Environmental influences on mathematics performance in early childhood

Alex M. Silver© and Melissa E. Libertus (1) ${ }^{\boxtimes}$

Abstract

Mathematics skills relate to lifelong career, health and financial outcomes. Individuals' cognitive abilities predict mathematics performance and there is growing recognition that environmental influences, including differences in culture and variability in mathematics engagement, also affect mathematics performance. In this Review, we summarize evidence indicating that differences between languages, exposure to maths-focused language, socioeconomic status, attitudes and beliefs about mathematics, and engagement with mathematics activities influence young children's mathematics performance. These influences play out at the community and individual levels. However, research on the role of these environmental influences for foundational number skills, including understanding of number words, is limited. Future research is needed to understand individual differences in the development of early emerging mathematics skills such as number word skills, examining to what extent different types of environmental input are necessary and how children's cognitive abilities shape the impact of environmental input.

Department of Psychology,

Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA.

凶e-mail: libertus@pitt.edu
https://doi.org/10.1038/ s44159-022-00061-z

Every day, people face situations requiring mathematics, from calculating a budget to following a recipe. These activities require an understanding of symbolic mathematics - which involves number symbols (including Arabic numerals such as ' 8 ' and written or spoken number words such as 'eight') - to identify and compare numbers and perform arithmetic. Despite frequent usage of symbolic mathematics in daily life, there is wide variability in mathematics performance across individuals. Individual differences in mathematics abilities predict educational attainment, income, career choice, likelihood of full-time employment, and health and financial decision-making ${ }^{1-4}$. These differences begin in childhood; even before children have received formal schooling there are considerable individual differences in symbolic mathematics performance, which tend to persist throughout the school years and into adulthood ${ }^{5,6}$. Decades of research have focused on sources of variability in symbolic mathematics abilities across the lifespan.

Children have a set of individual abilities and are nested in their larger family and school environment, which are nested in broader communities, and cultural and socio-historical contexts. Young children's symbolic mathematics development can be broadly explained on the basis of their ability to learn mathematics and the opportunities provided in their environment. There are many cognitive skills related to the development of symbolic mathematics skills, including abilities that span
cognitive domains and others that are maths-specific ${ }^{7}$. At the environment level, factors ranging from the local family and school level to the broader community and cultural levels might help to support children's symbolic mathematics development. Ongoing work implicates this environmental input in symbolic mathematics performance, including indirect influences on the domain-general cognitive processes involved in symbolic mathematics performance and the core systems of number processing as well as direct effects on symbolic mathematics skills.

In this Review, we summarize the abilities most frequently associated with children's symbolic mathematics skills and then focus on the role of environmental influences in children's symbolic mathematics development. Specifically, we review evidence suggesting that variations in language, maths-related beliefs and attitudes, socioeconomic factors, engagement with mathematics activities, and individual differences in beliefs and attitudes influence the development of symbolic mathematics abilities. However, much of this research has focused on symbolic mathematics abilities beginning around age three, raising questions about the role of environmental influences for foundational symbolic mathematics skills that emerge earlier in development. Chief among these foundational skills is the acquisition of number words during infancy ($0-12$ months old) and toddlerhood ($12-36$ months old); we discuss what is currently known about environmental influences on this process.

We conclude by suggesting future directions for research into bidirectional influences between abilities and the environment.

Abilities that support symbolic mathematics

Many cognitive abilities are related to the development of symbolic mathematics skills, including abilities within numerical cognition (domain-specific) and abilities outside this domain (domain-general) (FIG. 1). Domain-general cognitive abilities relevant to early mathematics development include executive function, attention and reasoning. Domain-specific abilities include the two core systems of number processing that support symbolic mathematics skills and other foundational mathematics abilities upon which more advanced symbolic mathematics skills are built.

Domain-general cognitive abilities. Cognitive abilities employed across domains - such as numerical cognition, language and visual cognition - are considered domain-general. Performance on many domain-general cognitive tasks is associated with mathematics performance, starting in early childhood and continuing into adulthood. Executive functioning abilities including inhibition (the ability to ignore distractions and suppress a response), working memory (temporary storage and manipulation of information) and cognitive flexibility

Fig. 1 | Abilities and environmental factors influencing symbolic mathematics performance. Environmental factors (blue) might influence symbolic mathematics performance (yellow) directly as well as via indirect effects on domain-general and domain-specific cognitive skills and abilities (red). Children's abilities might influence symbolic mathematics performance directly by influencing how much children benefit from the learning opportunities in their environment.
(the ability to switch between tasks or hold multiple concepts in mind simultaneously) are closely tied to a broad range of mathematics skills in early childhood ${ }^{8-11}$. These executive functioning abilities are particularly useful for learning and using symbolic mathematics skills because focusing on, manipulating and holding relevant information in mind is critical for symbolic mathematics. Thus, stronger executive function is typically associated with better mathematics performance. Attention, or the ability to focus on a particular concept or sensory input, is also related to academic mathematics performance in early childhood ${ }^{10}$. The efficiency of performing cognitive tasks, known as processing speed, is related to mathematics achievement on standardized assessments in early childhood, even on assessments without a timed component ${ }^{12}$. Finally, logical reasoning abilities, which enable problem solving, and language abilities, including preliteracy skills such as the recognition of letters and speech sounds, are related to academic mathematics performance in childhood ${ }^{13}$, and mathematics achievement on standardized assessments ${ }^{8,10}$ throughout development.

Across these domain-general abilities, children with stronger cognitive abilities tend to perform better in mathematics than children who struggle with these abilities, probably owing to their ability to solve problems more flexibly and easily in the process of learning and using symbolic mathematics. Domain-general abilities develop throughout the lifespan alongside mathematics skills and probably support the acquisition of symbolic mathematics skills and the application of mathematics knowledge when solving mathematics problems, although the causal link remains unknown because most evidence is correlational.

Maths-specific cognitive abilities. Multiple domainspecific abilities have been studied within numerical cognition (FIG. 2). Two core systems of numerical representations, present from birth, have been suggested to form the basis of mathematics abilities: the object tracking system and the approximate number system ${ }^{14}$. Although there is considerable debate in the field regarding the existence and nature of the approximate number system ${ }^{15-19}$, we approach our discussion from the perspective of the approximate number system as a core non-symbolic numerical system. The object tracking system and the approximate number system represent numerical information in different ways and support the development of foundational number skills that subsequently support the acquisition and use of more advanced symbolic mathematics processes ${ }^{14}$.

The object tracking system enables temporary storage of information about the perceptual properties of objects (in 'object files'). However, the object tracking system is subject to memory limits: humans can exactly discriminate and represent up to only three or four objects with this system ${ }^{20}$. The development of symbolic mathematics skills is thought to be aided by the one-to-one correspondence between objects in the real world and object files in memory, which enables the exact representation and tracking of small quantities ${ }^{21-27}$. For example, 12- to 14-month-olds can use the object tracking system

Fig. 2 | Typical timeline for emergence of foundational mathematics skills in English-speaking children. The object tracking system and approximate number system, two core number processing systems, are present from birth ${ }^{14}$. Spatial skills are also present in infancy ${ }^{188}$, and spontaneous focus on number has been documented at ages as young as 24 months ${ }^{189}$. Around 30 months of age, children begin to acquire number words ${ }^{155}$ and begin to learn to identify number symbols ${ }^{190}$. By around 36 months of age, children begin to understand and correctly use quantifiers ${ }^{191}$.
to track two objects by creating object files to temporarily store information about each of those objects, even when the objects are out of sight. Infants reliably search longer for more objects in a box if they initially saw two objects being hidden and only retrieved one than when only one object was hidden and retrieved, demonstrating that they maintain information about the second object ${ }^{28}$. The object tracking system is generally thought to be a universal system present across species ${ }^{14}$, but it is unclear whether there is variability in this system across individuals and whether any variability might be related to individual differences in symbolic mathematics skills.

In contrast to the object tracking system, the approximate number system supports the ability to estimate large quantities without number symbols (non-symbolically). This system relies on sets of objects to represent numerical information approximately ${ }^{29,30}$. The approximate number system uses imprecise, noisy mental representations to produce estimates of set sizes. The ability to tell the difference between two sets of objects using the approximate number system is ratio-dependent, so that performance is more accurate for sets with a larger ratio between their sizes than for sets with a smaller ratio between their sizes. For example, 6-month-old infants are typically able to discriminate between a set of 8 and a set of 16 dots as accurately as between a set of 10 and a set of 20 dots (ratio of 1:2 in both cases), but they are unable to discriminate between a set of 8 and a set of 12 (a ratio of 2:3) ${ }^{31}$. The approximate number system becomes more precise with age, allowing better acuity (discrimination of smaller ratios) throughout infancy, childhood and early adulthood, reaching full maturity at approximately 30 years of age ${ }^{32}$.

The approximate number system is theorized to support the acquisition of symbolic mathematics skills through the mapping of its non-symbolic representations to symbolic number representations ${ }^{33-41}$. In this view, children refine their knowledge of symbolic numbers slowly as the imprecise representations of number in the approximate number system become more precise. Importantly, starting in infancy, individuals vary substantially in the acuity of their approximate number system representations ${ }^{31}$. These individual differences in the approximate number system are related
to variability in symbolic mathematics skills from early childhood through adulthood with typically moderate effect sizes (with Cohen's d of approximately 0.50 or r^{2} of 0.06$)^{32,3,40,42-45}$. This relationship is present in both typically developing and atypically developing populations, including gifted individuals and individuals with dyscalculia ${ }^{39,46-48}$.

In addition to the two core systems of number, the development and acquisition of other foundational mathematics abilities during the infant and toddler years is associated with the development of more-advanced understanding of symbolic mathematics. However, these abilities rely to a greater extent on cultural transmission and learning than do the object tracking system and the approximate number system, which seem to be automatically employed.

Children who are better at identifying and understanding written number symbols, including the order in which those numbers appear in the count list, tend to perform better in symbolic mathematics tasks ${ }^{49-52}$. Children with better understanding and knowledge of quantifiers (mathematical language words that express inexact quantitative information such as 'more' and 'most') ${ }^{53-56}$ and with a greater tendency to spontaneously focus on number (that is, to attend to and utilize numerical information without being prompted $)^{57-60}$ also tend to perform better in symbolic mathematics. Finally, spatial abilities - used to manipulate the location and orientation of objects and the environment mentally and physically and to understand patterns and spatial language - are closely related to symbolic mathematics skills. Individuals who have stronger spatial abilities also tend to perform better in symbolic mathematics assessments ${ }^{61-65}$.

Children's domain-general and domain-specific cognitive abilities cannot explain all of the variability in symbolic mathematics performance in early childhood. Prior work has explored the relationship between multiple cognitive abilities and children's symbolic mathematics performance ${ }^{8,66,67}$. However, these studies are often correlational and therefore cannot indicate a causal relationship, and they omit other potential sources of variability. Importantly, studies relating cognitive abilities to symbolic mathematics skills often do not include controls for potential confounds beyond individual abilities,

Table 1 | Summary of evidence for environmental influences on symbolic mathematics skills

Level of influence	Environmental factor	Impact on symbolic mathematics skills (relative to lack of exposure)	Impact on number word acquisition (relative to lack of exposure)
Community	Language	Children exposed to language with exact number words have stronger performance in non-symbolic and symbolic mathematics tasks ${ }^{69-77}$	Children exposed to language with singular-plural distinction learn 'one' faster ${ }^{176,178}$
		Children exposed to language with regular structures (embedded fractional parts and non-inverted number words) have stronger performance in symbolic mathematics tasks ${ }^{78-91}$	Children exposed to language with an additional distinction for pairs learn 'two' faster ${ }^{173,175}$
	Societal attitudes and beliefs	Individuals from communities with stronger gender stereotypes and more gender equity have larger gender gaps in symbolic mathematics performance ${ }^{92-97}$	Unknown
Individual	Socioeconomic status (SES) and education	Children from higher SES households perform better in symbolic mathematics tasks ${ }^{11,98-103}$	Children from higher SES households learn number words faster ${ }^{102,124,180}$
	Mathematics engagement	Children with exposure to frequent mathematics activities and math talk have stronger performance in symbolic mathematics tasks ${ }^{62,108-17,119,120,122,125,128-131}$	Children exposed to frequent number talk (especially counting and labelling sets) learn number words faster ${ }^{121,123,124,126,127,188,183}$
	Attitudes and beliefs of parents and teachers	Children with exposure to caregivers with more positive attitudes, lower mathematics anxiety and stronger beliefs about mathematics importance have stronger performance in symbolic mathematics tasks ${ }^{138-147}$	Unknown

which might also overlap with one another. For example, including children's domain-general (IQ, working memory) and domain-specific cognitive abilities (counting, acuity in approximate number system) as well as symbolic mathematics skills (number symbol comparison, arithmetic) in a statistical model explained only 52% of the variability in symbolic mathematics performance on a general mathematics achievement measure at age six years ${ }^{68}$. The limited ability of children's intrinsic cognitive abilities to account for mathematics performance suggests that extrinsic environmental factors also play a critical part in shaping children's symbolic mathematics development.

Environmental influences on mathematics skills

Environmental factors such as language, culture, and socioeconomic status (SES) can influence mathematics performance (TABLE 1). Studies have examined differences at the community level (shared by all or most members of a particular community group) and at the individual level (specific to some individuals within a broader community). We note that these classifications are based on the methodology of the studies rather than on a theoretical distinction. At the community level, different languages, cultural attitudes and beliefs are associated with symbolic mathematics skills. At the individual level, differences in SES, mathematics engagement, and personal attitudes and beliefs are linked to the development of mathematics skills.

Community-level factors. Many community-level differences in symbolic mathematics skills are thought to be driven by variations in language. For example, individuals who lack access to language input that includes exact number words (such as 'one', 'two', 'three', in contrast to
inexact terms such as 'a few' and 'a lot') tend to perform worse in symbolic mathematics tasks than individuals exposed to exact number words. In some cases, exposure to exact number words seems to be a prerequisite to acquire symbolic mathematics skills. Children who are deaf or hard of hearing and lack access to fluent sign language are not exposed to exact number words from birth and typically perform worse in symbolic mathematics (including skills like counting, arithmetic and fractions) than their hearing peers and their peers who are deaf or hard of hearing but who have access to fluent sign language with exact number words ${ }^{69-74}$. Additionally, deaf individuals who develop their own method of 'homesign' to communicate and are surrounded by a culture that uses numbers but who lack access to a conventional language of numbers display poorer mathematics performance than individuals with access to a language with exact number words ${ }^{75}$. The differences in mathematics performance between individuals with and without language access are often moderate to large (Cohen's d between 0.50 and $0.80 ; r^{2}$ between 0.06 and 0.14$)^{69-74}$. These findings suggest that - as for many other cognitive skills - it is difficult to develop mathematics skills without appropriate linguistic input. Subsequently, it is nearly impossible for children without language access to acquire the symbolic mathematics skills observed in children with more extensive number language exposure.

Similarly, speakers of languages that do not contain words for exact numbers or that have restricted ways to talk about numbers display differences in mathematics performance relative to speakers of languages containing exact number words. For example, adult and adolescent members of the Pirahã and Mundurukú tribes, whose languages lack exact number words, perform more

Place-value system

A system of symbolic number notation in which the position of a digit within a number string denotes its power, and the quantity is represented by the symbol.
poorly in assessments of their non-symbolic and symbolic mathematics skills than adults and children living in industrialized nations and speaking languages with exact number words (BOX 1; REFS ${ }^{76,77}$). However, members of the Mundurukú tribe who have some knowledge of Portuguese (which has exact number words) tend to perform better in these tasks than do members with less or no knowledge of a second language ${ }^{77}$.

Even among language users who are exposed to exact number words from birth, there is variability in symbolic mathematics performance across languages ${ }^{78-80}$. Children learning languages with regular structures for numbers, such as Chinese (where numbers are transparently named 'ten-two' instead of with a unique word like 'twelve') tend to outperform children learning languages with irregularities, with higher performance in tasks including counting, understanding the place-value system, and other symbolic mathematics skills ${ }^{81-86}$. In addition, children learning languages (such as Korean) where the concept of fractional parts is embedded into the mathematical term for fractions (for example, 'of three parts, one' instead of 'one-third') tend to outperform children whose languages do not have this vocabulary cue (such as English and Croatian ${ }^{87}$). Similarly, children learning languages like German with number word inversion (for example, 'one-and-twenty' instead of 'twenty-one' in English) tend to perform worse in mathematics tasks including arithmetic, number transcoding and magnitude comparison than those learning languages without number word inversion ${ }^{88-91}$.

Box 1 | Methodological considerations in working with diverse communities

When testing mathematics skills in diverse samples, especially where the researchers are not members of the local community, researchers should take care to ensure that their research is both respectful and reliable. For example, the format of the assessments needs to be chosen carefully. As an illustration, Brazilian children who work as street vendors are able to solve arithmetic problems when they are presented as monetary transactions (for example, asking how much 10 coconuts each costing 35 cents will be in total) but not when presented in a more traditional academic format (for example, $10 \times 35=$? $)^{192}$. This work indicates the importance of the method of assessment and familiarity of the participants with the testing format. These factors should be taken into account when observing performance differences in cross-cultural studies.
Similarly, in communities whose members lack access to number symbols or rarely employ symbolic numbers (for example, members of the Pirahã and Mundurukú tribes and deaf homesign communities), it is necessary to ensure that any differences in performance are not due to familiarity with the testing methods or compatibility in number and mathematics representations with the testing format. In an attempt to overcome these issues, researchers have used predominantly non-symbolic methods of assessing mathematics skills, including tasks that require matching large sets of objects to a sample, comparing two quantities of dots to determine which has more, performing approximate arithmetic using sets of dots, or summing two small sets of objects, none of which require extensive numerical vocabulary ${ }^{75-77,193,194}$. Even on these non-symbolic tasks, adults' performance is often better when strategies involving symbolic skills such as counting are used, and differences are often seen between communities with languages that include formal number systems and those without. However, this pattern has not been found for children ${ }^{193,194}$; children's performance is often equivalent regardless of their language's number system (although this might be due to immature use of symbolic skills by children from languages with formal number systems). For tasks that involve symbolic calculations, it is not surprising that users of languages lacking formal number symbols or participants who have never received formal education in symbolic number systems perform more poorly than those whose languages contain number symbols and who presumably have more familiarity and exposure to the types of symbolic question typically assessed in those measures.

These differences in symbolic mathematics performance due to language variability are often moderate to large (Cohen's d between 0.50 and $0.80 ; r^{2}$ between 0.06 and 0.14).

In addition to the influence of language, there are also influences of broad cultural norms regarding mathematics on symbolic mathematics performance ${ }^{92-97}$. For example, the strength of gender stereotypes and levels of gender equity tend to predict mathematics performance on standardized tests across countries. Specifically, stronger implicit cultural beliefs that men are better than women in their science and mathematics skills are associated with larger gender gaps in mathematics achievement on standardized assessments ${ }^{95}$. Perhaps paradoxically, countries with greater gender equity in mathematics and science opportunities tend to have larger gender gaps in performance in these domains ${ }^{97}$. When there is greater equity in opportunity, men and women can choose to pursue education in any field and tend to make those decisions based on personal preferences, which might reflect men's stronger preference for mathematics and science ${ }^{97}$. Similarly, countries with larger gender differences in how much individuals like mathematics show more pronounced gender gaps in mathematics achievement on standardized assessments than countries with smaller gender differences ${ }^{92}$. Although the impact of cultural beliefs and attitudes in explaining the gender gaps in performance between countries are often large (Cohen's d of $0.80, r^{2}$ of 0.14), the differences between communities in overall mathematics achievement due to societal beliefs and attitudes tend to be smaller (Cohen's d of 0.20 to $0.50, r^{2}$ of 0.01 to 0.09).

Individual-level factors. Within communities and language groups, additional individual-level environmental influences are associated with differences in mathematics performance. Specifically, SES - access to resources, including family finances and parental education - is a consistent predictor of children's performance on standardized mathematics assessments and academic mathematics performance across development ${ }^{11,98-103}$. Children from households with higher SES tend to perform better in symbolic mathematics than children from households with lower SES, with moderate to large effect sizes (Cohen's d of 0.50 to $0.80 ; r^{2}$ between 0.06 and 0.14). The influence of family SES on children's symbolic mathematics performance in standardized assessments has been shown within the same school and even among classmates who received the same mathematics instruction ${ }^{104}$. Furthermore, the association between family SES and children's performance on standardized mathematics assessments is present across a broad range of countries and languages ${ }^{105}$. However, SES has been operationalized differently, limiting comparisons across studies. Nonetheless, family income and parental education level (two of the most common indicators of SES) typically both reliably predict children's symbolic mathematics performance. Some work suggests that parental education might be a stronger predictor of symbolic mathematics performance than family income, with large effect sizes (Cohen's d of $0.80, r^{2}$ of 0.14 or larger ${ }^{106}$).

Arithmetic fluency
The ability to solve arithmetic problems accurately and efficiently.

It remains unclear how SES shapes symbolic mathematics performance and whether this association is due to influences on children's abilities or learning opportunities or both. On the one hand, low SES might reduce children's domain-general cognitive abilities through its impacts on health and brain development ${ }^{107}$. On the other hand, low SES might reduce other environmental factors related to mathematics development such as learning resources or parental engagement in mathematics.

Mathematics-specific engagement, or the presence of activities and discussions using mathematics, is another factor related to mathematics performance. The frequency with which parents engage in mathematics activities with young children is positively associated with children's symbolic mathematics performance ${ }^{108}$ on measures of arithmetic fluency ${ }^{109,110}$, number facts and counting skills ${ }^{111}$, magnitude comparison ${ }^{112}$ and use of mathematics language ${ }^{54}$, as well as on standardized mathematics assessments ${ }^{113-118}$. Similarly, the frequency of parental and teacher discussion of numbers and mathematics concepts with children, regardless of the context of this 'math talk', is related to the same symbolic mathematics skills ${ }^{62,119-129}$. Children aged 2 to 12 years whose parents and teachers engage in more frequent mathematics activities and math talk tend to perform better in symbolic mathematics than their peers who experience less mathematics engagement, with small to moderate effect sizes (r^{2} between 0.01 and 0.09). However, some studies have failed to replicate the links between mathematics engagement and symbolic mathematics performance ${ }^{117,130,131}$. Regardless, more frequent mathematics engagement is typically associated with better symbolic mathematics performance, even above and beyond parents' overall engagement in general academic activities and conversations with their children ${ }^{108,132}$.

Intervention studies further corroborate the association between mathematics-specific engagement and children's symbolic mathematics performance. Several studies that encouraged mathematics activities at home - for example, playing board games, counting more frequently, engaging in mathematics problems when reading stories, and talking about mathematics when grocery shopping and cooking - found an associated increase in children's subsequent symbolic mathematics performance ${ }^{133-137}$. Similarly, studies that experimentally increase children's exposure to math talk have inferred a causal link with children's symbolic mathematics performance. For example, children exposed to mathematics language embedded within a storybook performed better on subsequent assessments of mathematics language and general mathematics knowledge than children in a business-as-usual preschool control group ${ }^{62}$. Furthermore, children whose parents were prompted to engage in math talk with their child showed increased attention to numbers outside the parent-child interaction ${ }^{120}$.

Finally, several indirect factors in the environment, such as the attitudes and beliefs of individuals in children's lives, are related to early symbolic mathematics performance ${ }^{138,139}$. Specifically, the mathematics anxiety levels ${ }^{140-143}$, mathematics attitudes ${ }^{143}$ and beliefs about
mathematics ${ }^{144-147}$ held by parents and teachers are related to children's symbolic mathematics performance on standardized assessments and academic mathematics performance in early and middle childhood. Lower levels of mathematics anxiety, more positive mathematics attitudes and stronger beliefs about the importance and utility of mathematics in parents and teachers are associated with better mathematics performance, even above and beyond the role of parents' and teachers' beliefs and attitudes toward other academic domains. However, effect sizes for the influences of parental or teacher mathematics anxiety, mathematics attitudes and mathematics beliefs on children's mathematics performance are often small $\left(r^{2}=0.01\right.$, Cohen's d of approximately 0.20).

Combined environmental influences. Differences in environmental input at the community level in language, attitudes and beliefs as well as at the individual level in SES, mathematics engagement, and in individual beliefs and attitudes are associated with variability in mathematics development and performance. Community-level factors tend to account for moderate to large effects on mathematics performance, whereas individual factors vary more dramatically in their effect sizes, ranging from small effect sizes for attitudes and beliefs to large effect sizes for SES. Studies examining community-level factors are often large cross-cultural projects that require large effect sizes to justify the use of extensive resources, whereas studies exploring individual factors might not require such large effect sizes to justify investigation. Consequently, the effect sizes reported in the literature might reflect these constraints, rather than a greater importance of community-level factors than individual factors on symbolic mathematics performance per se. Nonetheless, each of the environmental influences reviewed here produce reliable and important effects on symbolic mathematics performance.

Notably, many studies of environmental influences have largely ignored the effect of children's abilities on the acquisition of symbolic mathematics skills. In addition to the environment influencing them, children also influence their environment, potentially resulting in complex and bidirectional interactions between environmental influences and children's characteristics ${ }^{128}$. For example, children who have stronger non-symbolic mathematics skills earlier in life might promote and seek out environments containing math talk and mathematics engagement, leading to more opportunities to practice mathematics, more feedback surrounding numbers and quantities, and the development of stronger symbolic mathematics skills.

Number word knowledge

Despite the wealth of research on environmental influences on symbolic mathematics broadly, little research has examined environmental influences on children's earliest symbolic mathematics skills. Symbolic mathematics knowledge, such as number word understanding, is foundational for learning more advanced mathematics concepts ${ }^{148-150}$. Number word knowledge involves mapping the symbol for each number (the word label)

Fig. 3 | Average timeline of the number word acquisition process for English-speaking children. Children's number word knowledge is typically measured via tasks that ask them to produce sets of a particular size (for example, 'Can you give me one?'). A child's knower-level is the highest number at which they can reliably produce the correct set of objects. It takes months for children to progress from being a 'one' knower to being a cardinal principle knower.
to a set of items of the specified size. For example, number word knowledge is needed to label five apples with the word 'five'. Mature number word knowledge is defined by an understanding of the cardinality principle - when counting the items in a set, the last number in the count list refers to the total number of items in the set ${ }^{151,152}$. This principle describes the fact that each number word refers only to an exact set of that quantity. If you count 'one, two, three, four, five apples', there are five apples present, and a person should label a set of apples as 'five' only when there are exactly five apples present. Children's number word knowledge in early childhood is one of the strongest predictors of their later symbolic mathematics performance, beyond domain-general skills and approximate number system performance ${ }^{148-150,153}$. Thus, examining this process and sources of individual differences in number word performance is crucial for understanding long-term symbolic mathematics development.

Number word acquisition. Children come to understand the meaning of exact number words very slowly. Previous work has identified a general trajectory of number words acquisition in English-speaking children (FIG. 3), which has served as a baseline for cross-cultural comparisons. This understanding is demonstrated in number knowledge tasks where children are asked to create a set containing a certain number of objects. At around 30 months of age, English-speaking children learn the meaning of the word 'one' but lack knowledge of larger number words. When asked to give exactly 'one' object, a 30-month-old child will give one object, but if asked to give 'two' or any other number they will not give the correct number of objects. On average about four to five months after learning the meaning of 'one', children reliably understand the word 'two' but not larger numbers. It takes several more months for children to display an understanding of the word 'three,' typically at around 36 months old. Children do not have mature number word knowledge and mastery of the cardinality principle until at least $36-48$ months old, when they can
reliably count to and give the correct number of objects when asked ${ }^{151,154-157}$.

However, rather than adhering to a strictly stage-like developmental pattern, where children either completely do or do not understand a particular number word, number word acquisition might be a more continuous process of gradually developing number word knowledge. For instance, children display partial knowledge of number words before learning their exact meanings ${ }^{25,158-162}$. Similarly, some work suggests that even when children can reliably produce the correct number of objects when asked, they might not fully comprehend the cardinality principle ${ }^{163}$. These findings have encouraged continued debate about the mechanisms of number word acquisition (see REF. ${ }^{164}$ for a review). Whether children acquire the meaning of number words in a staged or continuous process, number word acquisition is a process that takes many months.

There are several theoretical accounts of how children learn number words, specifically how they transition from being a 'subset knower' who understands only one or a few number words to a 'cardinal principle knower' who understands the cardinal principle for all numbers. These theories vary in the extent to which they posit that number word acquisition relies on domain-general abilities and domain-specific abilities. One theory posits the importance of the domain-general language-learning ability to express innate conceptual knowledge about numbers ${ }^{165,166}$. Other theories focus on the role of the object tracking system ${ }^{23-27}$ and/or the approximate number system ${ }^{33,35-37,40,41,167,168}$. Current empirical evidence does not conclusively support one theory over another. However, previous comparisons of these theoretical accounts have largely ignored the role of environmental factors ${ }^{23,27,151,169-171}$.

There are also individual differences in the process of number word acquisition. Children with more advanced knowledge of the count list and number symbols, who can correctly count higher and identify more number symbols, or who have stronger quantity discrimination
skills or higher IQ tend to become cardinal principle knowers earlier than their peers with less advanced skills in these areas ${ }^{172}$. Individual differences in acquisition of number word knowledge are associated with individual differences in other mathematics skills. Children who learn the cardinality principle earlier tend to display better performance in counting, number comparison, number symbol identification, arithmetic and understanding of number lines ${ }^{149}$. Children who showed more advanced understanding of number words at age 3 years tended to perform better in symbolic mathematics at age 6 years, relative to their peers who displayed less advanced number word knowledge ${ }^{149}$.

Environmental impacts on number words. The environmental influences associated with individual differences in broader symbolic mathematics performance can be tested for their influence on the earlier acquisition of number words. As before, we group the influences according to scale, examining community-level and individual-level influences (TABLE 1).

Considering linguistic influences, variation in the number word vocabulary and linguistic structure of number words are associated with different developmental progressions in learning number words ${ }^{173-177}$. For example, children learning number words in languages such as English and Russian that have ways of signalling whether a word is singular or plural tend to learn the word 'one' sooner than children learning languages that do not have this distinction (for instance, Japanese and Mandarin) ${ }^{176,178}$. Similarly, children learning number words in languages with a singular-plural distinction and an additional way of distinguishing pairs from larger quantities (dual-marking, found in Slovenian and Saudi Arabic) tend to learn the meaning of 'two' faster than children learning languages without dual marking ${ }^{173}$. Broader differences in how number words are used in sentences and the broader context surrounding their usage might also relate to children's learning of number words ${ }^{179}$. Using number words in conjunction with other cues that indicate quantity within the sentence might aid in children's learning of numbers. For example, hearing 'three blickets' in a sentence, where the number word is used before the noun and the noun indicates a plural, might help to indicate the number. Differences across languages in the usage and placement of referents and plural indicators might be associated with differences in children's learning of number words. Few studies have examined how other community-level variations relate to children's number word acquisition. In particular, little is known about how societal differences in attitudes or beliefs might relate to children's number word acquisition, or how individual-level and community-level influences might interact.

Turning to individual-level influences, children from lower-SES households acquire the cardinality principle later than their peers from higher-SES households, implicating the home environment in number word acquisition ${ }^{102,180}$. For example, children from middle-income and low-income families understood cardinality nearly six months later than children from high-income families ${ }^{180}$. In line with this pattern,
children from lower-SES backgrounds tend to perform worse in number knowledge tasks than their peers from higher socioeconomic backgrounds, with moderate to large effect sizes (Cohen's d between 0.50 and 0.80 ; r^{2} between 0.06 and 0.14$)^{53,124,126,181}$. However, it is unknown whether these impacts of SES on number word learning are due to influences on children's skills or learning opportunities; more work is needed to unpack these associations.

The influence of parents' verbal input during parentchild interactions on number word learning has received a lot of attention. Children whose parents engage in more frequent discussion of numbers and number concepts (number talk) tend to have better number word knowledge than children who hear less number talk ${ }^{121,124,126}$. For example, children whose parents used more number talk during everyday interactions while they were $14-30$ months of age displayed a better understanding of the number words between 'one' and 'six' at 46 months of age, even when controlling for SES and general quantity of parent talk ${ }^{126}$. Similarly, children whose preschool teachers use more frequent number talk tend to have better number word knowledge than children who hear less number talk ${ }^{182}$. Some types of number talk - including counting and labelling sets of present objects, particularly in numbers greater than three or four - might be most beneficial for number word learning ${ }^{121,124}$. Toddlers whose parents engage in these types of number talk tend to have better number word knowledge than their peers, even years later in childhood. This work suggests that in addition to the overall frequency, the quality of the environmental input probably plays a part in children's number word acquisition.

In addition to these observational and correlational findings, a few studies have been conducted that provide some causal evidence for the role of number talk in the number word acquisition process. For example, interventions that promote parents' and teachers' counting and labelling of set sizes are associated with children's better cardinal principle understanding ${ }^{123,127,183}$. Books and games that promote and encourage parent and child number talk are associated with greater learning of number words than books that promote other types of maths talk or non-mathematics talk. In one study, 24-48-month-old children whose parents read picture books including numbers to them every day for four weeks showed larger increases in number knowledge than children whose parents read picture books without these number prompts. This effect was particularly strong for books including small numbers ($\eta^{2} p=0.118$; REF. ${ }^{123}$). Although encouraging parents to count and label sets of objects within the context of these interventions led to subsequent improvements in children's number knowledge, parents very infrequently spontaneously engage in these behaviours with their children ${ }^{127}$. Thus, it remains unclear whether the natural home and school environment - if parents are not prompted to engage in specific activities - provides enough number talk to benefit number word learning.

It also remains unclear how other environmental factors typically studied in relation to older children's and adults' mathematics performance might relate

Box 2 | Unknowns in the influence of number talk on number word acquisition

The majority of prior work examining environmental influences on number word learning has focused on the role of number talk. Past work has tended to examine overall frequency of number input, without much attention to the quality of that input or the contexts in which it occurs. For example, it is likely that hearing number talk in different contexts might provide different benefits for number word learning. Some activities might incorporate number talk and encourage thinking about cardinality in more effective ways than others. Having a set of items physically present while discussing the cardinal value of the set is especially beneficial for number word knowledge ${ }^{124}$ and therefore it is likely that activities that include physical items that can be counted would better support number word learning than activities that require more abstract discussion of sets, at least at initial stages of number word learning.
Additionally, the linguistic context of number talk might also have a role. It is possible that number talk in different sentence types might provide different benefits, and some types of utterances that include number talk might be more useful than others. Previous work suggests that the use of prompts and questions is particularly useful for children's vocabulary learning more broadly ${ }^{195,196}$, and their symbolic mathematics skills more specifically ${ }^{197}$, but it is unknown whether similar trends are found for number word learning. Similarly, it remains an open question how hearing number talk in the presence of other mathematics concepts (for instance, quantifiers) influences number word learning.
Finally, the source of the number talk might also have a role. Previous work has typically examined parents' and teachers' input to children, but no work has examined whether hearing number talk from different people leads to different outcomes. For instance, it is unknown whether it is just as beneficial to hear the same input from multiple people (for example, from parents and teachers) or solely from one person (for example, multiple times from only a teacher). Furthermore, it is unknown whether there are some people whose number input is more useful than others (for example, perhaps people who are less familiar to the child are less effective at helping them learn).
to children's number word learning. For example, no work to date has evaluated how parent or teacher attitudes and beliefs might shape children's number word acquisition.

Summary and future directions

The development of symbolic mathematics skills is shaped by children's domain-general and domainspecific abilities as well as by the opportunities provided in their environment. Variability in environmental factors, ranging from community-level differences in language and beliefs to individual-level differences in resources, engagement and attitudes, is closely tied to symbolic mathematics performance. However, more studies measuring both cognitive abilities and environmental factors are needed to identify the unique effects of each, the possible bidirectional association between the environment and children's cognitive abilities, and the consequences of these complex associations for symbolic mathematics development.

Prior work has focused on identifying the various environmental factors associated with symbolic mathematics skills across childhood and adulthood, with little attention to potential relationships with the precursors of these skills. Understanding number words provides a critical foundation for later symbolic mathematics learning and acquisition is a complex process spanning multiple years ${ }^{155}$, with ample opportunity for environmental influence. The limited previous work suggests that language, the availability of socioeconomic resources and frequency of number talk shape the rate at which children learn number words. Minimal work has examined how community attitudes and beliefs,
or individual differences in the attitudes and beliefs of teachers and parents, might be related to children's developing number word knowledge. Future research is needed to understand how environmental influences and potential interactions between the environment and children's abilities affect number word learning. Furthermore, theories of number word acquisition probably require expansion to consider other aspects of cognition, including knowledge of the logical vocabulary that relates to numbers (such as quantifiers ${ }^{184}$), the ability to switch from viewing collections of objects as a bunch of individuals to viewing them as a set ${ }^{185,186}$, and the ability to group objects into hierarchical sets ${ }^{187}$.

Future work should also investigate whether environmental influences are related to children's number word learning to the same extent across communities. To date, most work that has investigated the role of environmental influences has focused on the impact of number talk on children learning English number words (BOX 2). Additionally, it remains unknown whether broader societal beliefs and attitudes are related to children's number word learning, or whether these influences are only found for more advanced symbolic mathematics skills ${ }^{95}$. Specifically, future work might examine whether societal gender stereotype beliefs and attitudes are related to differences in number word knowledge and indirectly related to number word learning via mathematics engagement. It will be important to examine whether parental and teacher attitudes and beliefs, which are closely related to more advanced symbolic mathematics skills ${ }^{140,144}$, are also related to children's learning of number words. Distal factors such as attitudes and beliefs might relate to why individuals talk about numbers with children and inform interventions to promote beneficial types of number talk.

Similarly, identifying why SES is related to number word learning and symbolic mathematics skills can inform interventions to support children's number word acquisition in low-SES families. Further work examining how the environment, particularly SES, shapes and supports domain-general and domain-specific cognitive skills, and the subsequent impact on number word learning and more complex symbolic mathematics skills, will undoubtedly prove useful in teasing apart these mechanisms.

It is also important to consider the potential for interrelations and confounds between cognitive and environmental factors. Although we have largely reviewed the isolated impact of individual environmental influences on mathematics performance, there are probably close relations between environmental factors. For example, there might be broad socioeconomic disparities or different societal beliefs and attitudes between communities using different languages. Thus, the contributions of linguistic differences cannot be teased apart from these larger community differences, nor can the associations between societal beliefs and attitudes or SES be examined completely independently of linguistic influences. Similarly, even within communities, there is likely to be interplay between SES, individuals' beliefs and attitudes, and engagement in mathematics activities with young children. Future work must consider these interrelations
and the dynamic interactions between environmental factors.

Adding to the complexity of environmental influences, age might play a part in determining the impact of environmental input. For example, young (less than 36 months) children might be unaffected by their environment and only after a certain point might they begin to benefit from specific types of environmental input.

Similarly, the degree of environmental influence might itself change with development. Finally, to understand individual differences in symbolic mathematics performance more broadly, it will be necessary to consider how environmental influences might relate to the development of other types of foundational mathematics skills.

Published online: 13 May 2022

1. Agarwal, S. \& Mazumder, B. Cognitive abilities and household financial decision making. Am. Econ. J. Appl. Econ. 5, 193-207 (2013).
2. Currie, J. \& Thomas, D. Early test scores, socioeconomic status and future outcomes. Res. Labor. Econ. 20, 103-132 (2001).
3. Reyna, V. F. \& Brainerd, C. J. The importance of math in health and human judgment: numeracy, risk communication, and medical decision making. Learn. Individ. Differences 17, 147-159 (2007).
4. Trusty, J., Robinson, C. R., Plata, M. \& Ng, K.-M. Effects of gender, socioeconomic status, and early academic performance on postsecondary educational choice. J. Counseling Dev. 78, 463-472 (2000).
5. Jordan, N. C., Kaplan, D., Ramineni, C. \& Locuniak, M. N. Early math matters: kindergarten number competence and later mathematics outcomes. Dev. Psychol. 45, 850-867 (2009).
6. Duncan, G. J. et al. School readiness and later achievement. Dev. Psychol. 43, 1428-1446 (2007).
7. Coolen, I. et al. Domain-general and domainspecific influences on emerging numerical cognition: contrasting uni-and bidirectional prediction models. Cognition 215, 104816 (2021).
8. Chu, F. W., vanMarle, K. \& Geary, D. C. Predicting children's reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Front. Psychol. 7, 775 (2016).
9. Espy, K. A. et al. The contribution of executive functions to emergent mathematic skills in preschool children. Dev. Neuropsychol. 26, 465-486 (2004).
10. Fuchs, L. et al. The prevention, identification, and cognitive determinants of math difficulty. J. Educ. Psychol. 97, 493-513 (2005).
11. Aunola, K., Leskinen, E., Lerkkanen, M.-K. \& Nurmi, J.-E. Developmental dynamics of math performance from preschool to grade 2. J. Educ. Psychol. 96, 699-713 (2004).
12. Geary, D. C. Cognitive predictors of achievement growth in mathematics: a 5-year longitudinal study. Dev. Psychol. 47, 1539-1552 (2011).
13. Passolunghi, M. C., Cargnelutti, E. \& Pastore, M. The contribution of general cognitive abilities and approximate number system to early mathematics. Br. J. Educ. Psychol. 84, 631-649 (2014).
14. Feigenson, L., Dehaene, S. \& Spelke, E. Core systems of number. Trends Cogn. Sci. 8, 307-314 (2004).
15. Krajcsi, A., Kojouharova, P. \& Lengyel, G. in A Life in Cognition. Language, Cognition, and Mind, vol 11 (eds Gervain, J., Csibra, G. \& Kovacs, K.) 379-394 (Springer, 2022).
16. Gebuis, T., Cohen Kadosh, R. \& Gevers, W. Sensory-integration system rather than approximate number system underlies numerosity processing: a critical review. Acta Psychol. 171, 17-35 (2016).
17. Leibovich, T., Katzin, N., Harel, M. \& Henik, A. From "sense of number" to "sense of magnitude": the role of continuous magnitudes in numerical cognition. Behav. Brain Sci. 40, e 164 (2017).
18. Halberda, J. Perceptual input is not conceptual content. Trends Cogn. Sci. 23, 636-638 (2019).
19. Clarke, S. \& Beck, J. The number sense represents (rational) numbers. Behav. Brain Sci. 44, E178 (2021).
20. Feigenson, L. \& Carey, S. On the limits of infants' quantification of small object arrays. Cognition 97, 295-313 (2005).
21. Barner, D. Bootstrapping numeral meanings and the origin of exactness. Lang. Learn. Dev. 8, 177-185 (2012).
22. Barner, D. Language, procedures, and the non-perceptual origin of number word meanings. J. Child. Lang. 44, 553-590 (2017).
23. Carey, S. \& Barner, D. Ontogenetic origins of human integer representations. Trends Cogn. Sci. 23, 823-835 (2019).
24. Carey, S., Shusterman, A., Haward, P. \& Distefano, R. Do analog number representations underlie the
meanings of young children's verbal numerals? Cognition 168, 243-255 (2017).
25. Gunderson, E. A., Spaepen, E. \& Levine, S. C. Approximate number word knowledge before the cardinal principle. J. Exp. Child. Psychol. 130, 35-55 (2015).
26. Le Corre, M. \& Carey, S. One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition 105, 395-438 (2007).
27. Sarnecka, B. W. Learning to represent exact numbers. Synthese 198, 1001-1018 (2015).
28. Feigenson, L. \& Carey, S. Tracking individuals via object-files: evidence from infants' manual search. Dev. Sci. 6, 568-584 (2003).
29. Dehaene, S., Dehaene-Lambertz, G. \& Cohen, L. Abstract representations of numbers in the animal and human brain. Trends Neurosci. 21, 355-361 (1998).
30. Libertus, M. E. \& Brannon, E. M. Behavioral and neural basis of number sense in infancy. Curr. Dir. Psychol. Sci. 18, 346-351 (2009).
31. Libertus, M. E. \& Brannon, E. M. Stable individual differences in number discrimination in infancy. Dev. Sci. 13, 900-906 (2010).
32. Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q. \& Germine, L. Number sense across the lifespan as revealed by a massive internet-based sample. Proc. Natl Acad. Sci. USA 109, 11116-11120 (2012).
33. Dehaene, S. Origins of mathematical intuitions: the case of arithmetic. Ann. N. Y. Acad. Sci. 1156, 232-259 (2009).
34. Libertus, M. E., Odic, D., Feigenson, L. \& Halberda, J. The precision of mapping between number words and the approximate number system predicts children's formal math abilities. J. Exp. Child. Psychol. 150, 207-226 (2016).
35. Mussolin, C., Nys, J., Leybaert, J. \& Content, A. How approximate and exact number skills are related to each other across development: a review. Dev. Rev. 39, 1-15 (2016).
36. Nieder, A. Number faculty is rooted in our biological heritage. Trends Cogn. Sci. 21, 403-404 (2017).
37. Odic, D., Le Corre, M. \& Halberda, J. Children's mappings between number words and the approximate number system. Cognition 138 , 102-121 (2015).
38. Park, J., Bermudez, V., Roberts, R. C. \& Brannon, E. M. Non-symbolic approximate arithmetic training improves math performance in preschoolers. J. Exp. Child. Psychol. 152, 278-293 (2016).
39. Pinheiro-Chagas, P. et al. In how many ways is the approximate number system associated with exact calculation? PLoS One 9, e111155 (2014).
40. Starr, A., Libertus, M. E. \& Brannon, E. M. Number sense in infancy predicts mathematical abilities in childhood. Proc. NatI Acad. Sci. USA 110, 18116-18120 (2013).
41. Wagner, J. B. \& Johnson, S. C. An association between understanding cardinality and analog magnitude representations in preschoolers. Cognition 119 , 10-22 (2011).
42. Chen, Q. \& Li, J. Association between individual differences in non-symbolic number acuity and math performance: a meta-analysis. Acta Psychol. 148, 163-172 (2014).
43. Fazio, L. K., Bailey, D. H., Thompson, C. A. \& Siegler, R. S. Relations of different types of numerical magnitude representations to each other and to mathematics achievement. J. Exp. Child. Psychol. 123, 53-72 (2014).
44. Schneider, M. et al. Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Dev. Sci. 20, e12372 (2017).
45. Szkudlarek, E. \& Brannon, E. M. Does the approximate number system serve as a foundation for symbolic mathematics? Lang. Learn. Dev. 13, 171-190 (2017).
46. Piazza, M. et al. Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 116, 33-41 (2010).
47. Mazzocco, M. M., Feigenson, L. \& Halberda, J. Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child. Dev. 82, 1224-1237 (2011).
48. Wang, J. J., Halberda, J. \& Feigenson, L. Approximate number sense correlates with math performance in gifted adolescents. Acta Psychol. 176, 78-84 (2017).
49. Geary, D. C. Early foundations for mathematics learning and their relations to learning disabilities. Curr. Dir. Psychol. Sci. 22, 23-27 (2013).
50. Holloway, I. D. \& Ansari, D. Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children's mathematics achievement. J. Exp. Child. Psychol. 103, 17-29 (2009).
51. Rathē, S., Torbeyns, J., De Smedt, B. \& Verschaffel, L. Spontaneous focusing on Arabic number symbols and its association with early mathematical competencies. Early Child. Res. Q. 48, 111-121 (2019).
52. Zhou, X. \& Wang, B. Preschool children's representation and understanding of written number symbols. Early Child. Dev. Care 174, 253-266 (2004).
53. Hornburg, C. B., Schmitt, S. A. \& Purpura, D. J. Relations between preschoolers' mathematical language understanding and specific numeracy skills. J. Exp. Child. Psychol. 176, 84-100 (2018).
54. King, Y. A. \& Purpura, D. J. Direct numeracy activities and early math skills: math language as a mediator. Early Child. Res. Q. 54, 252-259 (2021).
55. Purpura, D. J. \& Logan, J. A. The nonlinear relations of the approximate number system and mathematical language to early mathematics development. Dev. Psychol. 51, 1717-1724 (2015).
56. Toll, S. W. M. \& Van Luit, J. E. H. The developmental relationship between language and low early numeracy skills throughout kindergarten. Exceptional Child. 81, 64-78 (2014).
57. Gray, S. A. \& Reeve, R. A. Number-specific and general cognitive markers of preschoolers' math ability profiles. J. Exp. Child. Psychol. 147, 1-21 (2016).
58. Hannula, M. M. \& Lehtinen, E. Spontaneous focusing on numerosity and mathematical skills of young children. Learn. Instr. 15, 237-256 (2005).
59. McMullen, J., Hannula-Sormunen, M. M. \& Lehtinen, E. Preschool spontaneous focusing on numerosity predicts rational number conceptual knowledge 6 years later. Zdm 47, 813-824 (2015).
60. Nanu, C. E., McMullen, J., Munck, P., Pipari Study, G. \& Hannula-Sormunen, M. M. Spontaneous focusing on numerosity in preschool as a predictor of mathematical skills and knowledge in the fifth grade. J. Exp. Child. Psychol. 169, 42-58 (2018).
61. Cheng, Y.-L. \& Mix, K. S. Spatial training improves children's mathematics ability. J. Cogn. Dev. 15, 2-11 (2013).
62. Purpura, D. J., Napoli, A. R., Wehrspann, E. A. \& Gold, Z. S. Causal connections between mathematical language and mathematical knowledge: a dialogic reading intervention. J. Res. Educ. Effective. 10, 116-137 (2016).
63. Pruden, S. M., Levine, S. C. \& Huttenlocher, J. Children's spatial thinking: does talk about the spatial world matter? Dev. Sci. 14, 1417-1430 (2011).
64. Rittle-Johnson, B., Zippert, E. L. \& Boice, K. L. The roles of patterning and spatial skills in early mathematics development. Early Child. Res. Q. 46, 166-178 (2019).
65. Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K. \& Newcombe, N. S. I. Spatial skills, their development, and their links to mathematics. Monogr. Soc. Res. Child. Dev. 82, 7-30 (2017).
66. Fuchs, L. S. et al. The contributions of numerosity and domain-general abilities to school readiness. Child. Dev. 81, 1520-1533 (2010).
67. Träff, U., Olsson, L., Skagerlund, K. \& Östergren, R. Kindergarten domain-specific and domain-general cognitive precursors of hierarchical mathematical development: a longitudinal study. J. Educ. Psychol 112, 93-109 (2020).
68. Xenidou-Dervou, I. et al. Cognitive predictors of children's development in mathematics achievement: a latent growth modeling approach. Dev. Sci. 21, e 12671 (2018).
69. Hrastinski, I. \& Wilbur, R. B. Academic achievement of deaf and hard-of-hearing students in an ASL/English bilingual program. J. Deaf. Stud. Deaf Educ. 21, 156-170 (2016).
70. Kritzer, K. L. Barely started and already left behind: a descriptive analysis of the mathematics ability demonstrated by young deaf children. J. Deaf. Stud Deaf Educ. 14, 409-421 (2009).
71. Leybaert, J. \& Van Cutsem, M. N. Counting in sign language. J. Exp. Child. Psychol. 81, 482-501 (2002).
72. Pagliaro, C. M. \& Kritzer, K. L. Learning to learn: an analysis of early learning behaviours demonstrated by young deaf/hard-of-hearing children with high/low mathematics ability. Deafness Educ. Int. 12, 54-76 (2013).
73. Santos, S. \& Cordes, S. Math abilities in deaf and hard of hearing children: the role of language in developing number concepts. Psychol. Rev. 129, 199-211 (2021).
74. Titus, J. The concept of fractional number among deaf and hard of hearing students. Am. Ann. Deaf. 140, 255-283 (1995).
75. Spaepen, E., Coppola, M., Spelke, E. S., Carey, S. E. \& Goldin-Meadow, S. Number without a language model. Proc. Natl Acad. Sci. USA 108, 3163-3168 (2011).
76. Gordon, P. Numerical cognition without words: evidence from Amazonia. Science 306, 496-499 (2004).
77. Pica, P., Lemer, C., Izard, V. \& Dehaene, S. Exact and approximate arithmetic in an Amazonian indigene group. Science 306, 499-503 (2004).
78. Dowker, A. \& Nuerk, H. C. Editorial: Linguistic influences on mathematics. Front. Psychol. 7, 1035 (2016).
79. Pixner, S., Moeller, K., Hermanova, V., Nuerk, H. C. \& Kaufmann, L. Whorf reloaded: language effects on nonverbal number processing in first grade - a trilingual study. J. Exp. Child. Psychol. 108, 371-382 (2011).
80. Pixner, S. et al. One language, two number-word systems and many problems: numerical cognition in the Czech language. Res. Dev. Disabil. 32, 2683-2689 (2011).
81. Miller, K. F. \& Stigler, J. W. Counting in Chinese cultural variation in a basic cognitive skill. Cogn. Dev. 2, 279-305 (1987).
82. Miura, I. T. \& Okamoto, Y. Comparisons of U.S. and Japanese first graders' cognitive representation of number and understanding of place value. J. Educ. Psychol. 81, 109-114 (1989).
83. Miura, I. T. \& Yukari, O. in The Development Of Arithmetic Concepts And Skills: Constructing Adaptive Expertise (eds Baroody, A. J. \& Dowker, A.) 229-242 (Lawrence Erlbaum, 2003).
84. Miura, I. T. et al. First graders' cognitive representation of number and understanding of place value: cross-national comparisons: France, Japan, Korea, Sweden, and the United States. J. Educ. Psychol. 85, 24-30 (1993).
85. Song, M.-J. \& Ginsburg, H. P. The development of informal and formal mathematical thinking in Korean and U. S. Children. Child Dev. 58, 1286-1296 (1987).
86. Stevenson, H. W., Lee, S. Y. \& Stigler, J. W. Mathematics achievement of Chinese, Japanese, and American children. Science 231, 693-699 (1986).
87. Miura, I. T., Okamoto, Y., Vlahovic-Stetic, V., Kim, C. C \& Han, J. H. Language supports for children's understanding of numerical fractions: cross-national comparisons. J. Exp. Child. Psychol. 74, 356-365 (1999).
88. Gobel, S. M., Moeller, K., Pixner, S., Kaufmann, L. \& Nuerk, H. C. Language affects symbolic arithmetic in children: the case of number word inversion. J. Exp. Child. Psychol. 119, 17-25 (2014).
89. Imbo, I., Vanden Bulcke, C., De Brauwer, J. \& Fias, W. Sixty-four or four-and-sixty? The influence of language and working memory on children's number transcoding. Front. Psychol. 5, 313 (2014).
90. Moeller, K., Shaki, S., Gobel, S. M. \& Nuerk, H. C Language influences number processing-a quadrilingual study. Cognition 136, 150-155 (2015).
91. Zuber, J., Pixner, S., Moeller, K. \& Nuerk, H. C. On the language specificity of basic number processing: transcoding in a language with inversion and its relation to working memory capacity. J. Exp. Child. Psychol. 102, 60-77 (2009).
92. Else-Quest, N. M., Hyde, J. S. \& Linn, M. C. Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychol. Bull. 136, 103-127 (2010).
93. Huntsinger, C. S., Jose, P. E., Liaw, F.-R. \& Ching, W.-D. Cultural differences in early mathematics learning: a comparison of Euro-American, Chinese-American, and Taiwan-Chinese families. Int. J. Behav. Dev. 21 , 371-388 (1997).
94. Lee, J. Universals and specifics of math self-concept, math self-efficacy, and math anxiety across 41 PISA 2003 participating countries. Learn. Individ. Differences 19, 355-365 (2009).
95. Nosek, B. A. et al. National differences in gender-science stereotypes predict national sex differences in science and math achievement. Proc. Natl Acad. Sci. USA 106, 10593-10597 (2009).
96. Randel, B., Stevenson, H. W. \& Witruk, E. Attitudes, beliefs, and mathematics achievement of German and Japanese high school students. Int. J. Behav. Dev. 24, 190-198 (2000).
97. Stoet, G. \& Geary, D. C. The gender-equality paradox in science, technology, engineering, and mathematics education. Psychol. Sci. 29, 581-593 (2018).
98. Davis-Kean, P. E. The influence of parent education and family income on child achievement: the indirect role of parental expectations and the home environment. J. Fam. Psychol. 19, 294-304 (2005).
99. Elliott, L. \& Bachman, H. J. SES disparities in early math abilities: the contributions of parents' math cognitions, practices to support math, and math talk. Developmental Rev. 49, 1-15 (2018).
100. Galindo, C. \& Sonnenschein, S. Decreasing the SES math achievement gap: initial math proficiency and home learning environments. Contemp. Educ. Psychol. 43, 25-38 (2015).
101. Jordan, N. C., Kaplan, D., Nabors Olah, L. \& Locuniak, M. N. Number sense growth in kindergarten: a longitudinal investigation of children at risk for mathematics difficulties. Child. Dev. 77, 153-175 (2006).
102. Jordan, N. C. \& Levine, S. C. Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Dev. Disabil. Res. Rev. 15, 60-68 (2009).
103. Kalaycioglu, D. B. The influence of socioeconomic status, self-efficacy, and anxiety on mathematics achievement in England, Greece, Hong Kong, the Netherlands, Turkey, and the USA. Educ. Sci. Theory Pract. 15, 1391-1401 (2015).
104. Cheadle, J. E. Educational investment, family context, and children's math and reading growth from kindergarten through the third grade. Sociol. Educ. 81, 1-31 (2008).
105. Sousa, S., Park, E. J. \& Armor, D. J. Comparing effects of family and school factors on cross-national academic achievement using the 2009 and 2006 PISA surveys. J. Comp. Policy Anal. Res. Pract. 14, 449-468 (2012).
106. Reardon, S. F. in Social Stratification: Class, Race, and Gender in Sociological Perspectives (ed. Grusky, D. B.) 536-550 (Routledge, 2014).
107. Hackman, D. A. \& Farah, M. J. Socioeconomic status and the developing brain. Trends Cogn. Sci. 13, 65-73 (2009).
108. Elliott, L. \& Bachman, H. J. How do parents foster young children's math skills? Child. Dev. Perspect. 12, 16-21 (2018).
109. LeFevre, J.-A. et al. Home numeracy experiences and children's math performance in the early school years. Can. J. Behav. Sci. 41, 55-66 (2009).
110. Vasilyeva, M., Laski, E., Veraksa, A., Weber, L. \& Bukhalenkova, D. Distinct pathways from parental beliefs and practices to children's numeric skills. J. Cogn. Dev. 19, 345-366 (2018).
111. Benavides-Varela, S. et al. Numerical activities and information learned at home link to the exact numeracy skills in 5-6 years-old children. Front. Psychol. 7, 94 (2016).
112. Mutaf Yildiz, B., Sasanguie, D., De Smedt, B. \& Reynvoet, B. Frequency of home numeracy activities is differentially related to basic number processing and calculation skills in kindergartners. Front. Psychol. 9, 340 (2018).
113. Blevins-Knabe, B. \& Musun-Miller, L. Number use at home by children and their parents and its relationship to early mathematical performance. Early Dev. Parent. 5, 35-45 (1996).
114. Huntsinger, C. S., Jose, P. E. \& Luo, Z. Parental facilitation of early mathematics and reading skills and knowledge through encouragement of home-based activities. Early Child. Res. Q. 37, 1-15 (2016).
115. Kleemans, T., Peeters, M., Segers, E. \& Verhoeven, L. Child and home predictors of early numeracy skills in kindergarten. Early Child. Res. Q. 27, 471-477 (2012).
116. Niklas, F. \& Schneider, W. Casting the die before the die is cast: the importance of the home numeracy environment for preschool children. Eur. J. Psychol. Educ. 29, 327-345 (2013).
117. Skwarchuk, S. L. How do parents support preschoolers' numeracy learning experiences at home? Early Child. Educ. J. 37, 189-197 (2009).
118. Silver, A. M., Elliott, L., Imbeah, A. \& Libertus, M. E. Understanding the unique contributions of home numeracy, inhibitory control, the approximate number system, and spontaneous focusing on number for children's math abilities. Math. Think. Learn. 22, 296-311 (2020).
119. Ramani, G. B., Rowe, M. L., Eason, S. H. \& Leech, K. A. Math talk during informal learning activities in Head Start families. Cogn. Dev. 35, 15-33 (2015).
120. Braham, E. J., Libertus, M. E. \& McCrink, K. Children's spontaneous focus on number before and after guided parent-child interactions in a children's museum. Dev. Psychol. 54, 1492-1498 (2018).
121. Casey, B. M. et al. Maternal support of children's early numerical concept learning predicts preschool and first-grade math achievement. Child. Dev. 89, 156-173 (2018).
122. Elliott, L., Braham, E. J. \& Libertus, M. E. Understanding sources of individual variability in parents' number talk with young children. J. Exp. Child. Psychol. 159, 1-15 (2017).
123. Gibson, D. J., Gunderson, E. A. \& Levine, S. C. Causal effects of parent number talk on preschoolers' number knowledge. Child. Dev. 91, e1162-e1177 (2020).
124. Gunderson, E. A. \& Levine, S. C. Some types of parent number talk count more than others: relations between parents' input and children's cardinal-number knowledge. Dev. Sci. 14, 1021-1032 (2011).
125. Klibanoff, R. S., Levine, S. C., Huttenlocher, J., Vasilyeva, M. \& Hedges, L. V. Preschool children's mathematical knowledge: the effect of teacher "math talk.". Dev. Psychol. 42, 59-69 (2006).
126. Levine, S. C., Suriyakham, L. W., Rowe, M. L., Huttenlocher, J. \& Gunderson, E. A. What counts in the development of young children's number knowledge? Dev. Psychol. 46, 1309-1319 (2010).
127. Mix, K. S., Sandhofer, C. M., Moore, J. A. \& Russell, C. Acquisition of the cardinal word principle: the role of input. Early Child. Res. Q. 27, 274-283 (2012).
128. Silver, A. M., Elliott, L. \& Libertus, M. E. Parental math input is not uniformly beneficial for young children: the moderating role of inhibitory control. J. Educ. Psychol. https://doi.org/10.1037/edu0000679 (2021).
129. Susperreguy, M. I. \& Davis-Kean, P. E. Maternal math talk in the home and math skills in preschool children. Early Educ. Dev. 27, 841-857 (2016).
130. DeFlorio, L. \& Beliakoff, A. Socioeconomic status and preschoolers' mathematical knowledge: the contribution of home activities and parent beliefs. Early Educ. Dev. 26, 319-341 (2014).
131. Missall, K., Hojnoski, R. L., Caskie, G. I. L. \& Repasky, P. Home numeracy environments of preschoolers: examining relations among mathematical activities, parent mathematical beliefs, and early mathematical skills. Early Educ. Dev. 26, 356-376 (2014).
132. Hornburg, C. B. et al. Next directions in measurement of the home mathematics environment: an international and interdisciplinary perspective. J. Numer. Cogn. 7, 195-220 (2021).
133. Berkowitz, T. et al. Math at home adds up to achievement in school. Science 350, 196-198 (2015).
134. Cheung, S. K. \& McBride, C. Effectiveness of parent-child number board game playing in promoting Chinese kindergarteners' numeracy skills and mathematics interest. Early Educ. Dev. 28, 572-589 (2016).
135. Leyva, D., Davis, A. \& Skorb, L. Math intervention for Latino parents and kindergarteners based on food routines. J. Child. Family Stud. 27, 2541-2551 (2018).
136. Niklas, F., Cohrssen, C. \& Tayler, C. Parents supporting learning: a non-intensive intervention supporting literacy and numeracy in the home learning environment. Int. J. Early Years Educ. 24, 121-142 (2016).
137. Niklas, F., Cohrssen, C. \& Tayler, C. Improving preschoolers' numerical abilities by enhancing the home numeracy environment. Early Educ. Dev. 27, 372-383 (2015)
138. Gunderson, E. A., Ramirez, G., Beilock, S. L. \& Levine, S. C. Teachers' spatial anxiety relates to 1 st- and 2nd-graders' spatial learning. Mind Brain Educ. 7, 196-199 (2013).
139. Musun-Miller, L. \& Blevins-Knabe, B. Adults' beliefs about children and mathematics: how important is it and how do children learn about it? Early Dev. Parent. 7, 191-202 (1998).
140. Beilock, S. L., Gunderson, E. A., Ramirez, G. \& Levine, S. C. Female teachers' math anxiety affects girls' math achievement. Proc. Natl Acad. Sci. USA 107, 1860-1863 (2010).
141. Chang, H. \& Beilock, S. L. The math anxiety-math performance link and its relation to individual and environmental factors: a review of current behavioral and psychophysiological research. Curr. Opin. Behav. Sci. 10, 33-38 (2016).
142. Maloney, E. A., Ramirez, G., Gunderson, E. A., Levine, S. C. \& Beilock, S. L. Intergenerational effects of parents' math anxiety on children's math achievement and anxiety. Psychol. Sci. 26, 1480-1488 (2015).
143. Soni, A. \& Kumari, S. The role of parental math anxiety and math attitude in their children's math achievement. Int. J. Sci. Math. Educ. 15, 331-347 (2017).
144. Fredricks, J. A. \& Eccles, J. S. Children's competence and value beliefs from childhood through adolescence: growth trajectories in two male-sex-typed domains. Dev. Psychol. 38, 519-533 (2002)
145. Silver, A. M., Elliott, L. \& Libertus, M. E. When beliefs matter most: examining children's math achievement in the context of parental math anxiety. J. Exp. Child. Psychol. 201, 104992 (2021).
146. Sonnenschein, S. et al. Parents' beliefs about children's math development and children's participation in math activities. Child. Dev. Res. 2012 851657 (2012).
147. Zippert, E. L. \& Ramani, G. B. Parents' estimations of preschoolers' number skills relate to at-home number-related activity engagement. Infant. Child Dev. 26, e1968 (2017).
148. Geary, D. C. \& vanMarle, K. Growth of symbolic number knowledge accelerates after children understand cardinality. Cognition 177, 69-78 (2018)
149. Geary, D. C. et al. Early conceptual understanding of cardinality predicts superior school-entry number-system knowledge. Psychol. Sci. 29, 191-205 (2018).
150. Sarnecka, B. W. \& Carey, S. How counting represents number: what children must learn and when they learn it. Cognition 108, 662-674 (2008).
151. Carey, S. Where our number concepts come from. J. Phil. 106, 220 (2009).
152. Fuson, K. C. Children's Counting and Concepts of Number (Springer Science \& Business Media, 2012).
153. Chu, F. W., vanMarle, K. \& Geary, D. C. Early numerical foundations of young children's mathematical development. J. Exp. Child. Psychol. 132, 205-212 (2015).
154. Wynn, K. Children's understanding of counting. Cognition 36, 155-193 (1990).
155. Wynn, K. Children's acquisition of the number words and the counting system. Cogn. Psychol. 24, 220-251 (1992).
156. Lee, M. D. \& Sarnecka, B. W. A model of knower-level behavior in number-concept development. Cogn. Sci. 34, 51-67 (2010).
157. Sarnecka, B. W. \& Lee, M. D. Levels of number knowledge during early childhood. J. Exp. Child. Psychol. 103, 325-337 (2009).
158. Huang, Y. T., Spelke, E. \& Snedeker, J. When is four far more than three? Children's generalization of newly acquired number words. Psychol. Sci. 21, 600-606 (2010).
159. O’Rear, C. D., McNeil, N. M. \& Kirkland, P. K. Partial knowledge in the development of number word understanding. Dev. Sci. 23, e 12944 (2020).
160. Posid, T. \& Cordes, S. How high can you count? Probing the limits of children's counting. Dev. Psychol. 54, 875-889 (2018).
161. Silver, A. M. et al. Measuring emerging number knowledge in toddlers. Front. Psychol. 12, 3057 (2021).
162. Wagner, K., Chu, J. \& Barner, D. Do children's number words begin noisy? Dev. Sci. 22, e1 2752 (2019).
163. Davidson, K., Eng, K. \& Barner, D. Does learning to count involve a semantic induction? Cognition 123 , 162-173 (2012).
164. Sella, F., Slusser, E., Odic, D. \& Krajcsi, A. The emergence of children's natural number concepts: current theoretical challenges. Child. Dev. Perspect. 15, 265-273 (2021).
165. Butterworth, B. The development of arithmetical abilities. J. Child. Psychol. Psychiat. 46, 3-18 (2005).
166. Leslie, A. M., Gelman, R. \& Gallistel, C. R. The generative basis of natural number concepts. Trends Cogn. Sci. 12, 213-218 (2008).
167. Spelke, E. S. Quinian bootstrapping or Fodorian combination? Core and constructed knowledge of number. Behav. Brain Sci. 34, 149-150 (2011).
168. vanMarle, K. et al. Attaching meaning to the number words: contributions of the object tracking and approximate number systems. Dev. Sci. 21, e1 2495 (2018).
169. Carey, S. Bootstrapping \& the origin of concepts. Daedalus 133, 59-68 (2004).
170. Sarnecka, B. W. On the relation between grammatical number and cardinal numbers in development. Front. Psychol. 5, 1132 (2014).
171. Levine, S. C. \& Baillargeon, R. in Core Knowledge and Conceptual Change (eds Barner, D \& Baron, A. S.) Ch. 8, 127 (Oxford Univ. Press, 2016).
172. Geary, D. C., vanMarle, K., Chu, F. W., Hoard, M. K. \& Nugent, L. Predicting age of becoming a cardinal principle knower. J. Educ. Psychol. 111, 256-267 (2019).
173. Almoammer, A. et al. Grammatical morphology as a source of early number word meanings. Proc. Natl Acad. Sci. USA 110, 18448-18453 (2013).
174. Izard, V., Pica, P., Spelke, E. \& Dehaene, S. Exact equality and successor function: two key concepts on the path towards understanding exact numbers. Phil. Psychol. 21, 491 (2008).
175. Marusic, F. et al. Do children derive exact meanings pragmatically? Evidence from a dual morphology language. Cognition 207, 104527 (2021).
176. Sarnecka, B. W., Kamenskaya, V. G., Yamana, Y., Ogura, T. \& Yudovina, Y. B. From grammatical number to exact numbers: early meanings of 'one', 'two', and 'three' in English, Russian, and Japanese. Cogn. Psychol. 55, 136-168 (2007)
177. Wagner, K., Kimura, K., Cheung, P. \& Barner, D. Why is number word learning hard? Evidence from bilingual learners. Cogn. Psychol. 83, 1-21 (2015).
178. Le Corre, M., Li, P., Huang, B. H., Jia, G. \& Carey, S. Numerical morphology supports early number word learning: evidence from a comparison of young Mandarin and English learners. Cogn. Psychol. 88, 162-186 (2016).
179. Bloom, P. \& Wynn, K. Linguistic cues in the acquisition of number words. J. Child. Lang. 24, 511-533 (1997).
180. Fluck, M. \& Henderson, L. Counting and cardinality in English nursery pupils. Br. J. Educ. Psychol. 66, 501-517 (1996).
181. Jordan, N. C., Huttenlocher, J. \& Levine, S. C. Differential calculation abilities in young children from middle- and low-income families. Dev. Psychol. 28, 644-653 (1992).
182. von Spreckelsen, M. et al. Let's talk about maths: the role of observed "maths-talk" and maths provisions in preschoolers' numeracy. Mind Brain Educ. 13, 326-340 (2019).
183. Paliwal, V. \& Baroody, A. J. How best to teach the cardinality principle? Early Child. Res. Q. 44, 152-160 (2018).
184. Dresen, V., Moeller, K. \& Pixner, S. Association between language and early numerical development - the case of quantifiers. Eur. J. Dev. Psychol. 1-17 (2021).
185. Alzahabi, R. \& Cain, M. S. Ensemble perception during multiple-object tracking. Attent. Percept. Psychophys. 83, 1263-1274 (2021).
186. Zosh, J. M., Halberda, J. \& Feigenson, L. Memory for multiple visual ensembles in infancy. J. Exp. Psychol. Gen. 140, 141-158 (2011).
187. Feigenson, L. \& Halberda, J. Infants chunk object arrays into sets of individuals. Cognition 91, 173-190 (2004).
188. Newcombe, N., Uttal, D. H. \& Sauter, M. in The Oxford Handbook of Developmental Psychology Vol. 1 Body and Mind (ed Zelazo, P. D.) 564-590 (Oxford Univ. Press, 2013).
189. Baroody, A. J., Li, X. \& Lai, M.-L. Toddlers' spontaneous attention to number. Math. Think. Learn. 10, 240-270 (2008).
190. Merkley, R. \& Ansari, D. Why numerical symbols count in the development of mathematical skills: evidence from brain and behavior. Curr. Opin. Behav. Sci. 10, 14-20 (2016).
191. Hurewitz, F., Papafragou, A., Gleitman, L. \& Gelman, R. Asymmetries in the acquisition of numbers and quantifiers. Lang. Learn. Dev. 2, 77-96 (2006).
192. Carraher, T. N., Carraher, D. W. \& Schliemann, A. D. Mathematics in the streets and in schools. Br. J. Developmental Psychol. 3, 21-29 (1985).
193. Butterworth, B. \& Reeve, R. Verbal counting and spatial strategies in numerical tasks: evidence from indigenous Australia. Phil. Psychol. 21, 443-457 (2008).
194. Butterworth, B., Reeve, R. \& Reynolds, F. Using mental representations of space when words are unavailable: studies of enumeration and arithmetic in Indigenous Australia. J. Cross-Cultural Psychol. 42, 630-638 (2011).
195. Cabell, S. Q., Justice, L. M., McGinty, A. S., DeCoster, J. \& Forston, L. D. Teacher-child conversations in preschool classrooms: contributions to children's vocabulary development. Early Child. Res. Q. 30, 80-92 (2015).
196. Rowe, M. L., Leech, K. A. \& Cabrera, N. Going beyond input quantity: wh-questions matter for toddlers' language and cognitive development. Cogn. Sci. 41, 162-179 (2017).
197. Duong, S., Bachman, H. J., Votruba-Drzal, E. \& Libertus, M. E. What's in a question? Parents' question use in dyadic interactions and the relation to preschool-aged children's math abilities. J. Exp. Child. Psychol. 211, 105213 (2021).

Acknowledgements

The authors thank J. Halberda and J. Iverson for their helpful insights and feedback during the writing of this manuscript. This work was supported by the James S. McDonnell Foundation Scholar Award to M.E.L., by the National Science Foundation under grants HRD1760844 and DRL1920545 to M.E.L., and by the National Institutes of Health under grant T32GM081760 to A.M.S.

Author contributions

The authors contributed equally to all aspects of the article.

Competing interests

The authors declare no competing interests.

Peer review information

Nature Reviews Psychology thanks Sara Cordes, Attila Krajcsi, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© Springer Nature America, Inc. 2022

