
TheRole ofRoboticsTeams’CollaborationQualityon
TeamPerformance in aRoboticsTournament

MuhsinMenekse,a RossHigashi,b ChristianD.Schunn,b

and EmilyBaehrb

aPurdueUniversity, bUniversityof Pittsburgh

Abstract
Background Working effectively in teams is an important 21st century skill as well as a fun-
damental component of the ABET professional competencies. However, successful team-
work is challenging, and empirical studies with adolescents concerning how the collaboration
quality of team members is related to team performance are limited.

Purpose/Hypothesis This study investigated the relationship between team collaboration
quality and team performance in a robotics competition using multiple measures of team
performance, including both objective task performance and expert judge evaluations, on a
diverse set of supporting performance dimensions.

Design/Method Data included Table Score, Robot Design, Research Project, Core Values,
and Collaboration Quality scores for 366 youths on 61 K-8 robotics teams that participated
in a FIRST LEGO League Championship. Regression and mediation analyses were conducted
to explore the relation between effective team collaboration and team performance. Further-
more, analysis of variance was conducted to explore the relationship between Collaboration
Quality and team experience.

Results Collaboration Quality was a good predictor of robotics team performance across all
measures (with R2 5 .50 and p< .001). Mediation analysis revealed that the Robot Design
acted as a full mediator for the predictive effect of Collaboration Quality on the Table Score. In
addition, the cumulative amount of team experience was significantly related to Collaboration
Quality.

Conclusions Overall, this study using collaboration performance assessments and actual com-
petition data with a large number of teams confirms the importance of high-quality team-
work in producing superior products with students engaged in authentic engineering tasks.

Keywords teamwork; collaborative learning; educational robotics; informal learning; K-12

Introduction
K-12 robotics competitions have emerged as popular educational activities in recent years. By
2015, more than 230,000 students were participating in 29,000 First Lego League robotics
teams across 80 countries (Close, 2015). Past research has shown that being part of such
robotics teams has the potential to significantly influence students’ academic and social skills
by allowing them to actively engage in critical thinking and problem solving through
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designing, assembling, coding, operating, and modifying robots for specific goals (Bascou &
Menekse, 2016; Benitti, 2012).

Robotics teams design solutions for a wide variety of sometimes ill-defined problems. In
doing so, they negotiate an open-ended problem space, taking it upon themselves to identify,
investigate, and implement solutions from among a large number of possible directions.
Problem-based learning (PBL) activities such as these have the potential to develop not just
technical skills but also the professional skills that enable learners to effectively apply their
technical knowledge in authentic conditions (Hmelo-Silver, 2004; Hmelo-Silver, Duncan, &
Chinn, 2007).

Working effectively in teams is a critical 21st century skill (Borrego, Karlin, McNair, &
Beddoes, 2013; Koenig, 2011; Shuman, Besterfield-Sacre, & McGourty, 2005; Tonso, 2006),
and teamwork settings are good venues for studying factors in effective team performance.
One factor or skill of particular interest is collaboration, or a student’s ability to work with
peers interdependently through social cohesion and interaction. This skill is educationally
relevant in two distinct ways: (a) as a facilitator of interactions that increase content learn-
ing, and (b) as an important skill itself (Chi & Menekse, 2015; Clark et al., 2010). While
solving challenges as part of a robotics team appears on the surface to provide students with
an opportunity to build collaboration skills, past research on instructional design suggests
that the structure of the task affects whether such skills can be fostered (Stahl, 2005), and
the development of effective PBL tasks is particularly critical (Mehalik, Doppelt, &
Schunn, 2008).

To explore this issue, this study investigated the relationship between team Collaboration
Quality and team performance in a robotics competition using multiple measures of team per-
formance. In addition, we explored whether participation in robotics competitions tends to
develop collaboration skills by examining the relationship between the teams’ cumulative
competition experience and the quality of the members’ collaboration. Our overall goal was to
gain insight into how robotics competitions involve and enhance collaboration in an authentic
way, and to what degree participation in such a competition is likely to develop collaboration
skills. The relationships between these factors reflect on both the role of collaboration and
the authenticity of the competition tasks in relation to engineering tasks where effective col-
laboration is widely accepted as being important to success. Our specific research questions
and hypotheses were as follows:

RQ 1. What is the relationship between effective team collaboration and team per-
formance outcomes in a robotics competition?

Hypothesis 1. Teams with higher Collaboration Quality scores will produce superior
robots and score higher in the overall competition.

RQ 2. Does participating in robotics competitions build competency in collabora-
tion skills?

Hypothesis 2. Teams that have participated in more competitions will demonstrate
higher Collaboration Quality scores.

The structure of the paper is as follows: the Background Section reviews robotics competi-
tions and problem-based learning (PBL), educational robotics, and collaboration literature in
K-12 formal and informal settings; the Methods Section presents the data sources and team
scores used in this study; the Results Section discusses the analyses conducted and the results;
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and General Discussion summarizes the findings, concluding by discussing some of the limi-
tations of the study and the future work needed.

Background
Learning in Robotics Competitions
Robotics competitions, which have contributed to a broad recognition of educational robotics,
provide unique opportunities for students and teams to work toward a shared goal in a certain
timeframe (Bascou & Menekse, 2016; Danahy et al., 2014; Eguchi, 2014). Common goals
for many competitions include the development of academic skills and interest in and aware-
ness of science, technology, engineering, and mathematics (STEM); a focus on the ability to
work effectively in teams; and the development of cooperation and respect toward the other
teams participating in the competitions.

The robotics competition with the largest number of teams (not only in the United States
but also worldwide) is the FIRST LEGO League (FLL), which began in 1998 as a joint
effort between the FIRST (For Inspiration and Recognition of Science and Technology)
Organization and the LEGO Group to introduce robotics to 9- to 14-year-old students.
Participation is typically voluntary, either as part of an elective class or as an afterschool
activity. To compete in the FLL, teams are required to use LEGO kits (Mindstorms robot
sets and software) to work on an authentic scientific-themed challenge, with past themes
including climate change, senior solutions, food safety, and medicine. FLL organizers
release a challenge each year, after which competing teams spend the next several months
preparing for a local Grand Championship competition. At these competitions, team per-
formances are evaluated based on scores in four areas: the robot game, a research project,
the quality of Robot Design and programming, and demonstration of FLL Core Values
(see the Methods Section for more details). The data used in this study come from the
2015 FLL Western PA Championship.

FLL tasks follow a similar value structure as robotics engineering itself (Jordan & McDa-
niel, 2014). Specifically, the robot design component of the FLL competitions, which focuses
on mechanical design, programming, and strategy and innovation, is comparable to robotics
engineering competencies. Robotics engineering draws on the expertise of many engineering
disciplines including mechanical, industrial, electrical, and computer engineering. Similar to
robotics engineers, students on FLL teams are expected to design, build, program, test, and
redesign as needed robots and other robotics devices to meet the challenge of solving authen-
tic problems such as using robots for disaster response. These authentic tasks in FLL compet-
itions achieve two primary goals: first, they allow students to connect what they learn about
robotics to what they could do in the face of real-world challenges; and second, authentic
tasks and plausible scenarios are structured to motivate students to overcome potential chal-
lenges in learning robotics.

Past research has shown that such use of educational robotics can increase interest and
engagement in STEM (Kim et al., 2015; Mohr-Schroeder et al., 2014), as well as increase
critical thinking and problem-solving skills (Okita, 2014), computational thinking (Grover &
Pea, 2013; Menekse, 2015), mathematics (Alfieri, Higashi, Shoop & Schunn, 2015; Marti-
nez Ortiz, 2011), physics (Williams, Ma, Prejean, Ford & Lai, 2007), and science literacy
(Sullivan, 2008). For example, Verner and Ahlgren (2004) showed students learned key engi-
neering skills such as systems-thinking, problem-solving, and teamwork skills by designing,
building, and operating educational robots. Petre and Price (2004) explored the role of
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participation in robotics competitions on student development of such engineering design
principles as determining possible solutions and communicating these solutions to others.

In contrast, in a meta-study of robotics in education, Benitti (2012) found that many edu-
cational robotics studies, in general, remain inconclusive with respect to student learning out-
comes. Specifically, Benitti (2012) found three of six experimental or quasi-experimental
robotics studies exploring student learning outcomes in various subjects (e.g., mathematics,
computation, among others) did not find a significant difference between experimental and
control conditions. In addition, at the college level, Fagin and Merkle (2002) conducted a
large-scale experimental study exploring the effects of robots on learning introductory com-
puter programming using the Ada/Mindstorms programming environment, finding that the
college students in the robotics condition performed worse than their peers in regular com-
puter science courses that included no robotics instruction.

A limited number of studies have investigated robotics competitions in particular,
although these tend to be survey-based rather than performance-based. In 2005, an extensive
evaluation report of the FIRST Robotics Competitions (including the FLL for 9- to 14 year-
olds and other competitions targeting older and younger populations) was published based on
survey data from student participants (Melchior et al., 2005). According to this report, 55%
of the participants in the FIRST Robotics Competitions were from under-represented
minority groups, with 41% being female. In addition, a majority of participants reported that
being part of their FIRST Robotics teams provided them with the opportunity to form posi-
tive relationships with their peers, a chance to play a leadership role and to assume real
responsibilities, and to participate in decision-making processes. Moreover, students
expressed an increased value for teamwork, interest in science and technology, and self-
esteem. A second study based on data from FIRST Robotics Competitions found that the
students who participated in them had a more positive attitude toward the social implications
of science, normality of scientists, attitude toward scientific inquiry, and adoption of scientific
attitudes (Welch & Huffman, 2011).

Robotics Competitions as PBL
PBL is an instructional design in which students working in small groups pursue solutions to
realistic open-ended problems in specific domains, independently seeking information and
resources as necessary, while teachers provide indirect guidance (Barrows, 1996, 2002;
Hmelo-Silver, 2004). This style of instruction originated in medical schools, where it has
been found to enhance a disposition toward lifelong learning (Shin, Haynes, & Johnston,
1993), self-regulated learning (White, 2007), and critical thinking (Tiwari, Lai, So, &
Yuen, 2006).

The FLL challenge meets four criteria commonly used to distinguish PBL activities (cf.
Barrows, 2002): (a) ill-structured problems, (b) a learner-centered method, (c) teachers as
facilitators, and (d) authentic tasks. Each year’s FLL challenge includes an ill-structured
“game board” problem based on an 803 40 tabletop setup of props with which the robot is
expected to interact in various ways to earn points, some mutually exclusive. Students are thus
forced to select tasks by deliberately considering the interrelated set of physical and strategic
design constraints. To do so, team members identify the knowledge and skills they are miss-
ing, then seek out experts, lessons, online videos, or online forums to acquire what they need
to build and program their designs. This learner-centric method is augmented by a focus on
teachers as facilitators as emphasized in the FLL Core Values: “We [the students] do the
work to find solutions with guidance from our Coaches and Mentors” (Core Values, 2016).
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Finally, the task is authentic: robot locomotion and manipulation must address appropriate
problems, and programming and mechanical designs are aligned with valuable skills
in engineering.

Learning Through Collaboration
Professional skills such as collaboration and self-directed learning are both an outcome of
PBL experiences (Hmelo-Silver et al., 2007) and predictors of success within them (Barron,
2000; Vye, Goldman, Voss, Hmelo, & Williams, 1997). We might, therefore, surmise that
PBL both builds and depends upon collaborative work skills. The effects of collaboration on
learning outcomes in PBL are theorized to originate from social-motivational factors, such as
shared goals and interests, team spirit, and peer pressure; and cognitive factors, such as oppor-
tunities for activation of knowledge, argumentation, and elaboration (Dolmans, De Grave,
Wolfhagen, & Van Der Vleuten, 2005; Schmidt, Rotgans, & Yew, 2011). However, while
individual and collaborative aspects of PBL appear to mutually reinforce one another (Yew,
Chng, & Schmidt, 2011), Sweller, Kirschner, and Clark (2007) found that the relative bene-
fits of collaboration in PBL may actually result from students backfilling a vacuum in guid-
ance that PBL created in the first place.

Collaborative effects in learning are not unique to PBL scenarios, of course. Many studies
have revealed the significant role of peer interactions and verbal communication for knowl-
edge construction (Chi, 2009; Hogan, Nastasi, & Pressley, 1999; Jeong, 2013; Jeong & Chi,
2007; Menekse, Stump, Krause, & Chi, 2013; Webb, 1989). However, some studies in learn-
ing sciences and educational psychology have shown that achieving successful collaboration is
challenging and that working in small groups is not always beneficial in terms of group per-
formance and individual learning (e.g., Barron, 2003; Chi & Menekse, 2015; Nokes-Malach,
Richey, & Gadgil, 2015; Purzer, 2011; Stump, Hilpert, Husman, Chung, & Kim, 2011).
Furthermore, past research indicates that peer interaction is important not only for the
improvement of academic achievement but also for social skills development, including help-
ing others, sharing, taking turns, showing respect, and working collaboratively.

Most of these collaborative learning studies have been conducted in formal educational
settings such as schools and other academic environments (e.g., Denis & Hubert, 2001), with
relatively few focusing on collaborative learning in informal settings such as robotics competi-
tions (e.g., Verma, Puvirajah, & Webb, 2015). Such informal learning settings provide a
unique environment for young people to interact with peers from different age groups, to
learn from student mentors, and to engage with apprenticeship experiences. Learning practi-
ces in these informal environments are quite different from those associated with traditional
schools, which are typically authoritative, with the teachers determining the formation, orga-
nization, and presentation of the content. In addition, instruction is primarily direct, student
attendance is mandatory, and the primary motivation is the transmission of knowledge rather
than encouraging curiosity or promoting creativity. On the other hand, learning practices in
informal environments are usually nondirect, require voluntary participation of students, and
provide learning nourished through curiosity, observation, and interactive activities (Falk &
Dierking, 2000).

Robotics teams, specifically, ask students to work collaboratively in order to design, build,
and program robots for various tasks. Thus, student social and discursive practices during
these collaborations could play a substantial role in team harmony and success. Attending
competitions as part of a robotics team has the potential to provide diverse collaborative
learning experiences that enrich the knowledge and interest of students (Johnson & Londt,
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2010) via authentic verbal and social interactions with peers (Puvirajah, Verma, & Webb,
2012). However, Benitti’s (2012) review study indicated inconclusive results regarding the
effectiveness of educational robotics on teamwork skills. For example, the teamwork study of
robotics summer camps conducted by Nugent and colleagues (Nugent, Barker, Grandgenett, &
Adamchuk, 2009) found no difference between the control and robotics conditions in terms of
student attitudes toward teamwork.

Two more recent studies of collaborative learning in robotics teams primarily focused on
the nature of collaboration through in-depth discourse analysis (Jordan & McDaniel, 2014;
Verma et al., 2015). However, they did not explore the role of collaboration on team perfor-
mance. Furthermore, both of these studies involved small samples: Verma et al. (2015) stud-
ied one team with nine individuals, and Jordan and McDaniel’s study (2014) included one
classroom with 24 students working in groups of three to four members.

To address the limitations of previous studies, we used actual performance data from a
regional championship of a robotics competition, collecting data from a sufficiently large
number of teams to support analyses at the team level in this study. To explore our research
questions, we examined the ways in which robotics competition scores correlate with success-
ful collaboration and the evidence that participation in such competitions builds team-level
competency in collaboration skills. The quantitative investigation of Collaboration Quality as
a predictor of task performance also appears to be a unique contribution to research on PBL.

In this study, we employed the Enyedy and Stevens’ (2014) collaboration-as-learning
methodological approach, which uses four dimensions to differentiate and explain various
goals for studying collaboration (e.g., as the outcome vs. as a method for learning). The first
dimension distinguishes between individual versus collective processes, while the second
describes the outcomes as individual or collective and the third is the degree to which the out-
comes are within collaboration (as proximal) versus outside the collaboration (as distal).
Finally, the fourth dimension refers to taking a normative versus endogenous stance on col-
laboration. Based on these four dimensions, the collaboration-as-learning approach operates
on the collective unit for processes and outcomes, the proximal degree, and on an endogenous
stance on collaboration. In other words, the collaboration-as-learning approach focuses on
the collective and distributed units of cognition and learning rather than focusing on individ-
ual performance. Furthermore, this approach sees the collective unit (group, team) as durable,
meaning that the unit continues to operate when new members join and old members leave.
This assumption is corroborated by the literature from the field of organizational theory (e.g.,
Brown & Duguid, 1998), which posits that organization-level knowledge may be encoded
into practices such as organizational routines, norms, and networks of relationships rather
than being held by individuals. Accordingly, in our study, the unit of analysis both for pro-
cesses and outcomes were robotics teams rather than individual students within the teams. In
addition, we took an endogenous approach by focusing on the collaborative effort rather than
the normative outcomes of individual success.

Methods
Participants
Data were collected from all teams (366 adolescences on 61 teams) that participated in the
FIRST LEGO League Western PA Championship. Approximately 57% of the participants
were identified as female, based on the data from the 148 participants who completed an
optional background survey. In addition, the average age of participants was 11.7 years with a
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standard deviation of 1.3. Teams attending the championship event had previously competed
in at least one local qualifying event in which the Table Score (see below) was used as a quali-
fying metric.

Measures
The four FLL scores obtained for each team during the competition were Table Scores, Core
Values, Project Score, and Robot Design. Table Scores reflected the performance of the team’s
robot on the competition task itself. All 61 teams were judged on the other three categories
(Core Values, Project Score, and Robot Design) on a 1 to 4 scale, with 1 indicating a beginning
level and 4, an exemplary level. Additionally, each team was assessed for Collaboration Quality
on a brief performance task in an additional interview based on a 1 to 3 scale, with 1 indicating
minimal and 3, substantial. Our research team developed this Collaboration Quality score,
which was not part of the original four FLL scores. All measures are discussed in detail in the
following section, with the judging processes being described in the Procedure Section.

Table Scores Table Scores indicated the actual robot performance on the specific chal-
lenges for the 2015 FLL game called “World Class.” Teams earned points when their auton-
omously controlled LEGO robots successfully transported or manipulated small set-piece
mechanisms on the tabletop game board. All teams were provided with the layout in advance.
Due to the number and difficulty of the challenges, a perfect score was almost unattainable as
students were required to make strategic decisions regarding which challenges to attempt.
Each team’s robot performed for three rounds, with the best score being used for the tourna-
ment ranking. For this research, however, we used the mean score across the three rounds
instead of the best scores as a more reliable estimate of team performance.

Core Values FLL defines, promotes, and emphasizes a particular set of Core Values that
the students and coaches must exemplify throughout the competition season. A team’s final
Core Values Score is based on a short presentation and follow-up interview with volunteer
judges working in pairs, who evaluate teams on the three subscores of inspiration, teamwork,
and gracious professionalism using detailed rubrics developed by the FLL. Inspiration is
judged based on evidence of a team’s ability to integrate the FLL values into their daily lives,
their team spirit, and their balanced emphasis on all aspects of the FLL (i.e., friendly compe-
tition and learning). The teamwork subscore is based on the judges’ assessment of each team’s
efficiency and effectiveness in problem solving, time management, distribution of roles and
responsibilities, and team independence with minimal involvement of the team coach. For
gracious professionalism, teams are judged on their attitude and respect toward their own
team members (especially younger ones) as well as their display of friendly competition (e.g.,
being willing to assist other teams). Relevant self-reported actions of the teams outside of the
competition, such as mentoring a younger FLL team, are taken into account in this score.

Project Scores In addition to designing, building, and programming robots, each FLL
team was also responsible for a research project, devising an innovative solution for a problem
that they identified corresponding to the theme of the competition. The project topic for this
competition was technology-enabled distance learning. The teams typically brought posters
and/or showed videos to complement the project presentations they gave to the judges. The
Project Scores were evaluated based on the societal value and clarity of the target issue, the
innovation and creativity of the proposed solution, and the quality of the presentation, again
using a detailed rubric provided by the FLL. Specifically, the research subscore was based on
the quality of the problem identified, the quality of the sources of information used to solve the
problem, the depth of analysis of the issue, and an extensive review of existing solutions. The
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solution subscore was based on the value of the proposed solution, the originality of the appli-
cation, and the comprehensiveness of the evaluation of an implementation for the solution.

Robot Design Robot Design scores involved mechanical design, programming, and
strategy and innovation subscores based on an FLL-provided rubric. Mechanical design was
evaluated based on the durability, efficiency, and mechanization of the physical robots. By
contrast, the programming subscore was assessed in terms of three characteristics of the team’s
computer programs developed for controlling the robots: quality, efficiency, and autonomy
(i.e., the robots require minimal to no driver intervention). Based on their performance in the
interview, judges also gave a strategy and innovation subscore assessing the team’s use of a
good design process, the quality of the team’s game strategy, and the innovative nature of the
team’s hardware and software solutions. The design process evaluation was based on how
clearly the teams explained their design progression, obstacles, and solutions while developing
their robots. Judges specifically evaluated the teams’ ability to develop and explain the
advancement of their design process in which possible solutions were developed, alternatives
considered and reduced, selections tested, and designs improved as the teams engaged in mul-
tiple cycles of redesign process.

Collaboration Quality Score We developed a 10-min-long performance task and an
accompanying rubric to evaluate the teams on a brief challenge task for the Collaboration Qual-
ity Score. The task required teams to outline on paper the structure of a computer program that
would produce a reliable path for a robot to move from a start to a finish point, while successfully
avoiding all obstacles on a given complex map (see Figure 1). This additional performance task
was not explained to any of the teams beforehand. Program design tasks such as this are typical
in the FLL, so all students would understand it in context. However, the specific challenge was
novel to all teams, and, therefore, their performance on this task did not reflect rehearsed or
highly coached behaviors. By contrast, for example, most teams had highly rehearsed research
project presentations. Furthermore, the task did not involve the actual writing of code and thus
was not biased by a particular programming language a given team was using.

Developed based on prior research on collaborative learning (e.g., Chi & Menekse, 2015;
Kuhn, 2015), the rubric for judging Collaboration Quality involved a holistic judgment com-
bining the amount of discussion, the depth of shared contributions building on one another’s
ideas, the elaboration of one another’s ideas, the use of how and why questions in exploring
one another’s ideas, and the joint nature of the decisions (see Table 1).

Procedure
Data were collected at the FIRST LEGO League Western PA Championship, which
included 61 teams, each provided with a strict schedule for their judging, thus ensuring approx-
imately equal amounts of time for each team. Judging for Table, Project, and Robot Design
scores was conducted by separate pools of judges based on FLL procedures. Our research team
was responsible for evaluating the Collaboration Quality scores and served as volunteer judges
for the Core Values scores upon request from the FLL tournament organizers.

The Collaboration Quality scores were evaluated by 12 volunteers, randomly divided in 6
pairs by our research team before the competition day; each pair evaluated approximately 10
robotics teams during the competition. Most of the 12 volunteers were graduate students
who volunteered for the event, 10 of whom were blind to the study hypotheses. These volun-
teer judges received training on how to use the Collaboration Quality rubric (Table 1) before
the competition, and they had no access to the other scores (Table Score, Robot Design,
Project Score) that the robotics teams received.
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The Collaboration Quality assessment was administered as an auxiliary task after the Core
Values judging. That is, each team arrived expecting to be judged only on Core Values. The
team gave a presentation on the Core Values topic and then answered questions from the
judges, a process that took approximately 10 min, and the judges provided Core Values scores
based solely on this part. Then teams were given the collaboration task (Figure 1), which they
worked on for approximately 10 min, while the volunteer judges observed their collaboration
process using the Collaboration Quality rubric (Table 1) and assigning scores for each team
independently. An overall Collaboration Quality Score for each team was obtained by averag-
ing the two scores given by two judges in all cases. As no recording of students was permitted
per IRB-approved protocol, the judges recorded their scores as the students worked. The aver-
age inter-rater reliability for the Collaboration Quality Score across the six pairs of judges was
.84 (Cronbach’s alpha), indicating a good consistency across judges when applying the scoring
rubric (Stemler, 2004). The Cronbach’s alpha values across the six pairs of judges ranged from
.75 to .92, and in 69% of the ratings, the judging pairs exhibited perfect agreement.

All other judged events were scored in private rooms with only the judges, the team mem-
bers, and a single adult observer from each team present. Most FLL judges were volunteers
recruited from the local community who had received training in the events they were judging
prior to attending the championship. Many had judged at previous qualifying events or in previ-
ous years. Judges were divided into teams of two to three, using a detailed rubric to evaluate each
category. (These rubrics are publicly available at FLL websites.) Multiple teams judged each cate-
gory, and the judges within a category (e.g., Robot Design) met after judging to roughly calibrate
their scoring and to make any adjustments to their scores they felt were needed.

Figure 1 The map from the brief challenge task used to evaluate Collaboration
Quality.
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The Judge Advisor, a key volunteer, oversaw the judging process, leading the judging team
and working with the tournament organizers to ensure that the event met judging standards
for a sanctioned FLL event. The decisions and final scores for the three judged categories
(Project, Robot Design, Core Values) were awarded by a consensus among the judges and the
Judge Advisor, meaning there was only one final score for each of these three categories.
Therefore, it was not possible to calculate inter-rater reliability values for these categories.

Table Scores were determined by the performance of the robots in a public setting and
recorded and verified by volunteer referees who were trained and supervised similarly to the
other judges. Teams were able to dispute referee scoring decisions at the time of marking,
prior to the board being reset for the next round. Every team competed in three scored rounds
of competition; data from all three rounds were used in the analysis here. Final scoring results
for judged and tabletop events were obtained from the tournament organizers following the
conclusion of the competition.

Analysis
To address the first research question, we began by calculating the Pearson product–moment
correlation coefficient (Pearson correlation) to assess the degree to which the variables were
linearly related. Next, we conducted multiple linear regression analyses to evaluate how well
the Collaboration Quality, Core Values, Project, and Robot Design scores predicted the
Table Scores. We calculated both partial and semipartial correlation coefficients, which pro-
vide information on the relative importance of independent variables on a dependent variable.
Partial correlation is a measure of the strength of a linear relationship between two variables
while controlling for the effect of one or more other variables, and the semipartial indicates
the unique contribution of an independent variable. Specifically, the squared semipartial cor-
relation indicates how much R2 would change if that variable were removed from the

Table 1 Rubric for Judging Collaboration Quality in the Brief Challenge Task

Score 1 Score 2 Score 3

A minimal level of discussion. A moderate level of discussion. A substantial level of discussion.
None or only one student
generates detailed statements.

One student’s statements are
mostly substantive and the others’
vary between detailed and shallow.

Substantive statements of each
student build upon those of
others, indicating a shared
line of reasoning.

Students do not clarify or complete
their partners’ statements, instead
voicing generic responses
of agreement.

Statements are discontinuous as
each student makes assertions
independent from those of others.

Students clarify or complete
their peers’ statements through
expanding, elaborating,
restatement, or rebuttal.

One student decides what to write
while the others agree but
contribute very little.

One student contributes most to
what will be written while the
others take a smaller, though
substantive, role.

Conclusions are jointly
constructed with two or more
students involved fairly equally
in determining what to write.

None of the students ask why/how
type questions, discuss each others’
claims, or elaborate in response
to questions.

Some students effectively engage in
the collaboration process. A few
why/how type questions are asked
and discussed.

Most students effectively
engage in the collaboration
process. More than one type
of why/how questions is asked
and discussed.
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regression equation (Cohen, 1988). We used IBM SPSS Statistical software (version 24) for
all statistical analysis.

As a follow-up to the regression analyses, we conducted mediation analyses using the
Hayes statistical mediation analysis approach (Hayes, 2009) and his PROCESS macro for
SPSS (Hayes, 2013). The goal was to explore whether Robot Design was a mediator for the
relation between Collaboration Quality and Table scores. Next, we conducted additional lin-
ear regressions to further delineate the relationship between Collaboration Quality and the
subcomponents of Robot Design, Mechanical Design, Programming, and Strategy and Inno-
vation scores.

To address the second research question, we conducted a one-way analysis of variance
(ANOVA) to explore the relationship between Collaboration Quality and team experience by
using team-level data, specifically the team numbers indicating the team experience and Col-
laboration Quality scores for each team. In addition, we conducted a second one-way
ANOVA using individual-level data, specifically the participants’ ages, to explore the differ-
ence, if any, across team members in terms of their ages as a possible alternative explanation
for the effects of team experience.

Results
CollaborationQuality andOverall Team Performance
Because the primary goal of this study was to examine the effect of Collaboration Quality on
team performance, our first set of analyses focused on investigating the relationship between
each team’s Collaboration Quality scores and the other performance variables. Pearson corre-
lation coefficients were statistically significant for all performance variables (see Table 2),
ranging from moderate to large correlations (Hemphill, 2003), establishing that all measures
had adequate reliability. These results indicate that strong collaboration skills on the short
performance task predicted the team would do well on other long-term performance varia-
bles. From statistics and measurement theory, the expected strength of an observed correla-
tion is equal to the true correlation between the constructs multiplied by the reliability of
each measure. If a measure has close to zero reliability, no significant correlation would be
observed. Further, since in education and social sciences, essentially all outcomes are deter-
mined in multiple ways, strong correlations are pragmatic evidence of the reliability of the
measures. (Note that this evidence does not establish validity of the measure.)

The strongest correlation observed was between the Collaboration Quality and Project
scores. Interestingly, we expected to see the strongest correlation between the Core Values
and the Collaboration Quality scores, for two reasons. First, Core Values can be considered
as arguably conceptually the closest match to collaboration skill. In the context of our study,
the Core Values category is the most closely related to our Collaboration Quality scores
because both are indicators of teamwork behaviors to some degree and were evaluated by
observing teams during real-time actions. Second, Core Values is potentially prone to “halo
effects” in judging. The halo effect refers to the cognitive bias resulting when the overall
impression of certain people influences how evaluators feel and characterize most of the
behaviors of those people. Based on the literature, the halo effect was expected to have a cer-
tain effect on the judges’ ratings of the teams’ behaviors. Table 3 shows the means and stan-
dard deviations for all scores.

Next, we focused on the robotics performance task as measured by the Table Score. More
specifically, we conducted multiple linear regression analyses to evaluate how well the
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Collaboration Quality, Core Values, Project, and Robot Design scores predicted the Table
scores of the teams. In principle, Robot Design reflected the quality of the robots used for
competition, whereas Core Values and Collaboration Quality indicated the process constructs
that would lead to teams developing more effective robots in terms of software and hardware
for the competition, and Project scores represented general academic skills and supports.

The linear combination was significantly related to the average Table Score,
F(4,56) 5 13.91, p< .001, R2 5 .50, with all bivariate correlations between the average Table
Score and other predictors being statistically significant. However, the only significant partial
correlation was between the Robot Design Score and the average Table Score, indicating that
the Robot Design Score for each team is the best predictor for the average Table Score, as
expected (Table 4).

We followed this analysis by examining whether the Pearson correlation between Collabo-
ration Quality and Table Scores is indeed explained by the Robot Design scores (i.e., whether
Robot Design was a mediator). Mediation occurs when one factor predicts the value of a sec-
ond factor, the second subsequently predicting the value of a third, with this indirect pathway
significantly reducing the relationship between the first and third variables. In such cases, the
first factor does, in fact, predict the third, but primarily indirectly as the second variable serves
as a “mediator” joining the other two. We used the Hayes statistical mediation analysis
approach, which employs an ordinary least square (or logistic) regression path analysis to esti-
mate direct and indirect relationships in mediation models through bootstrap confidence
intervals. In our analysis, we used 1,000 bootstrap samples to explore the indirect relationship
in our mediation model. This analysis found that Robot Design acted as a full mediator for
the predictive effect of Collaboration Quality on the Table Score (see Figure 2). More specifi-
cally, we found a significant indirect relationship between Collaboration Quality through
Robot Design quality to average Table Score performance, (.46) * (.66) 5 .30, 95% Confi-
dence Interval 5 [.15, .52]. This mediation pathway accounts for 78% (.30/.39) of the total
relationship between collaboration and the Table Score, with the remaining direct relation-
ship (.09) not being statistically significant. Overall, these results show Collaboration Quality
is predictive of Table scores only to the extent to which it predicts the Robot Design Score.

Table 2 Pearson Correlations Between the Collaboration Quality Score and Other Measures

Table Score Core Values Project Score Robot Design

Collaboration Quality .39** .49*** .55*** .46***

**p< .01, ***p< .001.

Table 3 Means and Standard Deviations of Each Performance

Score Across All Teams (N 5 61)

Measure Mean Standard deviation
Possible maximum

score

Table Score (aka Robot Performance) 99.9 63.2 858 (theoretical)
433 (observed)

Core Values 3.00 0.64 4.00
Project Score 2.50 0.98 4.00
Robot Design 2.49 0.84 4.00
Collaboration Quality 2.16 0.60 3.00
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Finally, we investigated whether Collaboration Quality predicted the individual subcompo-
nents of Robot Design: Mechanical Design, Programming, and Strategy and Innovation. If the
FLL task follows a similar value structure as robotics engineering itself, we would expect Collab-
oration Quality to be predictive of all three. A series of linear regressions show that, as expected,
Collaboration Quality was a significant predictor of all three of the Robot Design subdimen-
sions individually, although to different degrees. A one-point increase in Collaboration Quality
predicted a 0.25 point increase in the Mechanical subscore [F(1,59) 5 8.638, p 5 .005], a 0.39
point increase in the Programming subscore [F(1,59) 5 15.459, p< .001], and a 0.39 point
increase in the Strategy and Innovation subscore [F(1,59) 5 15.100, p< .001]. In other words,
Collaboration Quality appeared to predict success in all main aspects of designing the robots,
but more strongly with software design and creativity than with hardware design.

CollaborationQuality and Team Programming Performance
Since robotics competitions are considered an important opportunity for learning program-
ming and Collaboration Quality is more strongly related to programming than physical
design, we further explored the relationship between Collaboration Quality and team pro-
gramming performance. It is possible that collaboration may simply produce successful but
not elegant code, or alternately, it may help lead to higher quality code (e.g., more comments,
more modular code). The quality of code was evaluated based on the Programming Score in
the FLL context, which included three components: (a) programming efficiency (Modular,
streamlined, understandable code containing no unnecessary commands); (b) programming
quality (Code matches design intent and behaves consistently in a reliable way); and (c)

Table 4 Bivariate, Partial, and Semipartial Correlations

of the Predictors with Table Scores

Predictors Bivariate correlation Partial correlation Semipartial correlation

Collaboration Quality .39** .14 .10
Core Values .30** .01 .01
Project .24* 2.12 2.09
Robot Design .70*** .63*** .57***

*p< .05, **p< .01, ***p< .001.

Figure 2 The relationship between Collaboration Quality and
Table Score mediated by Robot Design Score. Standardized
regression coefficients are shown.
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autonomous features of the robot’s movement (Program uses sensors and error-correction
algorithms to reduce reliance on human interaction.). We conducted linear regressions to
evaluate the strength of the relationship between the Collaboration Quality Score and each
programming subscore.

Collaboration Quality predicted each of the three programming subdimensions at approx-
imately similar levels. Specifically, a one-point increase in Collaboration Quality predicted a
0.34 point increase in Programming Efficiency [F(1,57) 5 9.822, p 5 .003], a 0.37 point
increase in Programming Quality [F(1,57) 5 13.803, p< .001], and a 0.36 point increase in
Autonomous Features of Movement [F(1,57) 5 12.382, p 5 .001].

CollaborationQuality and Team Experience
The dataset used in this study also included indirect information about the number of years
of participation in competitions by each attending robotics team. The team identification
number in the FLL competitions is based on when the team was first created, with smaller
numbers reflecting more years in existence. This number is assigned by the FLL Team Infor-
mation Management System (TIMS) when teams registered for their first FLL event, with
the same number being used in different FLL tournaments and competitions throughout the
teams’ existence. Although the team membership changes annually, with students joining and
leaving teams, there is often a high enough percentage of returning members from year-to-
year such that each team develops successful routines and knowledge that is carried over from
one year to the next. It is possible that Collaboration Quality is influenced by this transferred
knowledge. In our dataset, team identification numbers ranged from two digit numbers (e.g.,
30) to five digit numbers (e.g., 13,000), and based on these identification numbers, we divided
the 61 participating teams into three categories: most experienced, experienced, and least
experienced teams. More fine-grained distinctions are less likely to be meaningful as they
simply reflect the order in which a team registered within a competition year.

Our goal was to explore whether the teams’ cumulative amount of competition experience
was associated with team Collaboration Quality; Table 5 indicates the means and standard
deviations of Collaboration Quality scores for the three experience levels. Using a one-way
ANOVA, the relationship between experience and Collaboration Quality was found to be
significant [F(2,58) 5 4.48, p 5 .01, R2 5 .13]. Follow-up post hoc Tukey HSD (honest sig-
nificant difference) tests revealed that the least experienced teams had significantly lower Col-
laboration Quality scores than either the experienced [95% CI 5 0.11 to 1.75*] or most
experienced teams [95% CI 5 0.02 to 1.86*]. The difference between most experienced and
experienced teams was very small and not statistically significant [95% CI 5 20.85 to 0.87].

Furthermore, we also investigated whether there was a difference in the participants’ ages
across most experienced, experienced, and least experienced teams to eliminate a possible con-
found that participants on more experienced teams were older than their peers on other
teams. While we had Collaboration Quality and team performance data for all 61 teams
(with 366 individual participants), we had participant age data for 148 individuals since the
individual background survey was optional. Among these 148 participants, 61 participants
were from the most experienced, 41 participants were from the experienced, and 46 partici-
pants were from the least experienced teams. We conducted a one-way ANOVA to further
explore the difference, if any, in terms of age, with the results showing no significant differ-
ence across experience levels, F(2,145) 5 1.95, p 5 .15. Thus, the relationship between team
experience and Collaboration Quality is not likely the result of more experienced teams hav-
ing older team members.
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General Discussion
This study explored the relationship between Collaboration Quality among robotics competi-
tion team members and various measures of team performance in the competition, including
both objective task performance and expert judge evaluations for a diverse set of supporting
performance dimensions. Here, collaboration was independently assessed using an unexpected
new performance task that, thus, could not be biased by coaching nor direct preparation. The
regression analyses revealed that the performance assessment of Collaboration Quality was a
good indicator of a robotics team’s overall performance across all measures, that is, the objec-
tive performance on the competition task as well as expert ratings of success along the other
main dimensions (Core Values, Project Quality, and Robot Design).

Focusing on the objective competition task performance, further analysis showed that the
relationship between Collaboration Quality and competition performance appeared to be medi-
ated by the relationship with Robot Quality. In other words, these results suggest that students
taking part in the FLL problem-based learning activity were engaged in an authentic engineer-
ing process in which good teamwork produced superior products, which then scored high in the
competition. This pattern of results goes beyond the narrower possible explanation that good
collaboration dynamics influenced only how well the teams were able to run their robots on the
day of the competition. Collaboration Quality also predicted the individual dimensions of Robot
Quality (Mechanical, Programming, and Strategy and Innovation) and the individual subdi-
mensions scores of Programming (Programming Efficiency, Programming Quality, and Auton-
omous Movement Features). This broad predictability suggests that the relationships between
performance and collaboration are not localized with respect to a single area of design, but are
present throughout. In conjunction with the earlier result that Collaboration Quality was also
associated with Core Values and Research Project scores, these findings suggest that the benefits
of collaboration may be both broad and deep with respect to robotics competition tasks. This
mediation and the simultaneous support for Hypothesis 1 (Collaboration Quality predicts
Robot Quality and Robot Quality predicts Table Score) also suggest that the competition task
authentically captures an underlying value that collaboration is argued to play in engineering.

Finally, the idea that team experience was significantly related to Collaboration Quality
(Hypothesis 2) is consistent with the idea that collaboration is indeed a skill that can be
developed and may be partly constituted at the organizational level as more experienced teams
engaged in more substantial levels of discussion compared to the students on less experienced
teams, regardless of students’ ages or individual experience.

Limitations
The findings of this study are limited by a number of factors. First, since the data and analyses
are fundamentally correlational in nature, causal conclusions cannot be drawn about either
the relationship between Collaboration Quality and robotics team performance, or between

Table 5 Means and Standard Errors of Collaboration Quality Scores Across Three Groups

Based on Cumulative Amount of Team Competition Experience

Cumulative competition experience N Mean Standard error

Most experienced 16 2.32 0.11
Experienced 26 2.30 0.09
Least experienced 19 1.84 0.17
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team experience and Collaboration Quality. However, the multiple regression analyses rule
out a third variable explanation for the relationships observed. Furthermore, that Robot
Design, rather than research Project Score, was the apparent mediator rules out a general
intelligence/broad motivational confound in which gifted or highly motivated teams score
higher on all performance dimensions. Nonetheless, future research is needed to examine
Collaboration Quality at multiple time points or to consider interventions aimed at Collabo-
ration Quality to more directly assess questions of causality.

Second, although our sample size was large by comparison to past research, it is still rela-
tively modest for multiple regression since all of our analysis is at the team level (61 teams and
366 individuals). Resulting reductions in power could have prevented our finding a significant
mediation of Collaboration Quality to Tables scores by Core Values scores (which included
self-reported teamwork) in addition to mediation by Robot Design scores. Theoretically, both
factors should have contributed to this mediation. It is worth emphasizing that the power of
the current study of teams was relatively strong compared to past studies as it is unusual to find
datasets of large numbers of teams working on a shared complex performance task.

Third, the validity of some of the expert scores is limited since reliability measurements
were not obtainable and scores could have been biased by outside factors. In addition, since
the judges were volunteers and different groups of judges evaluated different teams, the expert
scores might be subject to reduced reliability. This reduced reliability could weaken the effects
observed; however, our analyses found robust effects, minimizing the possible effects of bias
on the reliability of the measures of performance and quality. Further, the FLL training,
rubrics, and separate scoring procedures by domain provide face validity to the measures.
Finally, the context of an informal setting (vs. a formal classroom setting where students are
required to attend) could introduce bias into the study as students self-select to participate.

Implications for the Design of Learning Experiences and Future Research
The mediation pattern found here indicating that collaboration skill predicts Robot Design
quality, which, in turn, predicts the competition game board scores, suggests that the task
design used in the FLL has an underlying value structure that favors team collaboration: better
collaboration is rewarded with better competition outcomes. It is also consistent with a con-
structionist design pattern in which the necessity for collaboration provides an opportunity to
learn to collaborate better (Rummel and Spada, 2005; Tsai, 2010). In addition, the fact that
the predictive reach of Collaboration Quality extended down to the level of detail like pro-
gramming efficiency suggests that success in FLL competition is thoroughly and robustly tied
to collaboration at many levels rather than through a single, brittle link. These findings sup-
port the collaborative learning literature, which has also found that the quality of interaction,
such as asking in-depth questions, requesting explanations, and co-constructing knowledge,
facilitates learning (Chi, 2009; Jeong & Chi, 2007; Volet, Summers, & Thurman, 2009).

However, it remains unclear exactly what specific features of this competition lead to the
outcomes observed: Was it the design of the game board tasks, or perhaps the cultural
emphasis on teamwork as a core value among participants? Future research could examine the
role of each feature of the robotics competitions in necessitating, enabling, and motivating
collaborative activity among participants to inform the development of future productive col-
laborative design activities. Similarly, our study examined effects within one especially popular
middle school-level competition. Further research is needed to examine whether similar effect
structures are observed in other contexts with different competition structures involving dif-
ferent age groups and populations. In addition, since the students self-select to participate in
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robotics competitions, it is important to explore how the context of an informal setting and
student motivation to participate on robotics teams influence their collaboration behaviors.

The fact that the level of Collaboration Quality was higher among more experienced
teams suggests that taking part in the FLL may indeed be building collaboration skill rather
than simply rewarding it. Since those older teams have been in existence longer than any indi-
vidual could have been a member (due to competition age restrictions), at least some of the
knowledge and skills pertaining to collaboration are being stored or passed down within the
team units. Robotics competitions may, therefore, be generating smaller, stable communities
of practice through their operation (Lave & Wenger, 1991). Future research could further
elaborate on this possibility by examining the means by which this persistence of skill occurs
and how that expertise is stored and passed down within the team—codified as rules, embed-
ded in norms, written in documents, implicit in routines, or through dispositional change.

Finally, the kind of collaboration skill we measured is a transferrable type. Our measure
for collaboration skill was a performance assessment which inherently required that students
transfer their learning about collaboration from the competition task to our task. Since the
competition tasks and context are nominally similar to engineering, it is also likely that the
problem-solving and collaboration skills demonstrated may exhibit transfer to other, more
distal tasks as well, although future research should examine this matter empirically.
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