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Gender, interest, and prior experience
shape opportunities to learn programming
in robotics competitions
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Abstract

Background: Robotics competitions are increasingly popular and potentially provide an on-ramp to computer
science, which is currently highly gender imbalanced. However, within competitive robotics teams, student
participation in programming is not universal. This study gathered surveys from over 500 elementary, middle,
and high school robotics competition participants to examine (1) whether programming involvement in these
competitions is associated with motivation to pursue additional programming experiences and (2) whether
opportunities to learn programming varied by gender, age, and competition type.

Results: Results showed a significant association of students’ programming involvement with their motivation
to learn more programming. Interestingly, in the youngest groups/entry-level competitions, girls were heavily
involved in programming. Unfortunately, in older/more advanced competitions, girls were generally less involved in
programming, even after controlling for prior programming experience. These gendered effects were substantially
explained by programming interest.

Conclusions: While robotics competition experiences may motivate students to learn more programming, gender
gaps in programming involvement persist in these learning environments and appear to widen as students grow
older and enter more advanced competitions. Therefore, addressing gender imbalances in programming will likely
require greater attention to particular curricular and pedagogical characteristics of robotics competitions that
support girls’ interest and involvement in programming.
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Background
Over the past decade, robotics competitions have emerged
as a popular and productive informal learning environ-
ment that can potentially increase student interest in
math and science and motivate students to pursue science,
technology, engineering and mathematics (STEM) careers
(Hendricks et al. 2012; Petre & Price 2004). Robotics
programming is seen as playing a particularly important
role in inspiring and developing students’ fluency in
computational thinking, which is gaining recognition as
an essential twenty-first century skill within K-12 edu-
cation (Alimisis 2013; Barr & Stephenson 2011; Eguchi
2015; Grover & Pea 2013; Wing 2006). In addition to

the increasing utility of programming and computa-
tional thinking in our everyday lives, computer science
(CS) is also a high paying and quickly growing field
where historically, the supply of an adequately educated
workforce has struggled to keep up with demand.
According to the Bureau of Labor Statistics (2014), 8 of
the 10 occupations within the field of Computer and In-
formation Technology are expected to have growth rates
larger than 11 % through 2022.
Despite this high level of growth in computer science,

it is well documented that women are highly underre-
presented in the field, and the gap between men and
women entering computer science careers continues to
widen. According to the 2013–2014 Computing Research
Association Taulbee report, almost 86 % of recipients of
bachelor’s degrees in computer science in the USA in
2014 were male. Although the reported number of CS
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bachelor degrees earned increased by 14 % from 2013 to
2014, the proportion of females receiving CS degrees
during that time decreased (Zweben & Bizrot 2015).
Gender differences in STEM fields are a continued con-
cern for researchers seeking to understanding gender
gaps in fields like CS (Else-Quest et al. 2010). Some
studies claim a biological basis for differences in achieve-
ment and preference between males and females (Baron-
Cohen 2003; Geary 1998; Kimura 1999). However, there
is growing empirical evidence to support the hypothesis
that observed gender differences are largely socially and
culturally constructed and that few innate psychological
differences in cognitive ability and preference exist
between genders (Bussey & Bandura 1999; Hyde 2005;
Hyde & Linn 2006; Spelke 2005). Research suggests that
women’s interest in continuing to pursue careers in
predominately male fields like CS is related to the level
of self-confidence in their ability in that field, and early
opportunities to engage in computing can play a signifi-
cant role in the development of this confidence (Gürer &
Camp 2002; Zeldin & Pajares 2000). Lent and colleagues
have suggested that interest and self-efficacy, the belief in
ones’ ability to perform successfully, interact with social
and environmental supports and barriers to determine
persistence towards career goals (Lent et al. 2008). Fur-
thermore, CS prerequisites in college often assume some
knowledge of informal jargon and in-group behaviors
common to computer science. Having fewer prior infor-
mal CS experiences, relative to their male counterparts,
can further reinforce girls’ low levels of confidence as they
enter CS majors, even when actual levels of academic
preparation are comparable (Blickenstaff 2005; Margolis &
Fisher 2002). A key factor in sustaining girls’ interest in
pursuing computing careers may be engaging them in
informal computing experiences that support their in-
volvement in computing practices and remove barriers
to their identity development as members of the com-
puter science community.
Research on situated learning and social cognition

provides a theoretical framework that may further ex-
plain this phenomenon. For decades, researchers in the
learning sciences have claimed that direct participation
in the practices of a particular professional community
is related to the development of both the particular
disciplinary skills of that community as well as the for-
mation of an identity as an expert in that community
(Lave & Wenger 1991). Informal learning environments
are thought to offer learners rich opportunities to learn
not only through the application of skills in context but
also through an apprenticeship-like enculturation into
the language and norms of a particular domain (Brown
et al. 1989). This analytic stance is particularly appro-
priate for informal educational robotics, where team
mentors are often industry professionals, and

participation in the team entails scaffolded engagement
in the authentic practices of a profession, similar to
traditional apprenticeship.
However, opportunities to participate in these pro-

fessional practices do not exist in isolation from the
particular socio-historical environment in which these
communities operate (Holland et al. 1998). For ex-
ample, studies have shown that girls who persist in
their pursuit of science careers are challenged to nego-
tiate the culturally constructed and often competing
identities of “feminine” and “scientific” (Archer et al.
2012; Kleinman 1998). Holland and colleagues describe
these socially and culturally constructed environments
as “figured worlds,” where “particular characters and
actors are recognized, significance is assigned to cer-
tain acts, and particular outcomes are valued over
others” (Holland et al. 1998, pg. 52). Social cognitive
theory suggests that a learner, their behavior, and the
learning environment are reciprocally deterministic;
that is, a learner’s affective and cognitive engagement
and the learning environment are continuously co-
constructed through interactions and experiences the
learner has with that environment (Bandura 1989).
Situated within socially reproduced learning environ-
ments, participation in programming activities on ro-
botics teams may reflect figured worlds of “robotics”
and “programming” that restrict access to certain
roles for girls and other traditionally underrepresented
groups.
The gender gap in computer science interest between

boys and girls appears as early as middle school
(Doerschuk et al. 2007). Therefore, a significant effort has
been made to develop K-12 interventions that improve
girls’ attitudes towards computer science and maintain
their interest in computing through high school. Despite
this effort, in recent years the USA has experienced a
decline in the numbers of traditional secondary computer
science classes that are being offered. A study by the
Computer Science Teachers Association shows that the
number of secondary schools offering introductory com-
puter science classes decreased 13 % from 2005 to 2009
(CSTA 2009). Classes that do still exist remain largely
ineffective at inspiring and maintaining the interest of girls
through high school. Of those schools that offer advanced
placement-level computer science classes (which are
treated as equivalent to university courses and influence
acceptance into universities), only 19 % of students taking
those classes were female in 2013, in contrast to 59 %
female for AP Biology classes that same year (The College
Board 2014).
Preliminary studies of robotics programs have shown

them to be more effective at involving girls in science
and engineering, with some reports showing that girls
who were involved in robotics programs are almost
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twice as likely to enroll in a STEM-related major in col-
lege as students in a matched control sample. However,
of those female participants in robotics who chose to
pursue a major in a STEM field, still less than 2 % were
in computer science (Melchior et al. 2005). Therefore,
while robotics programs have been shown to provide
rich experiences that motivate girls to pursue STEM
careers more generally, these environments have some-
how been less motivating for girls to pursue specific CS
career pathways.
Some previous studies of pilot robotics camps and

workshops have investigated girls’ interest in computer
science (Doerschuk et al. 2007; Hamner et al. 2008;
Modekurty et al. 2014) and suggest that particular pro-
gram characteristics, like the presence of female mentors
or a social narrative approach to problem-solving, may
be related to increased computer science career interest,
knowledge, and self-confidence for girls. However, no
prior research has looked across competitive robotics
programs, which vary along many dimensions. A recent
survey of 345 VEX Robotics mentors, for example,
showed that while middle school teams had an even
amount of male and female mentors, in high school,
the percentage of female mentors was less than 27 %
(Hendricks et al. 2012). Some competitions also specific-
ally grade on teamwork, which incentivizes integration
of all team members. Additionally, different competi-
tions target specific age groups. In FIRST Robotics,
FIRST Lego League (FLL) is restricted to students age
14 and under, while FIRST Robotics Competition (FRC)
is for high-school aged students. As children get older,
gender stereotypes may have an increasing impact on
which roles they choose to adopt on the team. There can
also be wide variation within competitions by age. VEX
IQ teams can range from age 8 to 14, while VEX EDR
teams range from age 11 to 18; there can be considerable
motivational and social expectation changes over such
age ranges. Further, competitions also vary in sizes of
the teams (e.g., FLL teams can have no more than 10
students; FRC teams must have at least 10 students and
typically have 25 students); as teams grow in size, role
differentiation is more likely to occur. More research is
therefore needed to identify the particular characteristics
of robotics programs that contribute to or limit girls’
interest in computer science as they develop during
their K-12 years.
In this study, we analyzed surveys from over 500

participants across multiple robotics competitions from
elementary to high school, to explore the effects of
different levels of access to student programming in-
volvement, and the relationship between involvement
and motivation to pursue additional opportunities to
learn programming. We build upon prior motivational
literature that argues for robotics competitions as a

potential on-ramp for students to pursue additional
STEM experiences, with our focus on the impact these
programs have on motivation in computational thinking
and computer science through programming. However,
if access to programming opportunities is not equal by
gender, then these competitions may increase rather
than decrease the participation gap in computer science.

Methods
Sample
Our study was conducted at five robotics competitions
in the northeast region of the USA. Three competitions
were from the very popular FIRST organization, and
two were from the newer but quickly expanding VEX
organization; in both organizations, we list the competi-
tions in the order of the youngest to oldest age groups.
Specifically, the competitions sampled were FIRST Lego
League (FLL; n = 155), FIRST Tech Challenge (FTC; n =
76), FIRST Robotics Competition (FRC; n = 123), VEX
IQ (VIQ; n = 41), and VEX EDR (VEX; n = 27), as well
as two mixed competitions (n = 77), producing a total
N of 502 participants. These participants represented a
diverse sample of elementary through high school stu-
dents between the ages of 7 and 18 (M = 13.3, SD = 2.4).
Two thirds of the respondents reported having prior
experience at robotics competitions and slightly more
than half reported having prior programming experi-
ence (55 %). Demographics of the sample were roughly
representative of the school districts in which the
competitions were situated; ethnically 74 % identified
as White, 8 % identified as African American, and 8 %
identified as Asian. By gender, however, the competi-
tions were predominately male (see Table 1). Reponses
with values for gender that were missing (n = 17) or
“other” (n = 2) were excluded from analysis involving
those variables, as were responses from mixed compe-
titions (n = 77) that made analyses by competition type
difficult to interpret.

Table 1 Gender demographics by competition and age group

Male Female Total

Competition FLL 85 (57 %) 63 (43 %) 148

FTC 55 (74 %) 19 (26 %) 74

FRC 75 (64 %) 43 (36 %) 118

VIQ 31 (76 %) 9 (23 %) 40

VEX 19 (73 %) 7 (27 %) 26

Total 265 (65 %) 141 (35 %) 406

Age group 7–9 13 (59 %) 9 (41 %) 22

10–12 108 (63 %) 63 (37 %) 171

13–15 125 (71 %) 52 (29 %) 177

16–18 76 (67 %) 37 (33 %) 113

Total 322 (67 %) 161 (33 %) 483
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Materials and procedure
Surveys were distributed at each event to representatives
from robotics teams and filled out individually by team
members. The survey consisted of 12 Likert scale items
and 16 binary items about relevant student interests,
motivation to pursue additional opportunities to learn,
team collaboration and team goals, and 5 general
demographic questions about students and their team
(see Additional file 1 for relevant sample items). To en-
sure high rates of survey completion, the survey was
purposely kept short. At the high school level, gift cards
were offered as incentives for completing the survey.

Motivation to learn programming
Motivation to pursue additional opportunities to learn
programming was measured with one item (“This
robotics program inspires me to learn more program-
ming”), scored along a 4-point Likert scale (1 = NO!, 2 =
no, 3 = yes, 4 = YES!). This Likert scale works well
across age groups because of its simple and intuitive
wording and has been used in many validated instru-
ments, including those with interval scale properties
that enable analysis via mean scores and linear regression
(see http://activationlab.org/tools).

Prior experience and interest
Prior programming experience and prior robotics com-
petition experience were measured through two separate
binary yes or no items (“Have you [done computer
programming/been to a robotics competition] before?”).
Programming and robotics interest were measured with
two separate items (“I love [programming/robotics]”)
measured along a 4-point Likert scale (1 = NO!, 2 = no,
3 = yes, 4 = YES!).

Intensity of programming participation
One item measured students’ programming involvement
within their teams, through the question “Who is respon-
sible for programming on your team?” For these items,
respondents could select any combination of the values
“Me”, “Teammates,” and “Mentor.” These responses were
recoded into three categories pertaining to intensity of
programming involvement: “Me” = responses of only
“Me”; “Together” = responses including “Me” and any
other response; and “Other” = responses excluding “Me.”

Demographics
The survey also collected demographic information
such as age and gender. A continuous age variable was
used for all analyses; for better interpretability when
displaying results, age was grouped into four categor-
ies with equal intervals: 7 to 9, 10 to 12, 13 to 15, and
16 to 18, corresponding roughly to elementary, elem-
entary/early middle school, late middle school/early

high school, and upper high school. Participants also
recorded with which robotics competition they were
currently participating.

Analysis
The survey data was modeled using analysis of variance
(ANOVA) and ANCOVA. For all analyses, Levene’s test
of homogeneity of variance was first performed to deter-
mine if there was significant difference in variances
between groups. In cases where large differences in
standard deviation (greater than 2:1) were found, a
Kruskal-Wallis non-parametric ANOVA was conducted.
We conducted an initial ANCOVA to determine if there
was a significant relationship between levels of pro-
gramming involvement with motivation to learn more
programming, controlling for prior programming, and
robotics competition experience and interest. We then
conducted three separate ANOVA testing for differential
effects of gender on levels of programming involvement:
the first (model 1) is to test for significant main effects of
gender on programming involvement; the second (model
2) is to test for significant effects of competition type on
programming involvement by gender; and the third
(model 3) is to test for significant effects for age groups on
programming involvement by gender. We ran the model 1
and model 2 analyses separately due to a high degree of
association (χ2 = 18.37, p < .001) between competition type
and age. Finally, we conducted two further ANCOVAs
(model 4 and model 5) to test if the gendered effects from
the prior models remained consistent when controlling
for all combinations of prior robotics and programming
experience and prior robotics experience and program-
ming interest. In other words, we examined whether
gender differences in participation can be explained by
differences in interest or differential amounts of prior
experience.

Results
Motivation
Is participation in robotics competitions associated with
interest to learn more programming?
Our initial analysis looked at the overall effects of pro-
gramming involvement on students’ motivation to learn
more programming, as indicated by the survey question
“This robotics program inspires me to learn more
programming.” The independent variable was levels of
individual programming involvement, as indicated by
student responses to “Who is responsible for program-
ming on your team?” Levene’s test for homogeneity of
variance was significant (F = 17.69, p < .001), indicating
particularly large standard deviation in the Others
group, compared to both the Me and Together groups.
Because the Others group was the larger sample, it is
likely that the F statistic is an overly conservative
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estimate for this analysis; thus, there is no concern
about an increased type I error. Nonetheless, a Kruskal-
Wallis H test was also conducted and showed that mo-
tivation to learn more programming was different for
the three heteroskedastic groups χ2(2) = 68.58, p < .001.
Pairwise analyses were performed using a Dunn rank

sum test (Dunn 1964) with a Bonferroni adjustment.
Results show that there was no significant difference
in effects (z = .65, p = .77) between Me and Together,
but there were significant differences in effects (z = 5.60,
p < .001; z = 8.31, p < .001) between these two categories
and Others. Therefore, those who were involved in pro-
gramming (alone or together) showed significantly
higher motivation to learn programming than those not
involved. Although the N for Me is smaller than the
other groups, the N = 42 combined with relatively small
SD for that group ensures that any differences between
Me and Together must be relatively small compared to
the large difference against Others. Therefore, responses
were recoded into dichotomous categories for future
analyses, with Me and Together as “Involved” and
Others as “Uninvolved” (see Table 2).
Using the binary predictor “Involved” and “Uninvolved,”

an ANOVA of motivation to learn more programming
as the dependent variable showed a significant relation-
ship between programming involvement and motiv-
ation to learn programming, F(1, 484) = 97.81, p < .001,
ηp

2 = .17. These main effects remained significant in an
ANCOVA model including the following as covariates:
prior programming and robotics competition experience,
F(1, 474) = 89.61, p < .001, ηp

2 = .16; robotics and pro-
gramming interest, F(1, 476) = 11.52, p < .001, ηp

2 = .02;
and both experience and interest covariates, F(1, 466) =
13.82, p < .001, ηp

2 = .03. Semantically, the contrast
showed a majority of students having a lukewarm posi-
tive (yes) towards learning more programming when
others programmed, to a majority of students having a
strong positive (YES!) towards learning more program-
ming when they were directly involved in programming
on their team (see Fig. 1).

Although the directionality of the causality is am-
biguous (involvement influences motivation or motiv-
ation influences involvement), these analyses help to
identify the appropriate control variables in the oppor-
tunity analysis as well as providing evidence against the
possibility of negative effects of involvement on pro-
gramming interest. For example, it might have been the
case that those not involved were envious and therefore
especially interested or those who were involved had
their curiosity met and were then no longer interested.
In addition, in the informal context, students might
have found participating in the complex, highly com-
petitive programming tasks frustrating and therefore
demotivating.

Opportunities to learn
Do girls have equal opportunities to participate in
programming across robotics competitions and age
groups?
In our next set of analyses, we examined student re-
sponses separately by gender, to see if there were differ-
ential levels of involvement by gender across different
robotics competitions and different age groups (see
Table 2). All assumptions of homogeneity of variance
were checked and found to be relatively small (less
than a 2:1 difference in SD). The standardized beta co-
efficients from all five models for opportunities to learn
by gender run in this set of analyses are reported in full
in Table 4 of Appendix.
Using the dichotomous categories of programming

involvement, we first ran a one-way ANOVA to evaluate
the main effect of gender on programming involvement.
The ANOVA for this first model (model 1) was not
significant, F(1, 468) = .17, p = .68; as a mean across all
competitions and age groups, girls had equal oppor-
tunities to be involved in programming.
Next, two factorial ANOVAs were conducted to evalu-

ate the relationship between programming involvement
and gender, separately by competition types (model 2)
and age (model 3), and test for the existence of interac-
tions between these factors and gender. Results from
model 2 show significant main effects of competition
type F(4, 389) = 32.28, p < .001, ηp

2 = .25. Gender main
effects were not significant, F(1, 389) = .35, p = .55.
However, the interaction between competition and
gender was significant for FIRST (FLL, FTC, FRC)
competitions, F(2, 327) = 2.96, p < .05, ηp

2 = .02, and not
statistically significant for VEX (VIQ, VEX) competi-
tions F(1, 62) = .27, p = .61. In more entry-level FIRST
competitions, there is a trend towards higher female
than male participation in programming, whereas in
the more advanced competitions, the difference re-
verses (see Fig. 2a). Interestingly, this pattern does not
appear in VEX competitions. It is also worth noting

Table 2 Sample size, mean, and SD for motivation to learn
programming, by programming involvement

Motivation to learn programming

Who programs N M SD

Me 42 3.8 0.4

Together 167 3.7 0.5

Others 277 3.1 0.8

Total 486 3.7 0.8

Involved 209 3.7 0.5

Uninvolved 277 3.1 0.8

Total 486 3.7 0.8
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that only in the FLL competition are most children in-
volved in programming. In all other competitions, there
is a much greater level of role specialization (including
mechanical design, electrical design, media design,
webmasters, team spirit, scouts, and fundraising), with
few children being involved in the programming at all.
Most saliently, there is a 5:1 ratio in male to female
participation in programming in FRC, the oldest/most
advanced high school competition (Mage = 15.8, SDage =
1.23). This gender participation ratio is similar to relative
participation rates in AP Computer Science and under-
graduate computer science majors.
Results from model 3 also show a significant inter-

action between age and gender on programming
involvement, F(1, 463) = 3.80, p < .05, ηp

2 < .01, with
significant main effects of age, F(1, 463) = 46.15, p < .001,
ηp

2 = .09, and gender, F(1, 463) = 3.77, p < .05, ηp
2 < .01.

These results are necessarily somewhat similar to the
competition pattern given the age requirements of some
competitions. However, there can still be separate age ef-
fects given the broad and overlapping age bands of each
competition (e.g., FLL is 8–14, FTC is roughly 12–18,
FRC is roughly 14–18, VIQ is 8–14, and VEX is 11–18).
We see relatively stronger female participation in middle
elementary and then stronger male participation in mid-
dle to late high school (see Fig. 2b).

Do gender differences in opportunity to participate in
programming remain across age groups and competitions,
while controlling for motivational characteristics?
Before including our covariates, we first ran analyses to
test for the effects of age group on interest and prior
experience in robotics and programming by gender, to
examine whether these characteristics follow the same
gendered age changes—if not, they cannot be an
explanation for the differential gender participation
(Table 3). Results show no significant interactions of age
and gender on both robotics interest, F(1, 472) = .00,
p = .97, and robotics experience, F(1, 470) = .51, p = .48;
most students had high levels of robotics interest and
equivalent levels of robotics experience as they got
older (see Fig. 3a, b). However, there was a significant
interaction effect of age and gender on both programming
experience, F(1, 474) = 7.5, p < .01, ηp

2 = .02, and program-
ming interest, F(1, 474) = 14.22, p < .001, ηp

2 = .03.
Therefore, while the marginal means of programming
interest and experience were comparable for males
and females in the elementary/early middle school
age ranges (7–9 and 10–12 years), clear differences in
programming interest and experience by gender were
shown to emerge in the 13–15 and 16–18 year age
ranges, as students enter late middle school/early high
school (see Fig. 3c, d).

a b

Fig. 1 Mean motivation to learn programming (1 = NO!, 4 = YES!) with SE bars, by programming involvement (a), and with interest and prior
experience in robotics and programming as covariates (b)

a b

Fig. 2 Marginal means of gendered programming involvement (with SE bars), by a competition and b age
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In our final analyses, we ran an ANCOVA to again test
for significant interactions of gender by competition type
(model 4) and age group (model 5) on programming
involvement, this time including programming interest
and experience as covariates. Results show no significant
interactions between competition type and gender when
controlling for programming experience, F(4, 387) = 1.32,
p = .26, or especially when controlling for programming
interest, F(4, 386) = .72, p = .58. Therefore, it appears
that within robotics competitions, having programming

interest and prior experience explain the different levels
of programming involvement by gender (see Fig. 4a, c).
Similarly, the interaction between age and gender on
programming involvement remains marginally signifi-
cant when including programming experience as a co-
variate, F(1, 460) = 2.76, p = .09, ηp

2 < .01, and becomes
not significant when including programming interest as
a covariate, F(1, 460) = .14, p < .71. Therefore, while
there may be a small difference in involvement by gen-
der as students get older even when controlling for

Table 3 Sample size, means, and standard deviation for all dependent variables, by gender

Male Female Total

Variables of interest N M SD N M SD N M SD

Motivation to learn prog. 321 3.4 0.7 161 3.3 0.8 482 3.4 0.8

Prog. involvement 312 42 % 158 44 % 470 43 %

Robotics experience 316 66 % 161 68 % 477 67 %

Prog. experience 322 58 % 159 49 % 481 55 %

Robotics interest 318 3.8 0.5 161 3.7 0.5 479 3.7 0.5

Prog. interest 320 3.2 0.8 161 3.0 0.9 481 3.1 0.8

a b

c d

Fig. 3 Marginal means (with SE Bars) of gendered a robotics experience, b robotics interest, c programming experience, and d programming
interest, by age
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prior experience in programming, these differences can
be largely explained by related differences in prior
programming interest (see Fig. 4b, d). It is important to
note that across gender and age, the youngest competi-
tion, FLL (Mage = 11.6, SD = 1.3), remained the only
competition observed involving a large proportion of
both male and female students in programming, sug-
gesting the competition main effect is not related to
changing patterns in programming interest.

Discussion
With this study, we build upon prior motivation litera-
ture that argues for robotics competitions as an on-ramp
for students to pursue additional STEM learning oppor-
tunities. Specifically, we investigated the role that pro-
gramming involvement plays in motivating participants
of competition robotics teams to pursue additional
learning experiences in programming. We also examined
whether or not male and female students were provided
with different opportunities to learn programming and if
age or the type of competition that students participated
in was a significant factor contributing to the kinds of
programming involvement those students experienced.

The results from the motivation analyses suggest that
students’ involvement in programming is related to sig-
nificant differences in motivation to pursue additional
programming opportunities. Essentially, students who
saw themselves as being more directly involved with
programming were more likely to rate highly in terms
of motivation to pursue additional programming expe-
riences. These results are consistent with other active
learning studies, which suggest that instruction which
directly engages students in the learning process can
lead to improvement in student attitudes towards learn-
ing (Alemdar & Rosen 2011; Casad & Jawaharlal 2012;
Prince 2004; Smith et al. 2014). Additionally, it sup-
ports claims that developing an identity as “someone
who programs” can motivate students to pursue add-
itional programming opportunities (Barton & Tan 2010;
Worsley & Blikstein 2012). An interesting finding in
the current study is that there were no significant
differences in motivation to pursue programming for
students who programmed collaboratively and those
individually responsible for programming. This appears
to be inconsistent with studies that suggest collabor-
ation can have positive motivational effects for students

a b

c d

Fig. 4 Marginal means of gendered involvement (with SE bars) in programming, by competition, with covariates of programming a experience
and b interest, and by age, with covariates of programming c experience and d interest
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in robotics contexts (Eguchi 2015; Mitnik et al. 2008).
It could be that higher levels of specialization in more
advanced competitions produce motivated solo pro-
grammers, while more collaborative efforts can be
motivational for younger programmers. While these
claims lie beyond the scope of this paper, results found
here suggest that qualitative follow-up studies of robo-
tics programming involvement might show more nu-
anced differences in programming motivation between
individuals and collaborative groups across age groups
and competitions.
Results from the opportunities to learn analyses pro-

vide evidence that age and the competition a student
participates in are significantly associated with the level
of programming involvement they experience and that
these opportunities are often different for males and
females. Overall, we see a higher level of programming
involvement in younger entry-level competitions, but
less programming involvement overall in older and
more advanced competitions. Most saliently in this
study, it was shown that females are more likely than
males to be involved in programming in elementary
school and in entry-level competitions, but that this
difference reverses in high school and more advanced
competitions. There is also evidence that the biggest
effect on programming involvement is related to an
overall decline in programming interest and that this
decline in interest also disproportionately affects girls.
This finding reflects current trends found in AP and
undergraduate CS enrollment and is consistent with
studies showing that by the end of high school, females
are less likely to elect into AP level CS classes or ex-
press interest in pursuing an undergraduate CS major
(Doerschuk et al. 2007; Gal-Ezer & Stephenson 2009;
Zweben & Bizrot 2015). These results also lend support
to the gender similarity hypothesis, suggesting that
gender differences in achievement and attitudes to-
wards STEM disciplines are not innate but develop
over time; instead, pedagogical and socio-cultural fea-
tures of learning contexts associated with interest may
be reliable predictors of girls’ continued involvement
in CS (Hyde 2005; Spelke 2005). This differential
interest is particularly troublesome in environments
in which there are many different tasks besides pro-
gramming and the setup of the environment does not
ensure involvement in all of the main tasks by all
participants.

Limitations
The current study is limited by a number of factors.
First, the lack of a control group and the correlational
relationship between motivation to program and pro-
gramming involvement prevent strong conclusions
about causality. Also, the relatively short survey required

the use of single items to represent interest, motivation,
and experience in robotics and programming, and such
reduced scales are necessarily less precise than longer
scales. The limited number of items per construct pre-
sents a potential validity problem with the survey
instrument utilized in this study. However, even with
such short scales, important differences were revealed.
Finally, contrasts of different robotics competitions
have the potential for selection biases. For example, the
samples selected from high school competitions are
likely to represent more extreme cases of girls who did
not self-select out of robotics competitions. However,
we are primarily interested in students who choose to
continue to participate in robotics, and further, it is
unlikely that girls who self-selected out of robotics were
primarily those interested in programming. We would
therefore, from a selection bias perspective, expect the
ratio of female programmers to remain constant or
increase as students grow older, not decline. That this
is not the case makes the question of why girls on
robotics teams become less interested and involved in
programming even more compelling.

Practical considerations
The patterns in the results have a number of possible
interpretations. For example, team responsibilities are
typically more segregated in high school robotics teams.
It may be that fewer students are involved in program-
ming in older competitions due to a greater compart-
mentalization of responsibilities, reflecting the more
specialized interests of high school students. While
lower levels of female programming involvement can
be explained by decreasing programming interest, it is
possible that this also is an effect of increasing interest
in other aspects of the competition (e.g., marketing,
fundraising) that are often introduced in larger and
more advanced high school competitions like FRC. This
may explain the success that smaller and relatively in-
expensive competitions like VEX have shown in main-
taining female programming interest and involvement,
as programming could be offered within a narrower
range of possible team responsibilities. It is also pos-
sible that different competitions require different levels
of programming sophistication in order for teams to be
successful, which might impact the resources and effort
teams invest in programming.
Prior research has shown that environmental and

socio-emotional pressures interact to influence choice of
and persistence in computing careers, particularly for
traditionally underrepresented groups (Lent et al. 2008).
Literature on gender gaps in computing suggest a wide
range of factors, including competing with male students
for instructors’ attention and a lack of female role models
in CS, may influence girls’ interest and motivation to
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pursue programming opportunities (Gürer & Camp
2002). As students age, it is reasonable to expect there
to be shifts in the particular factors that influence inter-
est and role selection. For example, as robotics partici-
pants progress from elementary to middle and high
school, greater pressure from peers, parents, mentors,
or broader societal expectations to adopt specific
gendered roles could exert greater influence on their
choice of activity within robotics teams (Kleinman
1998; Renold 2005). Research on gender preference in
science has documented that children as young as three
are aware of gender role stereotypes and that young
girls may be disproportionately aware of these external
expectations (Leinbach et al. 1997; O’Brien et al. 2000).
Therefore, if a goal of robotics competitions is to in-
crease girls’ participation in computer science as well
as other STEM fields, passively providing girls with
computing opportunities may not be sufficient. Instead,
pedagogy and role distribution on robotics teams must
be organized to draw explicit connections between the
social practices of girls and the disciplinary practices of
computer science; there is some evidence that a focus
on inquiry-based instruction may provide these oppor-
tunities (Goode & Margolis 2011). Additionally, active
recruitment of girls into these activities and of female
mentors to serve as role models could be necessary to
retain their interest and involvement (Barton et al.
2008; Margolis & Fisher 2002).
Student intrinsic and extrinsic motivations to join ro-

botics teams, and how their roles are decided once they
are there, are interesting lines of inquiry worthy of
further research. Informal classroom observations and a
small number of follow-up interviews provide initial hy-
potheses about what kinds of student motivation profiles
may exist. For example, when interviewed about their
teams, a majority of interviewed students saw team roles
as categorized into two groups: “Builders” who are re-
sponsible for the mechanical construction of the physical
robot, and “Programmers” who are responsible for writ-
ing code for the robot to follow. Students’ discussions of
role adoption largely fell into two common team norms:
“Team Success,” where students take on roles where
they believed they could contribute the most to the
team, and “Team Supply,” where students fill whatever
role is unoccupied or needed at any given time. Specific-
ally, middle school teams stated that they were often
assigned task-oriented roles (i.e., completing a particular
challenge) rather than static roles within the team.
We hypothesize that an emphasis on a Team Supply

framing in middle school teams could explain why these
teams are less specialized than high school teams, as
students are encouraged to try out different roles as they
find their specialty. Alternatively, an emphasis on the
Team Success norm would lead to increased internal

team pressure towards specialization and therefore dis-
courage students from adopting roles they believe to be
atypical of their gender. Particularly, in STEM fields,
girls have been shown to be less likely than males to
attribute success to their abilities, but more likely to at-
tribute failure to their abilities (Ryckman & Peckham
1987). Therefore, win or lose, robotics competitions that
emphasize team success over equitable participation
may differentially affect the interest and involvement of
girls relative to their male counterparts. While this does
not settle the question of external factors influencing
students’ incoming self-efficacy beliefs, i.e., what factors
lead them to believe occupying one role over another is
in the best interest of the team, it does offer some in-
teresting directions for follow-up research when con-
sidering girls declining interest and involvement over
time. For example, interviews with both students and
mentors about the role of competition in the team
could help determine whether or not increased focus
on winning competitions at the high school level is
associated with students adopting a more static and
specialized approach to role assignment.
It was less clear from interviews and observations what

factors influenced students to initially join robotics
teams and if there is any interaction between their path-
way to participation in robotics and the eventual role
they occupy on their team. That is, there were no clear
correlations between students being encouraged to join
robotics by parents who are professional engineers, for
example, and those students who take on the role of a
programmer on that team. Additional structured inter-
views and longitudinal surveys could help explore the
differences that might exist by gender and age based on
the different pathways students take to joining robotics
teams, as well as explain the different role those students
occupy on those teams over time.

Conclusions
While there are currently measurable differences in
participation by gender in the STEM fields, growing
evidence suggests that a number of external factors
influencing girls’ opportunities to learn and participate
in STEM activities may predict continued involvement
in fields like CS and robotics. Our study suggests that
ensuring greater levels of involvement in programming
within robotics competitions, particularly for females,
may lead to increases in those students’ motivation to
pursue additional opportunities to learn programming.
However, follow-up studies with a team-level analysis
will help to illuminate whether individual interest and
choice of activity or the particular organization of teams
within different competitions are the main factors driving
the different levels of programming involvement observed
for males and females.
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