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The authors present a new model called RCCL (pronounced “ReCyCLe”; Represent the task,
Construct a set of action strategies consistent with the task representation, Choose from among
those strategies according to their success rates, and Learn new success rates for the strategies
based on experience). The model explains the different ways in which people combine
base-rate and case-specific cues to produce choice. It also makes additional predictions
regarding variability in people’s choices over time. Experiment 1 tested 58 college-age
students in a problem-solving task and showed that task representations can be influenced by
feedback from the environment, producing changes in base rate and cue sensitivity.
Experiment 2 tested 80 college-age students in a delayed match-to-sample task and showed
that variations in the format of a task can lead to different representations, which in tumn
produce much different base-rate and cue sensitivities. Moreover, both experiments showed
systematic variability in choice over time in ways predicted by the model.

The difficulty of making choices in an uncertain world is
that it is impossible to know in advance which choice will
lead to success. For example, in driving to the airport, any
particular route may be congested with traffic or blocked by
an accident. In such situations, people must base their
choices on the information they have available about the
likely success of each alternative. Such information can be
cast in terms of two types: (a) the overall base rate of success
of each alternative (e.g., how often each route is not
congested) and (b) information specific to the current case
that is predictive of a certain alternative’s success (e.g., the
time of day indicating that there will likely be congestion on
a particular route). Even with both types of information,
choice is not simpie: Each type of information is often only
partially predictive of whether an alternative will succeed,
and the two types of information may indicate opposite
choices. With both kinds of information available, how
do people make their choices? That is, how do people
combine overall base-rate information with case-specific
information?

This issue has been examined using text-based problems
that explicitly present base-rate and case-specific informa-
tion separately and require participants to predict the prob-
ability that one alternative will succeed. Studies using this
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paradigm have typically showed base-rate neglect (e.g.,
Ginossar & Trope, 1987; Lyon & Slovic, 1976; Kahneman
& Tversky, 1973). Base-rate neglect is said to occur when
people’s predictions do not adequately take into account the
overall probabilities (or base rates) of the various alterna-
tives. For example, Tversky and Kahneman (1982) found
that when given the information that (a) 85% of the taxicabs
in a city are green and (b) a witness with 80% reliability
saw a blue cab, participants typically estimated that the cab
seen by the witness was blue with an 80% probability
(although the correct answer is 41%). The participants
underestimated the impact of the base rate (85% green) in
favor of the case-specific information (80% reliability for
seeing blue).

Recently, however, the severity and robustness of base-
rate neglect have been called into question (see Koehler,
1996, for a review). For instance, base-rate neglect is
reduced or even eliminated when the problem’s wording is
manipulated to emphasize certain features such as the
independence of the two kinds of information (Macchi,
1995), the perceived relevance of the base rates (Ajzen,
1977, Bar-Hillel, 1980; Beckett & Park, 1995; Birnbaum &
Mellers, 1983; Carroll & Siegler, 1977; Fischhoff, Slovic, &
Lichtenstein, 1979), or the random sampling of cases
(Gigerenzer, Hell, & Blank, 1988). In addition, participants
do not exhibit base-rate neglect when they are given a
frequency-based problem statement rather than a probability-
based statement (Gigerenzer & Hoffrage, 1995). Thus,
base-rate neglect is not a universal phenomenon but one that
is specific to certain presentation formats.

These findings of base-rate neglect and base-rate sensitiv-
ity are all based on situations in which information is
presented explicitly via text. In many situations, however,
people must gather information about the base rates of
success and the predictiveness of case-specific cues through
personal experience. For example, in learning to navigate in
a new city, a driver learns over years of experience which
routes are most successful and which cues are indicative of
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success for each alternative. This raises the question of how
people combine base-rate and cue-specific information when
they must induce it over the course of many trials.

To examine choice in such situations, researchers have
used a paradigm in which participants experience both types
of information in a trial-by-trial sequence of cases. In
particular, case-specific information is provided for each
trial, after which participants make a choice and receive
feedback. This feedback, accumulated across trials, presents
the base rates (i.e., the proportion of trials for which each
choice is correct) and the predictiveness of cues (i.e., the
proportion of trials for which a given choice is correct in the
presence of a given cue). In this paradigm, people learn the
task contingencies by experience and express their predic-
tions through choice.

Results show that in this experiential situation, people
exhibit striking sensitivity to base rates (Estes, Campbell,
Hatsopoulos, & Hurwitz, 1989; Gigerenzer et al., 1988;
Gluck & Bower, 1988; Maddox, 1995; Manis, Dovalina,
Avis, & Cardoze, 1980). For example, Estes et al. (1989) and
Gluck and Bower (1988) used a medical diagnosis task to
study experiential base-rate phenomena. In this task, partici-
pants were asked on each trial to read a list of symptoms
exhibited by a hypothetical patient and then to classify that
patient’s disease based on the symptoms. The overall base
rates of the two diseases were set at .25 and .75, making one
disease “rare” and the other “common.” After approxi-
mately 200 trials, participants’ disease classifications for the
various training configurations revealed base-rate sensitiv-
ity; participants preferred the common disease in their
classifications. In particular, participants’ classification pro-
portions for the different symptom configurations con-
formed almost exactly to a normative standard. These results
suggest that people show base-rate-sensitive behavior when
they learn and express their predictions in a nonverbal way.
Explanations of such results rest on the notion that learning
base rates implicitly (via experience) and making choices
implicitly (via behavior) tend to outperform explicit learning
and explicit computation (Spellman, 1996).

Given these results, researchers have been tempted to
conclude that experience is the key to base-rate sensitivity,
that is, people are sensitive to base rates when the problem is
presented experientially but not necessarily when the prob-
lem is presented via text. There is more to this story,
however. Several studies contradict this generalization by
showing that base-rate neglect can occur in direct-
experience situations (e.g., Gluck & Bower, 1988; Goodie &
Fantino, 1995, 1996; Medin & Edelson, 1988). Some of the
cases of base-rate neglect occur only for test trials that are
distinct from training (Estes et al., 1989; Gluck & Bower,
1988; Medin & Edelson, 1988), but one particular task has
been shown to produce base-rate neglect throughout re-
peated training problems (Goodie & Fantino, 1995, 1996).
Thus, the entire continuum of base-rate effects exists within
the experiential paradigm just as it does for the text-based
paradigm. However, unlike the text-based situations, re-
searchers do not know what factors influence people’s
sensitivity to base-rate information in direct-experience
situations. Moreover, they do not know how people combine

base-rate and cue-specific information in such direct-
experience situations.

In this article, we argue that an individual’s task represen-
tation modulates the capacity to learn base-rate and cue-
predictiveness information. The term representation has
been used previously in the literature to explain base-rate
sensitivity in verbal formats (e.g., Gigerenzer & Hoffrage,
1995; Koehler, 1996). We define a task representation as the
set of stimulus features an individual uses to encode the task
environment. For example, when choosing a route to take to
work, a driver may encode the time of day and whether each
option involves highway driving. This task representation,
however, includes only a subset of all possible task features.
It therefore acts as a filter on what can be learned from
experience. For instance, in the previous example, the driver
did not include weather conditions in the task representation
and thus could not learn about the predictiveness of this cue.
On the other hand, the driver did represent the highway
status of the different options and thus could learn differen-
tial base rates of success for highway versus nonhighway
driving.

Note that our use of the term representation differs from
other uses in the literature. For instance, Gigerenzer and
Hoffrage (1995) used “‘the general term information repre-
sentation and the specific terms information format and
information menu to refer to external representations, re-
corded on paper or on some other physical medium” (p.
685). For example, they manipulated whether textual prob-
lem descriptions would present events in terms of either
probabilities or frequencies and then examined the impact
on people’s base-rate sensitivity. In contrast, we use the term
task representation to refer to internal representations,
specifically the set of features an individual uses to encode
the stimuli of the task. Both internal and external representa-
tions act as general filters on the information an individual
obtains from a task. In textual paradigms, they influence the
kinds of information transformations that people will apply.
In experiential paradigms, they influence which task contin-
gencies people can learn and hence the choice preferences
they will exhibit. The external representation determines
which information is easily available, and the internal
representation selects a subset of that information for
processing. For example, an individual may not internally
represent all the information presented externally and may
also change over time which features are internally repre-
sented. It is the internal task representation that ultimately
determines behavior and thus is the focus of this article.

The RCCL Model

We propose a process model called RCCL (pronounced
“ReCyCLe”) that specifies how task representations can
influence choice in experiential base-rate situations (see
Figure 1). The four main stages of processing in RCCL are
as follows: (a) Represent the task, (b) Construct a set of
action strategies consistent with that task representation, (c)
Choose from among those strategies according to their
success rates, and (d) Learn new success rates for the
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Figure 1. The stages of processing in the model.

strategies based on experience. The primary theme underly-
ing the RCCL model is that a task representation constrains
the set of strategies an individual will use for taking actions
in the task environment. Making choices according to the
learned success rates of a certain set of strategies enables
RCCL to produce base-rate sensitivity or base-rate neglect in
direct-experience situations; sensitivity arises only when the
constructed strategies include stimulus features that are
important to success in the task. The RCCL model also
includes recycling through the aforementioned processes
when the current representation and strategies lead to low
success rates. This implies that an individual’s task represen-
tation need not be static but that it can develop with
experience. The following paragraphs describe the RCCL
model’s processes in further detail.

The first stage in RCCL, represent the task, posits that an
individual’s background knowledge and the salience of
different features in a task are used to select a certain subser
of features to be included in the task representation. These
features provide a means of filtering information so that it
can be attended to and organized. In particular, trials that
have the same values on represented features can be grouped
together, aggregating over any varying, nonrepresented
features. For instance, because the driver in the earlier
example represented time of day and highway driving, he or
she would consider all experiences of morning highway
driving together (even if they differed in terms of weather)
but would distinguish between morning highway driving
and midday highway driving (because they differ in terms of
the represented feature, time of day).

The features of a task representation filter and organize
incoming information, but the resulting partition of experi-
ences is latent; it is only a knowledge base and itself does not
provide a means for taking action. In the second stage of

RCCL, construct strategies, the features of the task represen-
tation are combined in various ways to generate a set of
strategies for action. Again, prior knowledge provides a
constraint in that each individual will generate only a subset
of the possible combinations. We take each strategy to be
expressed in the form ““if (condition) then (action).” Repre-
sented features that describe cues in the task environment fill
the condition slot, and represented features that describe the
various choices fill the action slot. For instance, given the
particular representation of driving exemplified previously,
the foliowing strategy could be constructed: “If the time of
day is morning, then take the highway route.” This strategy
uses the represented feature “time of day” in the condition
slot and the represented feature ‘“highway status” in the
action slot. In general, a constructed strategy specifies a
particular action to be taken in the presence of a particular
cue, enabling cue-sensitive choice.

When multiple strategies’ conditions are met by the
current situation, the individual must choose a single
strategy to determine what action to take. The third stage of
RCCL, choose among strategies, handles this situation by
choosing the strategy with the highest estimated rate of
success. Each strategy’s estimated success rate is learned via
experience (see Stage 4). Given a set of competing strate-
gies, Stage 3 assumes some noise in the estimation and
choice process such that the most successful strategy is often
but not always used. Note that this noisy selection process
can lead to probability matching, a specific kind of base-rate
sensitivity in which people choose each option a proportion
of the time equal to its probability of success (Lovett &
Anderson, 1995).

Stage 4 of RCCL, learn the strategies’ success rates,
specifies how the estimated success rates, used in Stage 3,
are learned. The RCCL model records success information
for each strategy so that it can adaptively choose between
competing strategies. At first, each strategy’s estimated
success rate takes a value based on the solver’s prior
knowledge. Then, with experience, this estimate moves
toward the experienced success rate. This learning mecha-
nism leads the RCCL model to produce gradual changes in
its success estimates as it gains experience in the task. These
changes in turn lead to changes in choice preference: The
model will learn how often each strategy is successful and
then choose a given strategy in proportion to its relative
success rate. Thus, the model posits sensitivity to strategy-
specific base rates. Sensitivity to overall base rates of the
task, however, should occur only when the individual’s task
representation and strategies include the relevant features of
the task. For example, suppose that in our driving task the
overall base rate of success for right-turn routes is greater
than that for left-turn routes. According to our model, the
driver who does not represent this left-right feature will not
be able to learn these different base rates and will instead
make choices that are sensitive to the base rates of features
included in his or her task representation. This contrasts with
an implicit learning view that claims people can learn (and
behave in accord with) base rates without awareness of the
predictive features (e.g., Berry & Broadbent, 1984). Our
model posits that task representations play a pivotal role in
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explaining the source of base-rate effects: Only base rates
for the features explicitly included in an individual’s repre-
sentation will be learned and will govern behavior. Although
the relative success rates of different strategies can be
learned implicitly in our model (e.g., an individual may not
be able to accurately express explicitly the probabilities for
success), all the features included in the task representation
will be explicitly accessible during problem solving.

Task representations also play another important role in
the RCCL model: They predict changes in feature use over
time under certain conditions. When the strategies generated
under the current task representation are all performing
poorly, then the RCCL model initiates a change in task
representation, by adding features, deleting features, or both.
New strategies (using these new features) are then created,
and their relative success base rates are learned through
experience. Thus, as RCCL recycles through the four stages
with new task representations, new base-rate sensitivity or
neglect can result. This second layer of adaptivity suggests
that over time, an individual will move toward the task
representation and strategy set that produce the highest
success rates.

The mechanisms specified by the RCCL model lead to
several predictions about the integration of cue and base-rate
information to produce choice behavior:

1. Salient features of the task will influence initial cue
use. This prediction stems from the first and second stages
of RCCL. Salient features of the task are included in the task
representation and then combined, on the basis of prior
knowledge, to form strategies. Because these strategies are
the basis for taking action in the task, people’s choices will
be sensitive only to the features included in their strategies.
This contrasts with an implicit memory account that can
predict complete learning even in the absence of explicit
encoding of relevant features.

2. Under a given task representation, people will learn to
prefer the strategies that have higher base rates of success.

This prediction stems from the third and fourth stages of
the RCCL model that claim people choose from among
competing strategies based on their learned rates of success.
A strategy’s initial estimate of success gets adjusted accord-
ing to how often it actually leads to success when used. The
updated estimate is then used to determine how often that
strategy will be chosen over its competitors. This process
allows the RCCL model to demonstrate base-rate sensitivity:
An action will be taken more often the more successful its
corresponding strategy. Thus, contrary to some previous
findings of apparent base-rate neglect, RCCL clearly pre-
dicts that one should always find base-rate sensitivity, as
long as the relevant features are included in the individual’s
task representation.

3. People will drop cues that prove to be irrelevant.

This prediction stems from two aspects of the model:
First, strategies that use relevant features will be more
successful than strategies that use irrelevant features, and
over time the less successful strategies will no longer be
used. Second, task representations that primarily include
irrelevant features will lead to low overall success rates,
which will in turn produce task representation change.

4. More representation and strategy change will occur in
tasks with low success rates. This prediction stems from
the process of representational change included in the RCCL
model. When the strategies generated from the current
representation all lead to low success rates, the task is
re-represented. This change process may involve adding
new features to the task representation and deleting old ones.
The four stages of the RCCL model are cycled through
again, so a new set of strategies (with newly learned success
rates) will determine choice behavior.

Although these predictions may seem intuitive and unsur-
prising, note that we know of no other current model that
makes such a combination of predictions for choice behavior
in problem-solving tasks. Some models of categorization
make predictions about feature salience and use, similar to
Prediction 1 (e.g., Anderson, 1991; Goldstone, Medin, &
Halberstadt, 1997; Kruschke, 1996; Nosofsky, 1984), and
some other models make predictions about how choices are
based on success, similar to Prediction 2 (e.g., Anderson,
1993; Busemeyer & Myung, 1992; Estes et al., 1989). The
RCCL model, however, includes predictions on both of
these issues within a single framework. Given that people
facing a new problem-solving task must both generate new
strategies for choosing actions and learn which of those
strategies are preferable, RCCL’s integration of these two
processes is a critical step toward understanding problem-
solving choice.

Although Predictions 1 and 2 may be separately predicted
by other models, Predictions 3 and 4 are unique to the RCCL
model. Previous models of categorization and problem
solving have tended to assume a fixed representation over
time, whereas the RCCL model predicts that representation
change should occur regularly and that this is a fundamental
component of learning in a domain. This contrasts sharply
with an implicit learning model that assumes that explicit
task representation change is unnecessary for learning the
desired cue-action pairings. The RCCL model not only
predicts that representation change will occur and is impor-
tant for learning but it also makes a particular prediction for
when representation change should occur. Although the
RCCL model is unique in making any prediction for this
issue, other possible outcomes are also possible and plau-
sible. For example, it may be that features are added and
deleted stochastically to and from the task representation
uniformly over time (e.g., with a genetic algorithm) rather
than primarily when success rates are low.

In Experiment 1 we tested all four predictions. In
Experiment 2 we tested additional predictions of the RCCL
model, focusing on the role of task representations in various
base-rate effects.

Experiment 1

To test the four predictions of the RCCL model, we used a
problem-solving task in which the first step in each problem
solution involved making a choice. We focused our study on
how base-rate and cue-specific information would influence
this choice. The task met the requirements of an experiential
base-rate task in that case-specific cues and feedback were
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presented on each trial. Moreover, it was a useful experimen-
tal task because participants’ choices were observable and
easily identifiable and because both base rates and cue
predictiveness could be experimentally manipulated. Addi-
tionally, because of the task’s problem-solving nature, the
way participants encoded each trial and how they made their
choices were a natural part of the solution process. That is,
each trial was not explicitly presented as a set of features and
a set of options; instead, the trial’s features and options were
embedded in the context of a given problem to be solved.
This could lead participants to approach the task in a way
that was more similar to the way they approached real-world
choice situations. However, the task was simple enough that
experimental control of the task would be high and operation-
alizing a measure of choice was straightforward.

The problem-solving task we chose is called the Building
Sticks Task (BST; Lovett & Anderson, 1996). For a given

BST problem, solvers must add and subtract an unlimited
supply of three different-sized building sticks to create a
stick of the desired length (see the top of Figure 2). BST
problems can be solved by one of two procedures. The
undershoot procedure involves starting with a building stick
that is shorter than the desired stick and then lengthening
that stick by additional building stick lengths until the
desired stick’s length is reached. In contrast, the overshoot
procedure involves starting with the building stick that is
longer than the desired stick and then shortening that stick
by the other building stick lengths. As Figure 2 indicates,
participants implicitly choose between these two solution
procedures in their first step.

For example, suppose that the desired stick was 14 units
long and that Sticks A, B, and C were 4, 17, and 6 units long,
respectively. To obtain the desired stick length of 14 units,
the participants might start with Stick B (17 units) and

Initial State
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current:
building:
[alC b llc]
2082 add|b adq .
_ Undershoot Over{shoot Undershoot
desired: | desired: [N desired: [
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ir
states building: building building:
[a][ b |Cc ]| =] b JLc 1| [l b Il c]
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Figure 2. Initial and subsequent states in the Building Sticks Task (BST). Each BST problem
includes three building sticks and a desired stick. The solvers’ task is to build a current stick (it_nitially
Length 0) that matches the desired stick in length by adding and subtracting various combinations of
the building stick lengths. A solver’s solution strategy can be categorized into undershoot or

overshoot strategies according to the first move.
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remove segments (the overshoot procedure), or the partici-
pants might start with Stick C (6 units) and add more
segments (the undershoot procedure). In this example, a
solution can be obtained only by the undershoot procedure
(C+ C+ A=6+4+4=14). The overshoot procedure
will not work because subtracting Lengths A and C from B
will never lead exactly to a stick of 14 units long. Of course,
in other problems the overshoot procedure may be the
correct one to use.

Note that the participants were never given the exact
numerical lengths of the sticks; the example just given was
used for expository purposes. In the experiment, participants
had to visually estimate the length of each stick. This
prevented them from being able to solve the task algebra-
ically and forced them to try a strategy (i.e., to make their
choices externally) to determine whether it would work.

It was possible to vary base rates and cue predictiveness
independently in this task. First, we discuss how these two
types of information can be varied individually; we then
show that such manipulations can be done independently.
The manipulation of base rates is straightforward: We design
each problem to be solvable by either undershoot or
overshoot (but not both) and then vary the proportion of
problems with each solution. To vary cue predictiveness, we
design problems with certain feature patterns and then vary
the proportion of problems with a given pattern that are
solvable by one procedure. If all or almost all of the
problems with a certain feature pattern are solved by one

procedure, then that feature pattern is predictive of that
procedure’s success. On the other hand, if half of the
problems with a certain feature pattern are solved by one
procedure and the other half of those problems are solved by
the other procedure, then that feature pattern is not predic-
tive (i.e., seeing that feature pattern offers no information to
help decide which procedure will solve the problem).

Figure 3 shows the feature pattern that we manipulated to
be predictive or not predictive across conditions in this
experiment. We call it the relative length cue. For the
problems in the top row, Building Stick C is closer in length
to the desired stick than is Building Stick B. This pattern of
lengths provides a cue to use the undershoot procedure (i.e.,
to choose Building Stick C in the first step) because doing so
gets closest to the problem goal. The problems in the bottom
row of Figure 3 have the opposite length pattern: Building
Stick B is closer in length to the desired stick than is
Building Stick C. This provides a cue to use the overshoot
procedure (i.e., to choose Building Stick B in the first step)
because doing so gets closest to the problem goal. The
RCCL model predicts that this cue will influence partici-
pants’ initial choice because it makes use of salient features
in the task (i.e., the lengths of the desired stick, Building
Stick B, and Building Stick C) and combines them in a
meaningful way based on prior knowledge (e.g., a hill-
climbing heuristic that aims to get as close to the goal as
possible with each step).

Figure 3 also shows how problems with the same relative

Predictiveness of Length Cue

Closer strategy is
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desired: [ I desired: R I
Undershoot | current: current:
Closer o o
building: building:
B! b ] <1 B} b ] ]
Relative -
Length Features: c¢ closest to desired Features: c closest to desired
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Figure 3. The four problem types (undershoot closer and overshoot closer X closer strategy is
correct and closer strategy is incorrect) used as training problems in Experiment 1. These examples
highlight that the length cue was not always predictive of the correct procedure.
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length cue can be paired with either an undershoot or
overshoot solution. Specifically, the two problems in each
row have almost identical feature patterns but are solved by
different procedures. By using these four problem types in
different proportions, we can design problem sets that
independently vary the base rates of undershoot versus
overshoot success and the predictiveness of the relative
length cue.

In Experiment 1 we manipulated the relative base rates of
overshoot versus undershoot and the predictiveness of the
relative length cue to test the four predictions of the RCCL
model. First, initial cue use in the BST task should be
determined by feature saliency. Specifically, participants
should be initially sensitive to the lengths of the choices
relative to the desired stick length. Second, participants
should learn the relative rates of success of the overshoot
and undershoot procedures because we expected that their
task representations would distinguish between these proce-
dures. Third, participants should stop using the relative
length cue if it proves not to be predictive. Fourth, when the
strategies generated under the initial task representation are
relatively unsuccessful, participants should change their task
representations and strategies (i.e., stop using the relative
length cue).

Method

Participants. Fifty-eight Camegie Mellon University under-
graduates participated for course credit and were randomly as-
signed to one of four conditions.

Design. Four experimental conditions (2 X 2 design) differed
in the set of training problems that participants solved. First, we
manipulated the overall base rates of success of the two solution
procedures. In the “‘biased base-rates case,” 70% of the problems
were solved by one procedure and 30% of problems by the other
(with the procedure assigned to be more successful counterbal-
anced across participants). In the “not-biased case,” 50% of the
problems were solved by overshoot and 50% by undershoot.
Manipulated orthogonally to these base rates was whether the
relative length cue would be predictive of a certain procedure being
successful. The cue was considered “predictive” when 80% of the
undershoot-closer problems were solved by undershoot and 80% of
the overshoot-closer problems were solved by overshoot. It was
considered “not predictive” when 50% of the problems of each cue
type were solved in accordance with their cue. The four conditions
resulting from this factorial combination are labeled biased/

Table 1

predictive, biased/not predictive, not biased/predictive, and not
biased/not predictive, in which the first term describes the base rate
of the condition and the second term describes cue predictiveness.

Stimuli.  All training problems were designed to have extreme
relative length cues. That is, the relative stick lengths would be set
so that Stick C was much closer to the goal than Stick B or vice
versa, In addition, we designed each problem to have a “twin”
version that looked highly similar in terms of its stick lengths (e.g.,
within a few pixels) but that was solved by the alternate procedure.
(The same-row entries in Figure 3 are exampies of such “twins.”)
This made it easy to manipulate whether a problem with a certain
length cue was solved in accordance with its cue; we included only
one or the other twin.

To create the problem set for each condition, we included a
certain proportion of each of the four problem types shown in
Figure 3. We constrained each problem set to include half
undershoot-closer problems and half overshoot-closer problems. In
this way, every participant would see the same distribution of
problem features. For a condition in which the relative length cue
was to be predictive, the proportion of problems whose solution
matched the cue (Type I + Type III from Figure 3) was set to .80;
for the not-predictive case, this proportion was set to .50. For the
biased base-rate manipulation, the proportion of problems solved
by the more successful procedure (e.g., Type I + Type IV from
Figure 3) was set to .70, and, for the not-biased condition, it was set
to .50. Table 1 shows the resulting proportions we used.

Procedure. At the beginning of the experiment, a computer
tutorial provided participants with instructions in the BST and
examples of problems solved by the undershoot and overshoot
procedures, although the two strategies were not given explicit
labels. The experiment itself consisted of 80 training problems.
Participants worked on each of these problems until a solution was
reached (i.e., until the length of the stick they were building
matched the length of the desired stick). Participants were encour-
aged to use a “reset” button when they wanted to erase the current
stick they were building and start a new solution attempt.

In addition to the 80 training problems, participants were given a
set of 10 test problems immediately before and after the training
set. The purpose of these test problems was to measure initial and
final strategy use (i.e., cue use and overall rates of use of each
strategy) without providing additional feedback about the success
rates of the strategies during the test. We expected that participants
would change their strategy use if feedback were provided. On
these test problems, participants were asked to take only the first
step on the way to a solution; after they did so on a given problem,
the screen was automatically erased without any feedback. The 10
test problems were designed to have different stick lengths so they
would span the range of relative length cues. Specifically, there

Proportion of Problem Types in Each of the Four Conditions for Experiment 1

Proportion of problems of each type

Undershoot closer Undershoot closer Overshoot closer Overshoot closer

Condition undershoot solved overshoot solved overshoot solved undershoot solved
Not biased/not predictive 25 25 25 25
Not biased/predictive 40 10 40 10
Biased/not predictive 35 15 15 35
Biased/predictive® 48 02 30 20

These proportions lead to 68% undershoot-solved problems and 78% cue-predictive problems (as opposed to 70% and 80% as specified in
the design). This slight difference was allowed so that participants in this condition would encounter each problem type at least once during

training.
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were two problems with a strong cue to choose undershoot (i.e.,
Stick C was much closer to the desired length than Stick B); two
problems with a weak cue to choose undershoot (i.e., Stick C was
somewhat closer to the desired length than Stick B); two neutral
problems (i.e., Stick C and Stick B were equally close to the desired
length); two problems with a weak cue to use overshoot (i.e., Stick
B was somewhat closer to the desired length than Stick C); and two
problems with a strong cue to use overshoot (i.¢., Stick B was much
closer to the desired length than Stick C). The strong-cue problems
were most similar to those presented during training, although none
of the test problems was identical to any of the training problems.

At the end of the experiment, participants were asked several
questions to probe their task representations and strategies (e.g.,
“How did you decide which stick to use in your first solution
step?” “Did you use any particular strategies to solve these
problems?”).

Analysis. The main dependent measure of interest was the
solution procedure participants chose for each test problem. To
identify the chosen solution procedure, we categorized partici-
pants’ first stick selection as either Jonger than the desired stick (an
overshoot choice) or shorter than the desired stick (an undershoot
choice). Participants almost never chose the smallest building stick
in their first move, so our categorization essentially distinguished
between the choice of the long versus medium-sized building stick.
In the following analyses, we present these choice data in terms of
the percentage of trials for which the choice corresponded to the
participants’ more successful procedure. In the not-biased base rate
conditions, in which both procedures were equally successful, this
“more successful”’ label is arbitrary. Thus, we randomly assigned
undershoot and overshoot to this label for participants in the
not-biased conditions.

Results and Discussion

Prediction 1: Salient features of the task will influence
initial cue use. The first prediction was that participants
would tend to represent the salient features of the task and
hence generate strategies that would make use of those
features. Because these strategies are the basis for action,
participants’ initial choice behavior should be sensitive to
the features they initially represent. In the BST, we focused
on the relative length cue as a salient feature pattern that
participants would likely include in their task representation.
This suggests that on the test problems before training,
participants’ choices should exhibit sensitivity to this cue
(i.e., there should be differences in choice proportions across
the five test problem types that vary in relative lengths).
Moreover, the RCCL model claims that salient features are
combined into strategies in a way that is consistent with
prior knowledge. Thus, according to our more specific
prediction, we would find that participants would exhibit
sensitivity to the relative length cue in a way that is
consistent with the general notion of hill climbing (i.e., they
would prefer the undershoot procedure on undershoot-closer
problems and the overshoot procedure on overshoot-closer
problems).

Figure 4 shows participants’ choice tendencies for the five
test problem types in both the initial and final tests. The four
panels show the results for the four conditions. With respect
to Prediction 1, we focused on the curve corresponding to
the initial test in each panel. Note that all four conditions
show a similar initial sensitivity to test problem type (i.e., all

four initial test curves show an upward linear trend), F(1,
296) = 246, MSE = 0.1, p < .001. This suggests that
participants represented BST features strongly related to the
length cue and that these represented features played a role
in their strategies for choice. For example, a reasonable
description of this initial choice behavior is as follows: (a) If
Stick B is closer to the goal than Stick C, then choose Stick
B (begin overshoot). (b) If Stick C is closer to the goal than
Stick B, then choose Stick C (begin undershoot). According
to RCCL, these two if-then statements correspond to
strategies that participants might generate based on their
representation of the relative length cue.

Prediction 2: Under a given task representation, people
will learn to prefer the strategies that have higher base rates
of success. Prediction 2 states that participants will learn to
prefer strategies that have been more successful in their past
experience. In this experiment, as long as participants
generated strategies that distinguish between the undershoot
and overshoot procedures, they should learn to prefer the
strategy corresponding to the more successful procedure.
Figure 5 shows participants’ choices between the two
procedures, averaged by condition and by test. Here, we
focused on choice at the final test because it reflected what
participants had learned during training. Note that the y-axis
measures the proportion of test trials on which participants
chose the more successful procedure. For the biased condi-
tions, this maps onto undershoot for half the participants and
overshoot for the other half; the mapping is arbitrary for the
not-biased conditions in which the two procedures were
manipulated to be equally successful. An analysis of vari-
ance (ANOVA) on these data, with base rates and cue
predictiveness as between-subjects factors, revealed a main
effect of base-rate condition, with the biased base-rate
participants choosing the more successful procedure more
often than the not-biased base-rate participants, F(1, 54) =
19.5, MSE = 0.22, p < .01. The particular values of these
aggregate choice results not only show base-rate sensitivity
but are consistent with probability matching, a phenomenon
found in other direct-experience situations (e.g., Estes, 1964;
Gluck & Bower, 1988; Lovett & Anderson, 1995). Specifi-
cally, participants in the biased/predictive and biased/not-
predictive conditions, who had 70% of their problems
solved by the more successful procedure, chose that proce-
dure on 72% and 63% of the test problems, respectively.
Solvers in the not-biased/predictive and not-biased/not-
predictive conditions, who had half of their problems solved
by each procedure, chose the more successful procedure on
45% and 47% of the test problems, respectively.

This difference among conditions at the final test was not
due to differences before training; there were no differences
at initial testing because of base-rate condition (F < 1) or
because of predictiveness condition (F < 1). Moreover, a
mixed ANOVA including the two between-subjects factors
and the within-subjects factor test (initial or final) indicated
a greater shift in choice proportions from initial to final test
among the biased conditions, F(1, 72) = 4.94, MSE = 0.21,
p < .05. These results indicate that participants in the
different conditions started out with fairly neutral choice
tendencies regarding the two procedures and that after
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Figure 4. Choice proportions as a function of test problem type in Experiment 1 for the initial and
final test phases. Relative length cue “high toward” refers to the test problems with relative stick
lengths that made the overall more successful procedure appear closer to the goal. “Low against”
refers to the test problems with a weak relative length cue that made the overall more successful

procedure look farther from the goal.

training they did exhibit choice preferences consistent with
the base rates corresponding to their condition, as the RCCL
model predicted. The participants were able to show base-
rate sensitivity because their initial task representation
included a feature that distinguished between the overshoot
and undershoot procedures.

Prediction 3: People will drop cues that prove to be
irrelevant. The third prediction was that participants should
drop features from their representation when the strategies
derived from that representation are not successful. Here, we
have evidence that participants initially included features
related to the relative length cue in their representation (see
Figure 4, initial test curves). Basing one’s choices on this
cue, however, will not be successful in the not-predictive
conditions. Therefore, the RCCL model predicts that, by the
final test phase, participants in the not-predictive conditions
would be less sensitive to this cue than would participants in

the predictive conditions. We explored this issue by investi-
gating participants’ explicit reports at the end of the experi-
ment and by studying their final choice behavior across the
five test problem types.

Explicit reports. At the end of the experiment, partici-
pants were asked to describe how they went about solving
the BST problems. In particular, they were asked how they
decided which building stick to use for their first move. This
question was designed to tap participants’ explicit access to
their task representation and strategies. We categorized the
participants’ free-form responses into three major groups:
those indicating sensitivity to various stick lengths, those
indicating exclusive choice of a single procedure, and a
miscellaneous group. This categorization was done by key
words. If the response mentioned stick lengths, it was coded
as a length-sensitive strategy. Many of these length-sensitive
responses made comparisons between Stick B and the
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Figure 5. Base-rate sensitivity for Experiment 1 by condition for
initial and final tests.

desired stick or Stick C and the desired stick, similar to our
definition of the relative length cue, which we hypothesized
participants would naturally represent. If the response
indicated that the participant had used a single procedure
“always,” “‘usually,” or “‘generally,” it was coded as an
exclusive strategy. The miscellaneous category included all
other responses, which often appeared to be guessing
strategies. Table 2 shows the percentage of participants in
each condition whose responses fell into each category. Our
prediction that participants would be less likely to use the
length-based cue in the not-predictive conditions relative to
the predictive conditions was supported by these explicit
reports: Not-predictive conditions had 12% length responses
and predictive conditions had 40% length responses (z = 4.8,
p < .001).

These explicit reports are our first evidence that partici-
pants in different conditions differed by the end of the
experiment in their representations of the task.! Analyses
comparing these explicit reports with participants’ behaviors
during training support the reports’ validity: Solvers who
reported “exclusive” strategies chose the more successful
procedure more often than did solvers reporting other
strategies, F(1, 55) = 3.2, MSE = 0.07, p < .05, one-tailed.
Furthermore, participants who reported using stick lengths

Table 2
Percentage of Participants Reporting Certain
Strategies in Experiment 1

Strategy report
Condition Length Exclusive Other
Not biased/not predictive 13 27 60
Not biased/predictive 30 40 30
Biased/not predictive 11 78 11
Biased/predictive 50 50 0
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Figure 6. By condition in Experiment 1, initial and final sensitiv-
ity to the relative length cue, measured as the slope of choice curve
across five test problem types.

showed more sensitivity to the relative length cue than did
participants reporting the other strategies, F(1, 55) = 3.1,
MSE = 043, p < .05, one-tailed, when sensitivity was
measured as the difference in choice preference between
undershoot-closer and overshoot-closer training problems.
Thus, the participants did appear to make explicit changes in
the task representations and these changes were related to
performance differences.

Behavior data. Regarding the behavior data, the RCCL
model’s prediction is that on the final test, participants in the
not-predictive conditions will show less sensitivity to the
relative length cue than will participants in the predictive
conditions. Referring to Figure 4, one sees that the condi-
tions did differ in their final sensitivity to the test problem’s
relative length cue. An ANOVA on these final data alone
(using base rates and cue predictiveness as between-subjects
factors and test problem type as a within-subjects factor)
revealed the expected interaction between predictiveness
and test problem type, F(4, 288) = 3.34, MSE = 0.105,p <
.05. Specifically, there was less of an effect of test problem
type in the not-predictive conditions than in the predictive
conditions. This suggests that, at the end of the experiment,
the not-predictive conditions were less sensitive to the
relative length cue than were the predictive conditions.

Participants’ degree of sensitivity to the relative length
cue is perhaps best quantified by computing the slope of
their choice proportions against test problem type (e.g., the
slope of the curves in Figure 4). Figure 6 shows these slope

! Note that the explicit reports also show a fairly high level of
within-conditions, between-subjects variability. This is entirely
consistent with the model’s predictions of task representation
change following feedback.
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data, averaged by condition and test.?2 As predicted by the
RCCL model, at the final test, the average slope for the
not-predictive conditions was flatter than that for the predic-
tive conditions, F(1, 56) = 10.08, MSE = 0.02, p < .01.
Indeed, the former was not significantly different from zero,
t(27) = 0.2, ns, indicating no difference in choice tendencies
across the different test problem types. Moreover, these data
emphasize each condition’s change in sensitivity from the
initial test to the final test. The finding that all conditions
showed a decrease in slope, F(1, 54) = 6.93, MSE = 0.01,
p < .05, probably reflects the fact that even in the predictive
conditions, the relative length cue was only 80% predictive.
However, the most striking slope changes between initial
and final test occurred for the not-predictive conditions, F(1,
54) = 4.43, MSE = 0.01, p < .05.

In summary, these results indicate that some representa-
tional change occurred among all conditions but that the
greatest change occurred in the not-predictive conditions. It
was in these conditions where the initially preferred strategy
of choosing the stick that gets closest to the goal would not
be successful. Thus, consistent with the RCCL model,
participants in the not-predictive conditions stopped using
the cue that played a large role in their original representa-
tions, as reflected in both their verbal and behavioral data.

Prediction 4: More representation and strategy change
will occur in tasks with low success. Prediction 4 involves
the relative degree of change that would be expected to arise
under different task conditions. In particular, the RCCL
model proposes that solvers will change their representation
(and strategies) when their current strategies are fairly
unsuccessful rather than uniformly and stochastically over
time. The condition in this experiment in which any set of
strategies would have limited success is the not-biased/not-
predictive condition. This is because neither a strategy based
on base rates of undershoot versus overshoot nor a strategy
based on the relative length cue (nor any other strategy)
would lead to success in this condition. The overall success
rate of this condition attests to its difficuity: Participants in
the not-biased/not-predictive condition solved 52% of prob-
lems in the final training block within the first five moves,
whereas the other conditions averaged 60% (biased/not-
predictive), 63% (not-biased/predictive), and 58% (biased/
predictive), F(1, 54) = 5.85, MSE = 0.014, p < .05. The
specific RCCL prediction, then, is that more change should
arise in this most difficult condition: not-biased/not-
predictive.

To quantify representational change and to demonstrate
that it occurs to varying degrees at the individual level,
Figure 7 (bottom) shows 6 participants’ choice patterns
across the training trials. Each panel presents a two-
dimensional matrix of cells for characterizing an individu-
al’s sensitivity to the relative length cue (along the x-axis
within a matrix) and base-rate sensitivity (along the y-axis
within a matrix, measured as the proportion of choice of
more successful strategy). The top matrix in Figure 7
provides a template for displaying the different behaviors
that the matrix can describe. For example, the bottom-right
cell (Cell i) represents choice behavior that shows positive
sensitivity to the relative length cue and a tendency to

choose the more successful procedure only rarely (approxi-
mately 10% of the time). In contrast, the top center cell (Cell
b) reflects a strong tendency to choose the more successful
strategy but no sensitivity to stick lengths.

In the bottom six panels, the Numbers 1-4 in each matrix
indicate which cell best characterizes the participant’s
choice behavior on the first through fourth training block
during the experiment. The path from Data Point 1 to Data
Point 4 in a given panel shows the changes in choice
tendencies of that individual across time. Participants with
data points all in the right half of the two-dimensional grid
maintained a sensitivity to stick lengths throughout the
experiment, whereas participants with data points varying
along the x-axis changed their sensitivity. Similarly, partici-
pants with data points at a constant height in the grid
maintained a certain preference between the two procedures,
whereas participants with data points at varying heights
changed their preference. These different trajectories high-
light the different patterns of change exhibited by partici-
pants in this experiment. For example, Participant 204
showed no change over the course of the task. This is not
surprising because this participant was in the not-biased/
predictive condition, which likely matched people’s initial
expectations of the task. In contrast, Participant 895 showed
large strategy changes over the course of the task, varying
both whether one strategy was preferred and whether
the relative length cue was used. Again, this was not
surprising given that this participant was in the not-biased/
not-predictive condition, for which no strategy would be
successful.

This matrix representation makes it possible to compute
how “far” an individual has moved in this two-dimensional
strategy space through the course of the experiment. For
each participant, we computed the city-block movement
across the four training blocks. For example, Participant 204
in Figure 7 had a city-block distance of zero, and Participant
895 had a city-block distance of 7 (3 + 2 + 2). The partici-
pants in Figure 7 were chosen to represent the Oth, 20th,
40th, 60th, 80th, and 100th percentile in terms of this
distance metric. Using this city-block distance, we compared
the amount of change in the not-biased/not-predictive condi-
tion with the other three. The mean city-block distance for
participants in the not-biased/not-predictive condition was
higher (3.3 units) than that of the participants in the other
conditions (2.4 units), F(1, 54) = 2.9, MSE = 3.0, p < .05,
one-tailed. Thus, participants in the most difficult condition
appeared to change their task representation and strategies
more over the course of the experiment than did participants
in the “easier” conditions. However, the success rates were

2 These data were computed by submitting each individual’s
initial and final test data to a linear regression and estimating the
slope coefficient. The independent variable in each regression was
the test problem’s relative length cue (coded 1-5 to represent a
continuum from “strong cue against the more successful proce-
dure” to “strong cue toward the more successful procedure’), and
the dependent variable was the proportion of test problems on
which the more successful procedure was chosen.
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Figure 7. Top: Two-dimensional grid for describing choice behavior in the Building Sticks Task.
Each cell characterizes an individual’s choice behavior according to his or her choice of the more
successful strategy and sensitivity to the relative length cue. Bottom: Individual choice pattern
trajectories for 6 participants in Experiment 1. Numbers 1-4 indicate categorized behavior in the first
through fourth blocks of training trials for each participant.

not high in any of the conditions, resulting in generally high  rate information and problem-specific (cue) information.
levels of change. Participants’ overall tendency to choose the more successful
procedure shifted upward (between the initial and final tests)
for the biased base-rate conditions but stayed the same for
the not-biased base-rate conditions. In addition, participants’

Given these results, participants appeared to make their  sensitivity to the relative length cue, although strong for all
choices according to a well-balanced combination of base- conditions initially, was maintained in the predictive condi-

Summary
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tions and was substantially reduced in the not-predictive
conditions. Thus, participants showed reasonable choice
behavior: Their choices were sensitive to a source of
information only when that source of information reliably
led to success.

Experiment 1 also produced four specific findings, each of
which was predicted by the RCCL model. First, we found
that participants initially made their choices in a way that
was sensitive to the relative length cue. The RCCL model
predicted this because the features making up this cue were
salient and, based on prior knowledge, highly relevant to
solving BST problems. Second, we found that participants
were base-rate sensitive, choosing the more successful
procedure more often in the biased base-rate conditions.
RCCL predicts that people will be base-rate sensitive as long
as their constructed strategies consistently distinguish among
the possible choices. Third, we found that the task represen-
tations and strategies that participants used could be influ-
enced by manipulating the predictiveness of certain task
features; in particular, participants in the not-predictive
conditions reduced their use of the relative length cue. This
outcome was predicted because the RCCL model posits that
people should drop features from their task representation
(and incorporate new ones) when their current features and
strategies are not leading to success. Fourth, we found that
the degree to which individuals changed their choice behav-
ior was related to the lack of success of their condition. This
result was predicted by RCCL because having less success-
ful strategies in general should lead to more representational
change.

All of Experiment 1’s results were found in the context of
a problem-solving task, the BST, in which it is intuitively
reasonable that participants generate and use various strate-
gies for making their problem-solving choices. In other
choice tasks, the role of problem-solving-like strategies is
less obvious. Therefore, in Experiment 2, we explored
related issues regarding base-rate and cue sensitivity in the
context of a simpler categorization task.

Experiment 2: The Colors Task

Experiment 2 was focused on base-rate and cue sensitivity
in the Colors Task. This task was chosen because it allows
the study of representation and strategy change in a choice
context where we could manipulate participants’ representa-
tions not only by varying the probabilities of different
outcomes but also by varying the overall “look™ of the task.
In particular, we designed two distinct versions of the task so
that participants would approach the two versions with
different task representations. In this way, not only should
participants in different base-rate conditions learn to repre-
sent the task differently on the basis of their experience (as
they did in Experiment 1), but those given different task
versions should also initiate the experiment with different
representations and strategies. In particular, the goal of
Experiment 2 was to test whether different initial representa-
tions of the same underlying task could lead to different
base-rate effects. In Experiment 2, we also extended our use
of explicit reports as an additional means of gathering

information about participants’ task representations and
strategies.

The other reason for choosing the Colors Task is that it is
the only case in the literature that we know of that claims to
find base-rate neglect on training trials in a direct-experience
situation (Goodie & Fantino, 1995). We wanted to explore
the task that had led to this unusual result. Essentially, the
original Colors Task (Goodie & Fantino, 1995) is a delayed
match-to-sample task in which the correct choices are
determined by fixed probabilities. Each trial begins with the
presentation of a cue (also called the “sample”), a single
rectangle colored either blue or green. After a delay, two
rectangles appear, one in the color of the cue and one in the
other color. The participant then chooses one of these two
rectangles (i.e., either the one matching the cue color or the
other one) and receives feedback about whether the choice
was correct. Note that the probability of being correct by
matching to the blue cue can be different from the probabil-
ity of being correct by matching to the green cue. Goodie
and Fantino manipulated these two probabilities across
conditions. They found that, even after approximately 200
trials of practice and even with monetary payoff as an
incentive, participants’ choices did not always conform to
the cue-specific probabilities of their condition. For ex-
ample, in one condition in which matching the cue color was
correct 80% of the time for one cue color and 50% of the
time for the other cue color, participants’ choices averaged
78% and 70% matching those two colors, respectively.
Similarly, in another condition in which matching the cue
color was correct 67% of the time for one cue color and 33%
of the time for the other cue color, participants’ cue-
matching choices averaged 62% and 56% for the two cue
colors, respectively. In each condition, participants’ match-
ing percentages were highly similar for the two cue colors
(less than 10% apart) despite a substantial difference be-
tween the corresponding percentages produced by the task
(approximately 30% apart). This led Goodie and Fantino to
conclude that participants were not adequately sensitive to
base rates, specifically the base rates of the two choice
colors. One can see that this is true from the description of
their data: Matching the two cue colors approximately
equally often implies that participants were choosing the two
choice colors approximately equally often, yet the matching
probabilities for the two cue colors were different, implying
one choice color was correct more often than the other.

Note, however, that participants in Goodie and Fantino’s
(1995) experiment were sensitive to another base rate, the
overall base rates of success of matching the cue color. In the
first condition, in which matching the cue color was correct
on average for 67% of all trials, participants’ average
matching rate across the two cue types was 74%, and in the
second condition, in which matching the cue color was
correct on 50% of all trials, participants’ average matching
rate was 59%. That is, participants were more likely to
choose to match the cue color in the condition for which this
was more successful. Thus, even in Goodie and Fantino’s
experiment, contrary to their claims, people are base-rate
sensitive in this experiential task; they are sensitive to the
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base rates of matching versus not matching the cue color.
Even from this “matching” perspective, however, the partici-
pants in Goodie and Fantino’s experiment displayed an
interesting departure from normative behavior: They did not
adequately integrate cue-specific information with overall
base rates. That is, they were not sensitive to the separate
success rates for matching to each cue color. We call this
kind of sensitivity (or lack thereof) cue-specific base-rate
sensitivity.

The RCCL model offers a representation-based account of
these results. According to RCCL, the key to overall and
cue-specific base-rate sensitivity depends on having the
relevant features in one’s task representation. If participants
include in their representations and strategies the “‘match/not-
match” status of each trial but not the specific colors, then
they will be sensitive only to the overall base rates of
matching. In contrast, if participants include in their task
representations and strategies the specific colors for each
trial, then they should be able to learn the different base rates
associated with each cue color and exhibit case-specific
base-rate sensitivity.

We tested this explanation in Experiment 2 by varying the
superficial features of the task to make the individual cue
colors more salient and the “match” feature less salient.
This manipulation, according to the RCCL model, should
produce stronger cue-specific base-rate sensitivity. More
important, this manipulation serves as a more direct test of
the RCCL model’s predictions regarding the role of task
representations in initial choice behavior, as compared with
the tests in Experiment 1.

The overall structure of Experiment 2 was to study
base-rate sensitivity in the original Colors Task as well as in
our own modified version of it. The original version of the
Colors Task is referred to as “2 colors.” Our modified
version (“4 colors”) maintains the same structure and
probabilities of the original Colors Task but uses four colors
in total: The cue can take one of two colors, as in the original
version, but the choices are two additional colors.

Given that participants will tend to encode cue and choice
colors that are the same as “matching,” participants in the
2 colors” task may represent the choice colors as “match-
ing” or “not matching” the cue color, whereas participants
in the “4 colors” task will not be able to do so (i.e., the
choice colors are never the same as cue colors in the “4
colors” task). With such differing representations, the RCCL
model] predicts that the two task versions evoke different
strategies: ‘2 colors” participants will generate strategies
that involve matching the cue color, whereas “4 colors”
participants will not. Because the RCCL model claims that
people learn from their experience in a task in terms of the
choice strategies they are using, it predicts that the difference
in strategies generated under the two task versions will lead
to different patterns of learning.

In summary, the RCCL model makes three key predic-
tions for Experiment 2:

1. Overall base-rate sensitivity depends on strategy sets.

If participants represent the task in terms of match and not
match, then they should be sensitive to the global base rate
of success of match and not match. Because the participants

in the two-color condition are expected to represent the task
in this fashion, they are expected to choose to match more
often in the 80/50 condition (67% match success rate
overall) than in the 67/33 condition (50% match success rate
overall). In contrast, the participants in the four-color
condition are not likely to represent the task in terms of
match and not match and therefore should not be sensitive to
the overall base rate of match and not match (i.e., they will
show little or no difference in overall match rates across the
67/33 and 80/50 conditions).

2. Cue-specific base-rate sensitivity depends on cue sa-
liency. Because the four-color participants are expected to
represent the separate cue colors, they should be able to
learn the separate base rates associated with each cue color.
In contrast, because the two-color participants are expected
to abstract across the two cue colors and represent only the
choice colors’ match status, they should be less able to learn
a separate base rate associated with each cue color.

3. Changes in task representations will be a function of
task difficulty. Not only does the RCCL model predict
asymptotic choice tendencies within each of the conditions,
but it also predicts that participants can change their task
representations (and corresponding strategies) during the
task and predicts when these changes are more likely to
occur. Specifically, as in Experiment 1, the model predicts
that the degree of representation change over time will be a
function of overall strategy success rates (i.e., condition
difficulty). In Experiment 2, the two-color 67/33 condition is
expected to be the most difficult condition because the task
representation that is most obvious in that condition (match
and not match) will be unsuccessful (i.e., at chance).
Therefore, the RCCL model predicts most representational
change in that condition.

Prediction 1 contrasts with an implicit memory view in
that we are predicting that participants will learn only the
base rates of features that they are explicitly representing.
That is, even if other features occur with different base rates,
participants will be able to learn only different base rates for
the features included in their task representations. Implicit
memory theories allow for base-rate learning to occur
without explicit awareness. Prediction 1 also contrasts with
Goodie and Fantino’s (1995) suggestion that people cannot
learn base rates in this experiential task. Instead, our model
claims that people are always learning and using base rates
from their experiences of success and failure; it is just that
the strategies on which those base rates are being computed
may not conform to the experimenter’s intended task
representation (e.g., measuring sensitivity to different base
rates of choice color will not reveal people’s sensitivity to
different base rates of match vs. not match). Prediction 2,
like Prediction 1 of Experiment 1, is consistent with other
feature-weighting categorization models: The more salient a
feature, the more likely it is to be influential in participants’
choices (e.g., Anderson, 1991; Goldstone et al., 1997;
Kruschke, 1996; Nosofsky, 1984). However, these other
models do not make all the other predictions that the RCCL
model does. In particular, Prediction 3 is especially novel:
RCCL predicts that representational change will occur over
time even in a simple choice task and that such change is
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more likely in certain circumstances. These three predictions
were tested by examining participants’ choice data and their
explicit strategy reports.

Method

Participants. Eighty Carnegie Mellon undergraduates partici-
pated for course credit and were randomly assigned to one of four
conditions.

Design. There were four experimental conditions that differed
according to two factors: (a) the version of the Colors Task (““2
colors” vs. “4 colors”) and (b) the probabilities determining
correct choices ““67/33” and ““80/50.” These probability pairs are
the same as those used by Goodie and Fantino (1995). Figure 8
shows the cue—choice combinations to which these probabilities
apply (both for “2 colors” and “4 colors”). For the ‘“67/33
two-color condition,” the probability that choice Color A would be
correct after Cue A was .67, and the probability that choice Color B
would be correct after Cue B was .33. For the “80/50 two-color
condition,” the probability that choice Color A would be correct
after Cue A was .80, and the probability that choice Color B would
be correct after Cue B was .50. Thus, in the two-color case, the
probability label indicates the probability that the correct choice
matched the color of the cue for Cue Colors A and B. In both
conditions, A is called the more reliable cue and B the less reliable
cue because Cue A is a more reliable predictor of the matching
response. The probabilities were the same for the four-color
conditions, but here the cue and choice colors were never the same,
so color “matching” refers to the choice color that is paired with
each cue color, by analogy to the two-color conditions. Note that
for each participant, either two or four colors were chosen from the
set {red, blue, yellow, green} and randomly assigned to the various
cue and choice colors as required for that condition.

Procedure. At the beginning of the experiment, a computer
tutorial provided participants with instructions and practice on a
black-and-white “2 colors” version of the Colors Task. Each
participant was then given 200 trials. Each trial was initiated with a
“ready?” message that disappeared as soon as the participant
clicked the computer mouse. Then, a single square-shaped cue
color would appear. The cue would remain on the screen until the

Two Colors Four Colors
cue cue cue cue
67/33
choice choice choice choice
7 .
HE HEE R =N =
67 .33 .67 33 .67 33 .67 33
cue cue cue
80/50
choice choice choice
HE JEE JR=
.80 20 .50 .50 .80 20

Figure 8. The probability of each choice being correct with each
given cue for all four conditions (two color vs. four color X 67/33
vs. 80/50) of Experiment 2. Here the patterns are used to represent
the different colors participants saw.

Prompt: Ready? self-timed
Cue: self-timed
Delay: 3 seconds
Choices: self-timed
Feedback: correct self-timed

points = 6 nimimam)

Figure 9. The trial structure of the Colors Task (Experiment 2).
Note that participants saw colored squares rather than black and
white squares.

participant clicked on it with the computer mouse. Then, after the
screen remained blank for 3 s, the two choice colors would appear
in square shapes. The assignment of each choice color to left-right
placement was random. The choice colors would remain on the
screen until the participant clicked on one of them. Finally, the
choice colors would disappear, and a feedback message would be
given (both visually and aurally), indicating whether the choice
was correct. The total number of points accumulated so far (+1 for
correct, +0 for incorrect) was also displayed at this time. The
feedback message remained on the screen until the participant
clicked the computer mouse but for a minimum time of 1 s. Then,
the next trial’s “ready?”’ message would appear. Figure 9 shows an
overview of the task structure.

Postexperimental questions were administered verbally by the
experimenter. These questions asked the participant to describe in
words the various choice strategies that he or she had used
throughout the course of the experiment. The participant was asked
to indicate which of these strategies had been used most recently
(i.e., at the end of the experiment). These questions served to
provide convergent evidence regarding the features that the partici-
pants represented, the strategies they used, and the degree
of representational change over the course of the task. Addition-
ally, for each strategy verbalized by a participant, the following
specific questions were asked: ‘“‘Overall, how often did you use
the strategy?” “Of those times, how often was that strategy
successful?”

Analysis. The main dependent measure in this experiment
concerned the choice color that the participant chose on each trial
as a function of the cue color presented on that trial. The analyses
show these choice data in terms of whether the participant’s choice
matched the color of the cue, which is referred to as color
matching. For the ““2 colors” version of the task, this dependent
measure is intuitive and follows the reporting style in Goodie and
Fantino (1995): A choice matched the cue if it was the same color.
For the “4 colors” version of the task, choices could never be the
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Figure 10. The mean proportion of match responses by condition
(Experiment 2).

same as the cues, but there was a mapping between the two choice
colors and the two cue colors based on the correspondence with the
“2 colors” task. Therefore, we consider cue and choice colors as
“matching” in the ““4 colors” task if the corresponding colors
would be truly matching colors in the ““2 colors” task.

Results and Discussion

Prediction 1: Overall base-rate sensitivity depends on
strategy sets. The first prediction is that overall base-rate
sensitivity in the degree of matching responses will occur
only when participants use strategies that represent the
match/not-match feature. That is, the participants in the
80/50 conditions (67% overall matching) should have higher
matching rates than the participants in the 67/33 conditions
(50% overall matching), but only in the two-color versions.
Participants in the four-color versions should not show
differences in overall matching rates between the 80/50 and
67/33 conditions because they would tend not to represent
the task in terms of matching and so would be learning the
success of strategies based on other features. Figure 10
shows the mean proportion of match responses within each
of the four conditions across all trials. An ANOVA on these
data, using the two between-subjects factors, showed the
expected interaction of task version and probability condi-
tion, F(1, 76) = 10.0, MSE = 0.01, p < .005. Specifically,
the effect of probability condition was strong for the
two-color versions, F(1, 38) = 38.5, MSE = 0.01, p <
.0001, with a 20% difference in matching rates between the
two probability conditions. In contrast, there was only a 6%
difference that was marginally significant for the four-color
versions, F(1,38) = 3.0, MSE = 0.01,p < .1.

Prediction 2: Cue-specific base-rate sensitivity depends
on cue saliency. The second prediction is that sensitivity to
the different base rates associated with each cue color will
vary as a function of cue saliency. More specifically, because
individual cue colors are less salient in the “2-colors” task,
participants in the two-color conditions should exhibit a

smaller difference in match rates between the more reliable
and less reliable cue colors than participants in the four-color
conditions. Figure 11 shows the percentage of trials on
which participants’ choice color matched the cue color for
the more reliable and less reliable cue colors. An ANOVA
using the two between-subjects factors and cue type as a
within-subjects factor showed that the crucial interaction of
cue type with task version was significant, F(1, 76) = 4.1,
MSE = 0.02, p < .05, such that there was stronger
sensitivity to cue type in the four-color version than in the
two-color version. This result is consistent with the RCCL
model’s prediction that participants in the four-color version
would be more likely to incorporate the specific cue and
choice colors in their choice strategies and hence be more
sensitive to different base rates for the two cue colors. The
interaction of cue type with probability condition and the
three-way interaction of task version, probability condition,
and cue type were not significant (Fs < 1), demonstrating
that this effect of task version on sensitivity to cue type did
not vary across the probability conditions, as expected.

Another way of quantifying participants’ cue-specific
base-rate sensitivity involves computing the difference be-
tween each participant’s color-matching percentages for the
two cue types (more reliable [MR] minus less reliable [LR]),
without regard for the absolute percentage values. These
differences were .12 and .08 in the two-color 67/33 and
80/50 conditions and .20 and .20 in the four-color 67/33 and
80/50 conditions. These difference scores confirmed that
four-color participants showed greater sensitivity to the
different base rates of the two cues than did two-color
participants, F(1,76) = 4.1, MSE = 0.04, p < .05.

In summary, the manipulation of the task (“2 colors” vs.
“4 colors”) produced the expected effects: Participants were
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Figure 11. The mean proportion of match responses by cue

reliability and condition (Experiment 2).
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more sensitive to different cue-specific base rates in the
four-color conditions than in the two-color conditions. It is
not the case that these results could be attributed to
participants in the four-color condition learning the probabili-
ties more quickly such that their asymptotic performance
contributed more strongly to averages taken over the entire
experiment; these findings were maintained when the analy-
ses were recomputed using the final 40 trials alone instead of
all trials.

Prediction 3: Change in task representations will be a
function of task difficulty. The third prediction involves the
amount of within-subjects change in task representations
and strategy use. To examine this issue, we developed a
measure that combined an individual’s probability of match-
ing the more reliable cue color with the probability of
matching the less reliable cue color. These two numbers can
be represented in a two-dimensional display as in Figure 12
(top). Both dimensions can be partitioned into N regions
(such as low, middle, and high probabilities in this figure),
making N X N different cells (nine in this case). Some of
these cells are labeled with a characterization of the behavior
associated with that cell. For example, a high probability of
matching both the more reliable and less reliable cue colors
can be characterized as general color matching. A high
probability of matching the more reliable cue color and a
low probability of matching the less reliable cue color
implies a fairly consistent choice of a single choice color, the
choice color corresponding to the more reliable cue color.
Nonlabeled cells represent behavior that is in between
(possibly a mixture of) the two neighboring cells.

Figure 12 (bottom) shows 6 individual participants’ paths
through this two-dimensional choice space (on a 10 X 10
grid). Each panel locates a separate participant’s choice
behavior measured during Blocks 1-5. These participants
were selected to represent all four conditions and to show the
entire continuum of behavior change, from Participant S409,
who spent all five blocks in the (1.0,1.0) cell (i.e., matching
the cue color exclusively),’ to Participant S123, who appears
to have bounced back and forth between relatively extreme
matching behavior and more neutral behavior, reflecting
changes between strategies that are sensitive to the cue color
and strategies that are not. Each panel, taken alone, shows
the change of a single individual across time.

Were these differences in within-subjects variability re-
lated to task difficulty, as the RCCL model predicts? The
two-color 67/33 condition was the most difficult condition in
that task structure biased these participants to adopt an initial
representation and strategy set (i.e., match the cue color) that
would be particularly unproductive, with a success rate of
only 50%. Indeed, the participants in this condition had the
lowest overall success rate (a mean of 51% vs. 54% for the
other conditions), F(1, 76) = 6.2, MSE = 25, p < .02.
According to the RCCL model, this low success rate should
lead to the greatest representation and strategy change in the
two-color 67/33 condition.

To measure within-subjects change, we counted the
number of times the cell describing a participant’s choice
behavior (within the 10 X 10 grid) changed from one block
of 40 trials to the next. For each participant, this produced a

number between 0 (no change) and 4 (a change between
each pair of adjacent blocks). Across all conditions, the
participants moved a mean of 3.4 times from one block to
the next (i.e., 85% of the time). As predicted, the participants
in the two-color 67/33 condition had the highest number of
block-to-block transitions in the 10 X 10 grid (a mean of 3.8
vs. 3.3 for the other conditions), F(1, 76) = 4.1, MSE = 0.9,
p <.0s.

The preceding analyses of changes in choice tendencies
over time have been cast in terms of strategy changes.
However, these analyses do not rule out the possibility that
the participants used the same strategy throughout the task
and simply shifted in their distribution of responses over
time, either because of random variation or because of
learning the relative success rates of each response. To
examine this possibility and to provide additional tests of
Prediction 3, we examined the participants’ explicit self-
reports.

At the end of the task, the participants were asked to
report the strategies that they had used during the task.
Thirteen identifiable strategies emerged from these self-
reports, indicating that the participants did indeed use
different strategies. Table 3 shows the list of strategies
generated by the participants, ordered by their overall
frequency.* The participants reported a mean of 3.8 strate-
gies each, and several participants reported using as many as
7 different strategies. This large frequency of different
strategies suggests that the participants did vary their
strategies over time rather than simply using the same
strategy.

How did the number of these strategies relate to condition
difficulty? First, as a consistency check, the number of
strategies reported correlated .30 (p < .01) with the number
of moves in the 10 X 10 grid over time. This moderate but
significant correlation was likely due to the fact that many of
the strategies lead to behavior consistent with the “neutral”
cell and thus any given strategy change would not necessar-
ily result in a behavioral change according to our measures.
Returning to the prediction relating strategy variability to
condition difficulty, the participants in the most difficult
condition (two-color 67/33) did have the highest number of
reported strategies (a mean of 4.1 vs. 3.7 for the other
conditions). Because all the conditions were fairly difficult,
however, these differences were only marginally significant,
F(1,76) =19, MSE=13,p < 2.

Not only does the RCCL model predict that there will be
high variability in task representation and strategy use when
the overall success rates are low, but the RCCL model also
predicts that strategies will be used to the degree to which
they are successful (see Prediction 2 in Experiment 1).

3 Participant S409 was the only participant who reported using
only one strategy throughout the task: Always match the cue color.

4 A subset of the data was recoded by a second coder given the 13
identified strategies. Interrater reliability for coding of the strate-
gies was 96%. Also, the strategy identified by each participant as
used more recently was consistent with choices made and latency
patterns from the final trials of the experiment, indicating that the
self-reports were accurate reflections of strategy use.
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Figure 12. Top: Two-dimensional grid for describing choice behavior in the Colors Task. Each cell
characterizes an individual’s choice behavior according to his or her proportions for matching the less
reliable (LR) cue and the more reliable (MR) cue. Bottom: Individual choice pattern trajectories for 6
participants in Experiment 2. Numbers 1-5 indicate categorized behavior in the first through fifth

blocks of trials for each participant.

Although we do not have direct measures of strategy use and
strategy success, the participants did provide their own
estimates of how often they used each strategy and how
often it was successful. As the RCCL model predicts, rated
success was positively correlated with rated use (r = .48,
p < .0001). Why was the correlation not closer to one? One

important factor is that some of the more successful
strategies may not have been discovered until later in the
task. If this were the case, then participants would be much
more likely to underuse a successful strategy relative to its
measured success rate. Using a +10% margin around
perfect equality between a strategy’s reported use and
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Table 3

List of Strategies Generated by Participants With
Proportion of Participants Using the Strategy as Their
Final Strategy or at Any Point

Strategy Last strategy Overall
Cue matching .14 .79
Choice color and side pattern .18 .61
Complex choice color pattern 18 .58
Random choice .16 54
Always one choice color 15 .34
Complex side pattern .04 25
Always one side .05 18
Alternating choice colors .03 .14
Alternating side .05 A1
Antimatch .00 .09
Success and failure pattern .00 .06
Match and random 03 .03
Location of click .00 .01
Other .01 .08

reported success, only 17% of the strategies were used more
often than they were successful, whereas 34% of strategies
were used less often than they were successful.

Summary

Experiment 2 produced several major findings that con-
firm predictions of the RCCL model. First, participants
working on different versions of the task showed different
degrees of base-rate sensitivity. At the global base-rate level,
two-color participants were more sensitive to differences in
global base rates of match and not match than were the
four-color participants. Second, at the cue-specific level,
four-color participants were more sensitive to the differential
predictiveness of each cue color than the two-color partici-
pants. The RCCL model predicted these results because
people’s task representations for the two versions differed,
leading the four-color participants to represent individual
colors and two-color participants to represent the match/not-
match feature (abstracting across the individual colors). It
would be surprising if the participants were not encoding the
colors of the cue squares in all cases (cf. Treisman & Gelade,
1980). This is not the prediction of the RCCL model, which
predicts rather that certain participants (particularly those in
the two-color condition) do not include color of the cue in
their task representation and strategies, preventing them
from learning the cue-specific success rates of matching. In
contrast, an implicit memory account would have predicted
that all participants would be able to learn these success
rates, even those in the two-color condition. Third, we found
evidence of between-subjects variability that was related to
participants’ self-reported strategy use, and we also found
evidence of within-subjects variability that was related to
participants’ self-reported strategy change. The amount of
variability also differed in ways predicted by the RCCL
model: There was more variability in situations in which
participants encountered less success. Moreover, the correla-
tion between participants’ reported strategy use and success

rate confirmed the RCCL prediction that people will learn to
choose strategies according to their rates of success. These
latter findings replicate resuits from Experiment 1.

General Discussion
Summary

In this article we present a new model of the process by
which people use their task representations to learn to make
choices and of the process by which people change their task
representation over time. This model makes predictions for
when and how people integrate base-rate and cue informa-
tion in making choices. In the two experiments reported
here, we found evidence consistent with the main processes
specified in the RCCL model:

1. Individuals represent the task at hand by selecting a
subset of features to encode using feature saliency and
background knowledge. In both experiments, participants
varied across conditions in whether they exhibited sensitiv-
ity to certain task features, such as relative stick lengths
(Experiment 1) and cue color (Experiment 2).

2. Various features in the task representation are com-
bined to generate a particular set of strategies for choice. In
both experiments, participants reported a variety of strate-
gies, and their choice behavior was consistent with their
reports.

3. Through experience, individuals learn and make choices
according to the relative success rates of their strategies. In
both experiments, the aggregate choice tendencies of each
condition moved toward the strategies that would be most
successful for that condition. Moreover, analyses by strategy
revealed that participants selected strategies as a function of
how often they thought they succeeded, producing overall
base-rate sensitivity. However, as Experiment 2 showed,
participants showed base-rate sensitivity only to the features
that they included in their task representations. It is impor-
tant to reiterate that this result could have gone otherwise;
for example, implicit learning theories predict that people
can learn associations, such as base-rate sensitivity, without
explicit awareness. Instead, our model claims that people are
always learning success base rates and using them to make
choices, but it is the task representation that determines
which base rates are learned and used.

4. When strategies in the current set are unsuccessful,
people will tend to modify their task representation and
generate new strategies. In both experiments, the tasks were
quite difficult, and the majority of the participants changed
their strategies over time. As the model predicted, partici-
pants in the more difficult conditions changed their choice
behavior more than did participants in the less difficult
conditions. Moreover, in Experiment 2, participants’ number
of reported strategies covaried with their amount of change.

A particularly novel aspect of the RCCL model is that it
makes variability an integral component of choice. The
RCCL model proposes that individuals may vary in their
task representations and hence their strategies for choice and
that a particular individual’s set of choice strategies may
change with time. According to the RCCL model, these are
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systematic and fundamental sources of variability. By per-
forming individual participant analyses for both of the
experiments, we aimed to demonstrate that these different
types of variability do exist. There was consistency between
the behavioral data and the explicit self-reports suggesting
that the variability we found was neither spurious nor due to
lapses of attention or boredom,; rather, there were conceptual
differences across participants and across time that would
not have been revealed in aggregate analyses.

In both experiments, the success rates in all conditions
were relatively low and, as we consequently argue, the levels
of task representation change were relatively high in all
conditions. However, note that the success rates in our
experiments were not atypical of many other probabilistic
categorization experiments (e.g., Busemeyer & Myung,
1992; Elliott & Anderson, 1995; Estes et al., 1989; Friedman
et al., 1964; Gluck & Bower, 1988). Thus, we expect that
similar levels of task representation change occurred in these
previous experiments.

Although the model was tested in the context of two
relatively simple experiential tasks for experimental control
purposes, the simplicity of these tasks does not undermine
the generality of the findings. That participants varied so
much over time in the context of such simple tasks suggests
that people always restrict the features that they use to
represent a task and that their feature set will change over
time. Given limited attentional capacity, more complex tasks
should produce proportionally greater restrictions in the
features used and greater feature variability over time.
Indeed, related work using a much more complex scientific
discovery task showed that people frequently changed their
task representations from trial to trial (Schunn & Klahr,
1995, 1996).

The main processing stages of the RCCL model have been
discussed loosely in terms of an information-processing
model, in which strategies for choice are represented by
if-then rules. The processes specified in the RCCL model
can then be conceived of as mechanisms for generating new
rules, learning the success rates of existing rules, and
choosing from among competing rules according to their
success rates. The model could easily be implemented in a
specific computational model (e.g., using the ACT-R [adap-
tive control of thought—rational]} theory; Anderson, 1993).
Nevertheless, as it is described in this article, the RCCL
model is more of a conceptual model that could be instanti-
ated within a variety of architectures. This generic approach
has the advantage of focusing our initial work on the novel
aspects of the model—the roles of task representation and
variability—and their relationship to largely unexplored
choice phenomena without tying our claims to specific
implementation details.

Related Findings

Other work by Goodie and Fantino (1996) showed results
similar to those of our Experiment 2 with a modified version
of the Colors Task that used a vertical or horizontal line
instead of a blue- or green-colored rectangle for the cue.
With these new stimuli and the same probabilities as in

Table 4

Predicted and Mean Observed Cue Sensitivity of Match
Responses in the Last 20 Trials as a Function of Strategy
Reportedly Used Last

. Cue sensitivi
Predicted —_ty—

sensitivity n M SE

Strong 12 .67 .09
Moderate 14 .20 .08
Moderate 14 .14 .08

Strategy

Always one choice color
Choice color pattern
Choice color and side pattern

Side None 4 .00 15
Match cue None 11 .01 .08
Random None 13 .18 .06

None 4

Note. Cue sensitivity was measured as matching proportion for
the more reliable cue minus matching proportion for the less
reliable cue.

Alternating side

previous experiments, their participants demonstrated greater
sensitivity to base rates, as we found in our four-color
manipulation. They also found that administering this modi-
fied task to participants who were first trained to associate
line direction with color (e.g., vertical with blue) showed a
return to the initial task’s base-rate neglect. From these
results, then, Goodie and Fantino proposed that participants’
prior knowledge of particular associations between cue and
choice will affect their ability to exhibit cue-specific base-
rate sensitivity (i.e., if there is such a preexisting association,
then there will be no cue sensitivity). In contrast, we argue
that the task representation and set of available strategies
determines cue sensitivity. »

One way to tease apart these theories is to examine the
relationship between strategy use and cue sensitivity. Be-
cause the RCCL model casts cue sensitivity in terms of
strategies used, it predicts that participants using strategies
that are definitionally related to cue should show cue
sensitivity in their choices, whereas participants using
strategies that are definitionally unrelated to the cue should
show no cue sensitivity in their choices. In contrast, Goodie
and Fantino’s account makes no such prediction.

Table 4 shows participants’ mean cue sensitivity (as
measured by the difference in the proportion of match
responses for more reliable cue vs. less reliable cue trials) on
the last 20 trials as a function of which strategy was reported
to have been used last. Only those strategies with ns greater
than 3 were included. The results were collapsed across
conditions to increase the ns and because the predicted cue
sensitivity should be the same in all conditions. As the
RCCL model predicted, participants showed almost no cue
sensitivity when their reported strategies were unrelated to
the cue color (e.g., the match strategy), whereas they did
show cue sensitivity when their reported strategies were
related to the cue color’ This trend was maintained,
although a bit weaker, even when the same analysis was
performed separately for the two- and four-color conditions.

31t is likely that the weak sensitivity to sample type for the
random strategy was due to the participants not using it for all of
the last 20 trials.
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Thus, the average weak sensitivity to cue in the two-color
condition, as both we and Goodie and Fantino (1995) found,
was not due to an overall absence of cue sensitivity but to the
fact that the two-color task tends to lead participants to adopt
task representations that do not include the cue. This finding
points to the perils of aggregate analyses that average across
strategies (cf. Siegler, 1987).

The results of Experiment 1 also relate to previous results
in the base-rate literature. Specifically, the main finding of
Experiment 1-—that participants were sensitive to base rates
on test trials in the BST—seems to contradict the fairly
robust finding that in experiential choice tasks people exhibit
base-rate sensitivity during training trials but not during test
trials (e.g., Estes et al., 1989; Gluck & Bower, 1988). What
explains this difference, and why does the RCCL model
predict the sensitivity we observed in Experiment 1?

Our explanation rests on the RCCL model’s view of
base-rate effects in terms of choice among learned strategies.
In Experiment 1, to complete the training trials, participants
had to construct a set of strategies for choosing the first stick
in their solutions. According to RCCL, participants would
learn the relative success rates of these strategies (and
possibly new ones as well) so that they would eventually
prefer those with higher success rates, demonstrating overall
base-rate sensitivity during training. When the test trials of
Experiment 1 were presented, participants would be faced
with novel problems. (As in other research, these problems
were designed not to overlap with the training problems.)
The test problems in our experiment were presented in terms
of the same set of features as the training problems, so the
strategies that participants had learned and used during
training would apply perfectly well to the test problems.
Thus, according to the RCCL model, because participants
would be using their learned strategies at training and
testing, whatever preferences participants acquired during
training should transfer to these test trials, leading to
base-rate sensitivity at testing. In contrast, previous experi-
ments showing base-rate neglect at testing have usually
presented test trials with a different (typically reduced) set of
features relative to the training trials. According to RCCL,
because a person’s strategies tend to be based on a limited
set of features, this difference between training and testing
could create a situation in which participants’ learned
strategies do not apply to the test trials. When this is the case,
success-based preferences among the learned strategies will
not transfer to test trials because the strategies themselves do
not transfer. Thus, RCCL predicts that when the same
strategies apply at training and testing, there should be no
difference in base-rate effects but that when training strate-
gies do not apply at testing, the strategy preferences learned
during training will not transfer.

We can test the first half of this prediction directly by
comparing participants’ base-rate sensitivity at training and
testing in Experiment 1. We compared these base-rate effects
at the individual level to avoid averaging out potential
differences. Specifically, for each participant, we computed
two proportions: the proportion choice of the more success-
ful procedure over the last 20 training problems and the
proportion choice of the more successful procedure over the

final test problems. Of all 58 participants, only 3 showed a
significant difference in these choice proportions. This is
approximately the number of statistically significant cases
one would expect under the null hypothesis of no difference
between training and testing proportions (i.e., 3 of 58
participants; ~5%).6 This result of numerically indistinguish-
able base-rate effects at training and testing conforms to the
RCCL model’s prediction of no differences. Moreover,
given the RCCL explanation, this result does not contradict
previous findings of different base-rate effects at training and
testing because, according to the RCCL model, similar
base-rate effects depend on the applicability of training
strategies to test trials.

Task Representations

In Experiments 1 and 2, we argued that task representa-
tions are at the heart of learning to use base rates and
cue-specific information, and yet we measured only behav-
ioral choice patterns and explicit strategy reports, observable
indicators of the underlying task representations. Although
differences in representations are consistent with our ac-
count, the evidence for representational change is indirect.
However, this issue is not unique to our efforts. Similar
criticisms could be applied to the pioneering work of Newell
and Simon (1972) on task representations in problem
solving and Kaplan and Simon’s (1990) work on representa-
tion change. Because task representations refer to mental
states, they remain outside of our grasp to measure directly,
barring radical improvements in brain-imaging technology.’
Thus, we must rely on the assumptions that (a) behavioral
patterns and explicit reports that make use of features are
evidence of those features being part of a task representation
and (b) behavioral patterns and explicit reports that do not
make use of features are evidence of those features not being
part of a task representation. Yet, it remains possible that
features for which there is no outward indication are
nonetheless represented by the individual.

The fundamental importance of task representations in
problem solving has been understood for quite some time
(e.g., Kaplan & Simon, 1990; Kotovsky, Hayes, & Simon,
1985; Newell & Simon, 1972). However, task representa-
tions have typically been assumed to remain stable over the
course of problem solving. In contrast, we argue that task
representations are ever-changeable throughout problem
solving. We found evidence for such representation variabil-

6 We computed statistical significance according to a z test for
proportions with a = .05. Note that the number of participants with
a statistically significant difference between training and test
proportions was the same regardless of whether the test proportions
were computed based on all 10 test problems or based on the 6 test
problems designed to be especially different from the training
problems.

7 Other techniques, such as the study of concurrent verbal
protocols, eye movements, and gestures accompanying speech,
provide other useful, but still indirect, measures of problem solvers’
representations (e.g., Alibali, Bassok, Solomon, Syc, & Goldin-
Meadow, in press; Alibali & Goldin-Meadow, 1993; Ericsson &
Simon, 1993).
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ity in two simple tasks and expect the variability to be at
least as great in more complex situations, especially when
one allows for negotiation of task representations in group
problem-solving situations (e.g., Garrod & Doherty, 1994).

Our conception of task representation is related to Burns
and Vollmeyer’s (1996) concept of a model space and to
Schunn and Klahr’s (1995, 1996) concept of a data represen-
tation space. Burns and Vollmeyer postulated that, in
addition to considering the set of possible problem-solving
states and rules for moving from one state to the next, people
also consider different models for the structure of the
problem-solving task. Burns and Vollmeyer’s concept of
models is hypothesized to constrain the set of possible
problem-solving states as well as the set of rules for moving
between states. Similarly, our conception of a task represen-
tation is used to constrain problem solving; however, our
task representations are defined concretely as a filter on the
set of features used to represent problem-solving states and
define strategies, whereas their models are less well defined.
In contrast, Schunn and Klahr’s data representation space is
more similar to our task representation, although there the
focus is on scientific discovery rather than on problem
solving more generally. Their data representations are de-
fined as the set of objects and object features that scientists
use to characterize data from experiments. Like task repre-
sentations, data representations act as a filter on the features
used to represent environmental input. Of particular interest
to the claims in this article, they also found high levels of
variability in the features used by individuals from one trial
to the next. Their task was a complex discovery microworld,
suggesting that our findings will generalize to more complex
tasks.

The fundamental role that task representations play in
choice highlights the issue of their origins. Initially, feature
perceptual saliency and background knowledge are used to
select features. In Experiment 2 we manipulated feature
saliency and thereby influenced the participants’ task repre-
sentations and choice behavior. Over time, as Experiment 1
demonstrated, feature predictiveness becomes more impor-
tant, with unpredictive features being dropped. However,
feature saliency remains influential, as the differences in
final behavior between the two- and four-color conditions of
Experiment 2 demonstrated.

Coming Full Circle: Relating the Textual
and Experiential Paradigms

We introduced the problem of choosing in an uncertain
world by citing results from the textual paradigm, in which
participants are given explicit and separate information on
the base rates of different options and the predictiveness of
problem-specific cues. In these experiments, contrary to
initial findings, there has been surprising variability in the
direction of base-rate effects: Some experiments show
base-rate neglect and others base-rate sensitivity. For ex-
ample, base-rate sensitivity is improved when the problem’s
wording emphasizes either the independence of the base-rate
and cue-specific information (Macchi, 1995), the random

sampling of cases (Gigerenzer et al., 1988), or the apparent
relevance of the base rates (Ajzen, 1977; Bar-Hillel, 1980;
Beckett & Park, 1995; Birnbaum & Mellers, 1983; Carroll &
Siegler, 1977; Fischhoff et al., 1979). In each case, the
manipulations of the problem statement wording lead to
certain features being emphasized, which then change how
people represent and process the problem. At an abstract
level, these effects are similar to the experiential paradigm
effects explained by the RCCL model: Which features are
included or emphasized in the task representation deter-
mines the degree of base-rate sensitivity.

The way in which representation differences influence
base-rate sensitivity can, however, vary between the textual
and experiential paradigms. For example, Gigerenzer and
Hoffrage (1995) found that people show stronger base-rate
sensitivity when the problem statements present information
in terms of frequencies (e.g., 1 in 1,000) instead of probabili-
ties (e.g., .001). Under Gigerenzer and Hoffrage’s analysis,
such frequency formats are easier to process because they
require fewer and simpler computations. Consider a stan-
dard frequency-format version of Tversky and Kahneman’s
(1982) taxicab probiem. Instead of the version presented in
our introduction, the problem may be presented as follows:
(a) Eighty-five of every 100 taxicabs in the city are green;
(b) 12 of every 15 blue taxicabs are seen as blue by a
witness; and (c) 17 of every 85 green taxicabs are seen as
blue by a witness.

Computing the probability that the taxicab that was seen
as blue by the witness really was blue involves calculating
the relatively simple ratio of (blue taxicabs seen as blue)/(all
taxicabs seen as blue) = 12/(12 + 17). In its original
probability format, however, this problem involves applying
Bayes’s theorem, which involves more complicated compu-
tations:

P(blue cab|blue report) =

P(blue cab)P(blue report|blue cab)
P(blue cab)P(blue report|blue cab) + P(green cab)P(blue report|green cab) -

A similar analysis of computational complexity can be
applied to the RCCL model’s processing in the experiential
paradigm. Note that the experiential version of this problem
would include a sequence of trials instead of a problem
statement, with each trial providing the witness’s report as a
cue and asking the participant to choose the taxicab’s true
color. Here, the desired probability from the textual problem
simply corresponds to the success rate of the strategy “if the
cue is blue, then choose blue.” Because the RCCL model
claims that people are always learning strategy success rates
through experience, any individual who has been using this
strategy would be able to display sensitivity to the different
taxicab colors’ base rates. No extra computation is neces-
sary. However, the situation is much different for individuals
who do not include specific cue and choice colors in their
representations but instead use strategies such as “match the
cue” and “do not match the cue.” Such individuals would
not have learned the relevant success rate for this problem
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and hence would be ill-equipped to display the desired
base-rate sensitivity. Instead, these individuals would have
learned the success rate of matching versus not matching.
Mapping back to the textual paradigm, this corresponds to
learning that 80% of the time the witness is reliable and 20%
of the time unreliable. Under this match/not-match task
representation, there is not even a question about the relative
complexity of producing base-rate-sensitive behavior; this
representation does not offer enough information to compute
the “desired” base rates. As the RCCL model claims, people
who do not represent the relevant features of a task will not
be able to display base-rate sensitivity to those features. The
key insight is that different task representations aggregate
experience in ways that can change the informational
content available (or not available) for producing base-rate
sensitivity.

Thus, our work on base-rate effects in the experiential
paradigm essentially leads to the same conclusion as the
research on textual base-rate effects: Representation of the
problem information is a critical factor in determining
base-rate sensitivity versus neglect. The effects of represen-
tation in the two paradigms, however, are different. In the
textual paradigm, representational format affects how a
person processes the base-rate and problem-specific informa-
tion. In the experiential paradigm, we have argued that task
representation—the set of features included in one’s mental
representation—affects which base rates a person can learn
from experience and hence the base-rate effects exhibited in
choice behavior.

This is not the only relationship between the two para-
digms. It is also the case that moving beyond aggregate
analyses to “‘individualized” analyses has shed light on
base-rate effects in the textual paradigm. For example,
Stanovich and West (1998) studied individual differences in
base-rate neglect and other reasoning fallacies observed on
text-based problems. They found that cognitive ability
measures explained some of the variance of people’s perfor-
mance on these tasks. In addition, Gigerenzer et al. (1988)
found that computing base-rate effects at the individual level
substantially reduced the degree of measured base-rate
neglect. That is, taking into account an individual’s probabil-
ity judgments across different problems corrects for indi-
vidual differences and focuses on the individual’s true
sensitivity to different base rates. In the experiential results
reported in this article, we have found similar advantages to
studying choice at the individual level. In particular, we
compared training and test base-rate effects at the individual
level and found them to be indistinguishable when the same
representation and strategies could be used. We also studied
the amount of change in choice within individuals. These
analyses highlight the importance of individual differences
in various stages of the RCCL model. More generally, the
themes of representation and variability that are now com-
mon to the textual and experiential paradigms testify to the
importance of these issues in furthering the understanding of
human choice processes.
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