of processing far-field examples given a standard time for
ideation appeared to be, on average, about one solution concept.

5.2.2 Commonness of Examples. Turning now to the main
effects of commonness in the same ANOVAs, there were no
reliable effects on solution transfer (p = 0.30, g2¼ 0.01). How-
ever, there was a main effect on quantity (p< 0.01, g2¼ 0.12),
where participants who received more-common examples gen-
erated significantly fewer solution concepts relative to partici-
pants who received either more-common examples (p < 0.01,
d¼�0.67) or no examples (p < 0.01, d¼�0.76; Fig. 5, upper
left). There were no significant differences in quantity between
participants who received less-common vs. no examples (con-
trol). There was also a main effect of on breadth of search
(p< 0.01, g2¼ 0.07), where participants who received more-
common examples searched less of the design space than par-
ticipants who received either less-common examples (p< 0.05,
d¼�0.61; Fig. 5, lower middle) or no examples (p< 0.01,
d¼�1.03). There were no significant differences in breadth of
search between participants who received less-common vs. no
examples (control).

With respect to quality of solution concepts, there were no reli-
able effects of commonness on either mean or max quality. How-
ever, there was a main effect on variability in quality of
participants’ solution concepts (p< 0.05, g2¼ 0.06; see Fig. 5,
lower right), where participants who received less-common exam-
ples had a larger standard deviation in quality of solution concepts
than participants who received either more-common examples
(p< 0.05, d¼ 0.62) or no examples (p< 0.05, d¼ 0.68). There
were no significant differences between receiving more-common
examples vs. no examples.

Fig. 5 Summary of effects of example commonness. *p < 0.05and **p < 0.01. Control group data
are shown in white bars. Error bars are 61 standard error.
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Finally, there were main effects on mean novelty (p< 0.01,
g2¼ 0.10), where participants who received less-common exam-
ples generated solution concepts that were more novel on average
relative to participants who received more-common examples
(p < 0.01, d¼ 0.61; see Fig. 5 upper right) and maximum novelty
(p< 0.01, g2¼ 0.96), where the most novel solution concept of
participants who received less-common examples was more novel
on average relative to the most novel solution concept of partici-
pants who received more-common examples (p < 0.01, d¼ 0.61).
There were no significant differences between participants who
received no examples (control) vs. more- or less-common exam-
ples on either mean or maximum novelty.

In summary (see Fig. 5), example commonness also appeared
to have significant effects on ideation. Less-common examples
were associated with more positive ideation processes and prod-
ucts relative to more-common examples, with benefits for quan-
tity and breadth of ideation, variability in solution quality, and
novelty of solution concepts, although only in the case of vari-

ability in solution quality was the contrast with control statisti-
cally significant.

5.2.3 Joint Effects of Example Distance and Commonness on
Novelty. While far-field and less-common examples separately
increased novelty of ideas, neither far-field examples as a whole
nor less-common examples as a whole were significantly different
from control, which sat in the middle. To examine whether the
combination of far-field and less-common properties increased
novelty over control, we used a Dunnett’s multiple comparison
post hoc test. Since there were no effects of modality on novelty
(described below), we collapsed across the picture and text factors
and conducted the post hoc test comparing each of the combina-
tions in the 2� 2 matrix (distance x commonness) with the control
condition as a reference group. The post hoc test showed that the
combination of far-field, less-common examples did in fact
increase novelty vs. control, for both mean (d¼ 1.14; see Fig. 6)
and max (d¼ 1.29).

5.3 Effects of Example Modality. Turning to the effects of
modality in the overall ANOVAs, there was a main effect of
example modality (p< 0.01, g2¼ 0.09) on solution transfer, where
participants who received their examples in text form were more
likely to use solution elements from the examples they received,
regardless of distance or commonness of the example (d¼ 0.60;
Fig. 7, lower left).

There was also a main effect of on quantity (p< 0.01, g¼ 0.12;
Fig. 7, upper left), where participants who received text examples
generated significantly fewer solution concepts relative to partici-
pants who received either picture examples (p< 0.01, d¼�0.67)
or no examples (control; p< 0.05, d¼�0.56). There were no sig-
nificant differences between participants who received picture
examples vs. no examples (control). Thus, receiving examples in
text form increased the likelihood of being able to use solution

Fig. 6 Mean novelty of solution concepts by example distance
and commonness. *p < 0.05. Error bars are 61 standard error.

Fig. 7 Summary of effects of example modality. *p < 0.05 and **p < 0.01. Control group data are
shown in white bars. Error bars are 61 standard error.
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elements from those examples relative to picture form, but also
decreased quantity by an average of about two concepts relative
to receiving either picture or text examples.

There were no additional effects of modality on the other de-
pendent measures (breadth, p¼ 0.11, g2¼ 0.03; mean novelty,
p¼ 0.20, g2¼ 0.02; max novelty, p¼ 0.49, g2¼ 0.00; quality vari-
ability, p¼ 0.44, g2¼ 0.01). Thus, modality had little impact on
the key end-state outputs of the ideation process, unlike the effects
of example commonness or example analogical distance.

6 Discussion

6.1 Optimal Example Types. Our findings demonstrate that
the analogical distance and commonness of examples significantly
influences their impact on designers’ ideation. With respect to an-
alogical distance, augmenting ideation with far-field examples
brings significant benefits vis-à-vis the kinds of concepts that can
be generated; specifically, ideation with far-field examples enhan-
ces the ability to generate highly novel solution concepts and also
allows for more variability in the quality of concepts, which may
increase the likelihood of generating high quality concepts. It is
interesting to note that, even though the far-field examples we
gave participants were not energy-generating devices, they were
still able to benefit from the concepts and solution elements in the
devices. This sort of transfer is greater in distance than typically
seen in the analogy literature, where far-field analogies in problem
solving are usually from cases in other domains that are surface
dissimilar but still solve the same basic problem [20,45].

However, the use of far-field examples was not without some
cost. Far-field examples reduced overall quantity of ideation rela-
tive to near-field or no examples. This finding can be interpreted
in terms of processing difficulty. When we computed an addi-
tional 3-way ANOVA model on quantity for only the final phase
of ideation, removing from consideration quantity of ideation
while processing examples, the effects of distance were no longer
present (p¼ 0.47). This suggests that the reduction in quantity can
be attributed to the time taken to map the far-field example to the
design problem. Thus, it appears that far-field examples not only
carry with them the potential to increase novelty and quality of
design concepts generated but also carry an initial processing cost
in terms of time taken to map them to the target problem.

With respect to commonness of examples, we found that the
use of less-common examples positively impacts ideation. Less-
common examples resulted in increased quantity of ideation,
breadth of search, and higher novelty of ideas relative to more-
common examples. In a follow-up analysis analyzing quantity for
only the final phase of ideation, the positive effects of less-com-
mon examples relative to more-common examples were still pres-
ent (p< 0.05, d¼ 0.56), suggesting that the effects cannot be
explained simply in terms of initial processing costs, as in the case
of distance effects on quantity. Thus, it seems that less-common
examples might be more beneficial for stimulating ideation, par-
ticularly in terms of novelty of concepts generated. This finding is
in accord with some work in the domain of artistic creativity,
where it has been shown that copying novel artworks has a posi-
tive effect on the ability of art students to flexibly re-interpret art-
work and increases the novelty of the artworks produced [46].

While distance and commonness had some similar effects on
ideation processes and products, our fine-grained analytic
approach suggests some potentially important distinctions. The
critical contrast seems to be with respect to effects on quantity
and breadth of ideation. Far-field examples increased novelty of
solutions and variability in solution quality, but appeared to do so
via solution transfer, and resulted in decreased quantity; in con-
trast, less-common examples also increased novelty and quality
variability, but appeared to do so via broadening the search space
and increasing quantity. One way to interpret this contrast is that
example distance and commonness have different mechanisms of
inspiration. Based on the results, one could hypothesize that far-

field examples inspire designers by moving them into one or two
novel regions of the design space (high solution transfer, high
novelty), which they then explore in more depth (low quantity, no
benefits on breadth); in contrast, one could hypothesize that less-
common examples inspire designers by moving them into multi-
ple different regions of the design space via re-interpretation of
design functions and features (low solution transfer, high breadth,
and quantity).

6.2 Optimal Representation Modality of Examples. With
regard to the outcome measures of novelty and quality of solution
concepts, we found that the representation modality of examples
did not change the effects of the distance and commonness factors
on ideation. However, we did find evidence for a negative effect
of text representations on overall quantity of ideation relative to
picture or no examples. Similar to the effects of distance on quan-
tity, this suppression effect of text representations can be inter-
preted in terms of initial processing costs: when we analyzed only
the last phase of ideation, the effect of modality was weaker (pic-
tures vs. text, d¼ 0.32; pictures vs. control, d¼ 0.45) and no lon-
ger statistically significant (p¼ 0.07). As an ancient proverb puts
it, one picture may be worth 10,000 words with respect to convey-
ing design concepts.

6.3 Caveats. The current work comes with a number of cav-
eats. First, we have examined only one design problem. Although
a real design problem of some complexity, examples may have
different effects on more complex design problems. Second, we
examined the effects of particular examples rather than a range of
examples sampled multiple times from a class of examples. This
experimental design choice made it more feasible to analyze solu-
tion transfer but raises possibilities of effects being caused by odd
examples or example descriptions. To reduce this threat, we had
two examples per condition, and the factorial design of the study
permits for multiple replications of main effects. Third, our partic-
ipants were senior-level engineering students, for the most part,
rather than expert designers, and there is some research to suggest
that novices have more difficulty with analogical mappings [5,47].
However, design teams sometimes include less experienced
designers. Finally, our study focused only on the earliest ideation
phase, and future work will have to examine the effects of exam-
ples on downstream, and in particular finished, solutions. This
restriction was most salient in the analyses of quality in that many
of the ideas were not feasible or not fleshed out sufficiently to
determine feasibility. However, a number of studies point to early
ideation as a key moment for intervention to generate innovative
designs [3,4].

6.4 Practical Implications and Future Work. The overall
focus of this study was on whether particular kinds of examples
are more helpful than others for stimulating ideation. However,
with the inclusion of a control group, which received no exam-
ples, we were able to answer a separate but related question: all
things considered, does analogizing over examples confer benefits
over and above ideating without examples? In other words, is
design-by-analogy worth the extra time and effort? Our findings
suggest that if the goal of conceptual ideation is to ultimately gen-
erate and develop a concept that is high quality and novel, then
the answer is yes.

There are also implications for the design of tools and methods
to support design-by-analogy. As noted in the introduction, a
range of previous design-by-analogy methods have been devel-
oped; of particular interest is the development of computational
tools that automate the search for analogies [48]. It is well known
in the psychological literature that retrieving far-field analogies is
cognitively difficult; remindings tend to be significantly con-
strained by surface similarity [49], reducing the probability of
retrieving potentially relevant surface dissimilar analogies. Thus,
computational tools that are able to define and compute functional
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and surface similarity between items in a design space in a prin-
cipled manner relative to the current design problem would hold
excellent potential as aids for inspiration. These tools might be
able to maximize the potential benefits of analogies by retrieving
and delivering to the designer in a timely manner surface dissimi-
lar analogies and potentially (as our findings suggest) even analo-
gies that do not necessarily provide direct solutions to the target
problem. Additionally, if these systems are able to give priority to
analogies that are relatively unusual or infrequently encountered,
the potential for inspiration might be even higher.

Currently, the state of the art for computational design-by-anal-
ogy tools has not reached the point of being able to provide flexi-
ble and real-time support in this manner. The present work
provides an impetus for investment into this important research
area, as the potential benefits to engineering practice and to soci-
ety via increased innovation is high
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