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Abstract
Epistemic uncertainty is a huge area of scholarship. It has captured the minds of
scholars in psychology and many domain-specific studies of reasoning and
problem solving. What does it mean to resolve uncertainty? This chapter
explores the idea that resolution of uncertainty in complex science and engi-
neering fields frequently ends with approximations rather than precise
answers. The chapter begins by examining language to motivate the core
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distinction between uncertainty and approximation. Then, the chapter explores
whether the distinction can be defended empirically in reliable and valid coding
of speech and gesture data in multiple science and engineering domains.
Novice/Expert changes in uncertainty and approximation levels are also
explored. Finally, three examinations of temporal patterns of co-occurrence
with uncertainty and approximation are presented in multiple problem-solving
domains to provide an overall model of uncertainty being transformed to
approximation through spatial reasoning and mental simulations.

1. Introduction

Studies of behavior in the real world have consistently found that
uncertainty has a large influence on behavior. For example, there is a whole
subdiscipline of naturalistic decision making focused on judgment under
uncertainty (e.g., Klein, 1989). Indeed, there are many pragmatic implications
for better understanding uncertainty. For example, the ways in which experts
reason about uncertainty in future forecasts under different actions, theways in
which experts choose to communicate this uncertainty to the voting public or
the future voting public (in schools), and the ways in which the public
understand the uncertainty will also influence critical decisions being made
by politicians today (Friday, 2003).Whilemuch progress has beenmade, there
is still much to be learned about how uncertainty influences behavior.

There are several taxonomies of uncertainty types in existence. Some
come from psychology judgment and decision-making research (Berkeley &
Humphreys, 1982; Howell & Burnett, 1978; Kahneman & Tversky, 1982;
Krivohlavy, 1970; Lipshitz & Strauss, 1997; Musgrave & Gerritz, 1968;
Trope, 1978). Others come from a broad array of particular disciplines,
such as geography (Abbaspour, Delavar, & Batouli, 2003), ecology
(Regan, Colyvan, & Burgman, 2002; Regan, Hope, & Ferson, 2002),
finance (Rowe, 1994), management (Priem, Love, & Shaffer, 2002), geos-
patial information systems (Plewe, 2002), law (Walker, 1991, 1998), acous-
tics (Egan, Schulman, & Greenberg, 1961), medicine (Brashers et al., 2003;
Hall, 2002), consumer choice (Sheer & Cline, 1995; Urbany, Dickson, &
Wilkie, 1989), driving behavior (Vlek & Hendrickx, 1988), educational
research (Webster & Bond, 2002), negotiation (Bottom, 1998), military
tactics (Cohen, Freeman, & Thompson, 1998), and statistics. The sheer
number of such domain-specific accounts makes clear how complex and
central uncertainty resolution is to problem solving. These taxonomies
typically emphasize the different sources of uncertainty—reasons why a
problem solver might be uncertain.

A different issue from the sources of informational uncertainty (objective
ambiguity in the existing information) is psychological uncertainty
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( Jousselme, Maupin, & Bossé, 2003), the internal feeling of being uncertain
about information which may or may not be objectively uncertain. Presum-
ably, it is this internal state that directly influences behavior: making choices
(Kahneman & Tversky, 1982), avoiding situations, or driving new problem
solving aimed at reducing the uncertainty levels (Trickett, Trafton, &
Schunn, 2009).

Of course the underlying source of informational uncertainty may also
influence behaviors aimed at reducing the psychological uncertainty. For
example, Lipshitz and Strauss (1997) found that decision makers react
differently to three different types of uncertainty: inadequate understanding,
incomplete information, and undifferentiated alternatives. Inadequate
understanding is addressed by collecting more information; incomplete
information is typically addressed through assumption-based reasoning;
and undifferentiated alternatives are resolved by weighing pros and cons
in more depth. But there still remains the question, what is the psychologi-
cal nature of the uncertainty itself.

In this chapter, I would like to argue for a distinction not previously
emphasized in discussions of uncertainty: the difference between psycho-
logical uncertainty and psychological approximation, referred to as uncer-
tainty and approximation for the rest of the chapter. Uncertainty is the lack
of knowledge about possible states (e.g., is the temperature 18 !C or
19 !C?). Approximation declares a state as falling with a range (e.g., the
temperature is between 18 !C and 19 !C). At first blush, this distinction
appears bizarre and without conceptual merit. From an information theo-
retic or logical perspective, there is no difference between the two. How-
ever, I will argue that this distinction is a critical psychological distinction in
science and engineering problem solving. I will show that uncertainty and
approximation are discriminable constructs in behavior, that they systemat-
ically occur in different places, and that common problem-solving strategies
in science engineering serve primarily to convert from uncertainty into
approximation. Thus, to ignore this seemingly nondistinction is to ignore a
core feature of very important types of problem solving. Further, psycho-
logical research coding uncertainty from speech or gestures will likely falsely
include approximation behaviors with uncertainty behaviors unless the
distinction between uncertainty and approximation is salient.

2. Linguistic Pragmatics of Uncertainty and
Approximation

To first provide some intuitions regarding the difference between
uncertainty and approximation, consider the following everyday conversa-
tional examples, focusing on the responses in italics.
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(1) Speaker 1: How old is she?
Speaker 2: 40? She was born in January of 1969.

(2) Speaker 1: How old is she?
Speaker 2: Early forties.

(3) Speaker 1: How old is she?
Speaker 2: Forty plus or minus 2.

(4) Speaker 1: How old is she?
Speaker 2: Early forties?

In (1), speaker 2 has all the information required to provide a precise
answer to the question, actually provides a precise answer (40) that is accurate
(in 2009), and yet is psychologically uncertain, as noted in providing an
answer in a question format. By contrast, in (2), speaker 2 provides an
approximate answer (early forties), but with no indicated psychological
uncertainty. Example (3) is a more academic-speak response with the same
key characteristics as (2): approximation but no indicated uncertainty.
Example (4) shows that one can have approximation and uncertainty.

From a pragmatics perspective, speaker 2’s responses in (2) and (3) are quite
reasonable in that they answer thequestionwithprecision that is likely sufficient
for speaker 1’s needs and they set clear bounds on the possible actual values. By
contrast, speaker 2’s response in (1) of ‘‘40?’’ does not set bounds on thepossible
actual values, leaving open the possibility of a much wider range of actual age.

Human languages contain many categorical terms that represent approx-
imations on quantitative entities. For example, 50s, 19th century, teenage,
early childhood, average height, room temperature, steep, and next door
represent approximate quantities of age, time, height, temperature, slope,
and location. Moreover, each of those terms represents approximations that
are much more approximate than humans can perceive psychologically.
That is, we could think and express ourselves more precisely than with those
terms, but we on occasion choose not to.

Interestingly, both uncertainty and approximation can be indicated
through the use of hedge words added to more precise terms, although
the two use different hedge words. Consider the following two examples.

(5) Speaker 1: How old is she?
Speaker 2: Maybe 40.

(6) Speaker 1: How old is she?
Speaker 2: Almost 40.

In (5), speaker 2 uses the hedge ‘‘maybe’’ to indicate uncertainty in the
precise response with no provided bounds on how far the answer could be
off, whereas in (6), speaker 2 uses the hedge ‘‘almost’’ to indicate approxi-
mation in the precise response and pragmatic conventions suggest the age is
less than 40 and unlikely to be more than 1 or 2 years below 40 (i.e., it might
be 38 or 39). Overall there appear to be many more ways of expressing
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uncertainty through hedge words than through direct terms indicating
approximate or uncertainty quantities, perhaps reflecting subdimensions of
uncertainty (e.g., probability distributions or average versus peak intensity)
or approximations that do not have convenient linguistic labels (e.g.,
temperatures between 14 and 16 !C, or ages between 43 and 45). As a
result, our coding from speech tends to focus on hedge words.

The examples above have generally focused on uncertainty and approx-
imation cases that are not informationally equivalent in that the possible
range for the uncertainty cases was larger than the possible range for the
approximation cases. There are two important points to note about this
observation. First, the definitional difference is NOT about relative ambi-
guity in quantity. Reverse cases are possible: one could be uncertain
whether the temperature is 14 or 15 !C and one could assert an approxima-
tion of 13–18 !C. Uncertainty is about psychologically not knowing some-
thing, whereas approximation is about asserting a range.

Second, it happens to be the case that problem solving tends to reduce the
possible range for which one is uncertain to a smaller range that is the approxi-
mation. For example, a problem solver might begin with an uncertainty of a
very general form (what is the temperature?) or of a wide range (what is the
temperature, but knowing that it is a Fall afternoon in New York) and then
through some data collection from various sources and reasoning finish with a
smaller possible range of 14–16 !C. In otherwords, problem solving (especially
in engineering and science forwhich some level of precision is required) serves
to move information ambiguity from unacceptable levels to acceptable levels
for the task at hand. This point will be further examined in Section 6.

3. Coding Approximation and Uncertainty
from Speech

In a different sense of pragmatics, the distinction of approximation
versus uncertainty is useful to psychologists (or various other scientists of
behavior) only if the distinction can bemade reliably from observed behavior
and is associated with interesting patterns of behavior. Focusing on the first
issue, in a number of projects we have found that uncertainty and approxi-
mation can be reliably coded from free speech, either in the form of think-
alouds during problem solving or in the form of natural conversations.

3.1. Conversation Coding in Engineering Design
Team Meetings

In Christensen and Schunn (2009), we coded for uncertainty and approxi-
mation from the many hours of conversation transcripts of an innovative
engineering design team during their weekly design team meetings. Our
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approach to coding uncertainty and approximation was syntactical with
verification, building on a hedge-word uncertainty coding approach devel-
oped with Trickett, Trafton, Saner, & Schunn (2007). Examples of uncer-
tainty hedge words are ‘‘probably,’’ ‘‘sort of,’’ ‘‘guess,’’ ‘‘maybe,’’
‘‘possibly,’’ ‘‘don’t know,’’ ‘‘[don’t] think,’’ ‘‘[not] certain,’’ and ‘‘believe,’’
Examples of approximation hedge words are ‘‘pretty much,’’ ‘‘virtually,’’
‘‘generally,’’ ‘‘frequently,’’ ‘‘usually,’’ ‘‘normally,’’ ‘‘basically,’’ and
‘‘‘almost.’’ (Actually, we searched for the Danish equivalents of these
terms, as the team being studied was Danish.) In either the uncertainty or
approximation cases, each instance of the hedge words was examined to
make sure it was being used in an uncertainty or approximation sense; if so,
the segment containing these hedge words were coded as ‘‘uncertainty
present’’ or ‘‘approximation present.’’

Interrater reliability for this approach was extremely high, with kappas of
0.95 for uncertainty coding and 0.96 for approximation coding. As a simple
validation of each construct and the distinction between the two, we also
looked at the adjacency relationships between codes from one transcript
segment to the next. The assumption is that mental states of uncertainty or
approximation are ‘‘sticky’’ in that they will tend to continue longer in time
than just one segment. Uncertainty and approximation are conceptualized
as being about particular quantities and thus co-occurrence will not be
perfect, but conversations will tend to continue regarding a given quantity,
so there should be some continuity. As can be seen in Table 1, this
continuity was clearly shown for both approximation and uncertainty
(both trends are statistically significant). Further, taking into account the
base rates of uncertainty and approximation, there was no tendency for
approximation to immediately follow uncertainty or vice versa.

3.2. Conversation and Interview Coding in Science and
Applied Science Data Analysis

Another project involved a similar coding procedure applied to two different
domains of science and two different domains of applied science (Schunn,
Saner, Kirschenbaum, Trafton, & Littleton, 2007; Trickett et al., 2009).

Table 1 Rates of Uncertainty and Approximation in the Next Transcript Segment as a
Function of their Presence in a Given Segment.

Current segment

Uncertainty in

next segment

Approximation

in next segment

Uncertainty (n ¼ 247) 16% 4%
Approximation (n ¼ 308) 3% 8%
Neither (n ¼ 5616) 5% 4%
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The first domain involved conversations of earth scientists working at the Jet
Propulsion Lab analyzing data as it came down fromMars from two robotic
rovers—the Mars Exploration Rovers. The coded conversations were of
impromptu meetings held throughout the day between groups of 2–10
scientists from several different disciplines (soil and rock scientists, geoche-
mists, geologists, and atmosphere scientists). There were a number of video
cameras off to the sides of the large data analysis rooms. The scientists had
given informed consent for this video collection, but the cameras were
relatively small, discretely located, and constantly present. Thus, the scien-
tists generally forgot about the existence of the cameras and the transcripts
likely capture very typical problem-solving behaviors in this context.

The remaining three domains were 13 cognitive neuroscientists analyz-
ing fMRI data (fMRI), 18 meteorologists making weather predictions
(Weather), and 22 navy officers localizing an enemy submarine using only
passive sonar (Submarine). These datasets involved cued think-alouds of
novices (apprentices in the domain, not random undergraduates), inter-
mediates, and experts. Participants were videotaped as they analyzed their
data on computers (their own data in the case of fMRI, canned data in the
case of Weather and Submarine). After 30–45 min of data analysis, they
were then shown three or four different minute-long snippets of the
videotape that corresponded to critical decision-making moments during
data analysis. The scientists were asked to explain what they knew and did
not know at that moment in time. Sometimes problem solvers given think-
aloud instructions fall silent exactly at the interesting moments in time,
especially when the task is long and complex. This cued-recall method was
designed to capture additional information about these more interesting
moments.

Across these four domains, we used the same hedge-word technique for
coding uncertainty and approximation from the transcribed speech. In all
cases, we obtained interrater reliability kappas of greater than 0.8 for both
uncertainty and approximation.

The know/do not know probes in the fMRI, Weather, and Submarine
domain studies provide another validation of the distinction between
uncertainty and approximation (and coding was done blind to question
context). One would expect that there would be more uncertainty speech
cues in response to the ‘‘what did you not know?’’ question than in response
to the ‘‘what did you know?’’ question. An opposite pattern is expected for
approximation. Figure 1 presents the results. In all three domains, the
predicted pattern was obtained and statistically significant for both uncer-
tainty and approximation codes.

Thus, uncertainty versus approximation is a distinction that can be made
reliably in various science and engineering settings from verbal data in the
form of think-alouds or natural conversations. Simple patterns in the data
clearly suggest that uncertainty and approximation are temporally coherent
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within categories and temporally dissociable across categories. Finally,
uncertainty and approximation speech appears under expected conditions.

4. Coding Uncertainty from Gestures

In science and engineering, much of the data is inherently visual–
spatial or is displayed in spatial format (e.g., graphs of temperature varying
with time). Thus, much of the uncertainty and approximation are expressed
about visual–spatial quantities. Because science and engineering have for-
malized much if not all of the quantities and relationships in symbolic
formats (e.g., terms for particular quantitative data patterns, equations to
represent quantitative data patterns), much can be studied from coding
speech from conversations and think-alouds. However, it is likely that
considerable representing, reasoning, and problem solving in science and
engineering is also happening in a visual–spatial, nonverbal format.

How does one measure internal problem solving on visual–spatial con-
tent? All measures of mental representations and problem solving are neces-
sarily indirect. Verbal report is one general source of data regarding mental
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representation and problem solving. However, for visual–spatial content, it
is a suspect source, as verbal data are generally thought to capture the
contents of verbal working memory, not spatial working memory
(Ericsson & Simon, 1993). Retrospective or intermittent drawings can be
another source of data. However many people are not very skilled in
drawing, and it is likely that such drawings would influence reasoning
more than verbal protocols would because the drawing process is much
less automatic and the results of the process are more permanent (i.e., is an
object that can be used itself in problem solving). Scientists and engineers do
draw (by hand or via a computer) regularly, but not densely enough in time
to constitute a good online measure of thinking. A third approach is to use
spontaneous gestures. In addition to serving as a communicative act between
speaker and listener, spontaneous gestures are thought to be an online
measure of mental representations much like verbal protocols (Alibali,
Bassok, Solomon, Syc, & Goldin-Meadow, 1999; Alibali & Goldin-
Meadow, 1993; McNeill, 1992). In spatial tasks, in fact it is disruptive to
the problem solver to prevent gesturing from occurring.

In a later section, I will consider more complex representational content
of gestures. But first, I want to focus on gestures as a direct measure of
uncertainty or approximation. There are a number of taxonomies of ges-
ture. One common distinction (McNeill, 1992) is between beat gestures
(rhythmic, repetitive gestures often co-timed with speech), deictic gestures
(pointing to things in the world around the speaker such as the clock on the
wall over there), iconic gestures (gestures that are literal physical presenta-
tions of things absent, such as hand-shape holding an implied glass), and
metaphoric gestures (a spatial representation of a nonspatial object, such as
pointing behind oneself to represent back in time). All of these gestures can
have many phases (McNeill, 2005): preparation (optional), prestroke hold
(optional), stroke (obligatory), stroke hold (obligatory if the stroke is static),
poststroke hold (optional), and a retraction (optional). Uncertainty gestures
are typically wiggling movement in the stroke of an iconic or metaphoric
gesture that represents some quantity (i.e., normally would be static). For
example, a pinch indicating a size together with wavering the size or
wiggling the hand. In this way, the uncertainty gesture is discriminable
from a beat gesture in that there is content to the gesture beyond the
movement in an uncertainty gesture of this type but the beat gesture does
not have content beyond the movement (i.e., the hand does not indicate a
size or distance or volume). However, another common form of an uncer-
tainty gesture involves a shoulder shrug. In this case, one must rely on
speech or perhaps another gesture to determine which quantity is producing
uncertainty.

We have not yet coded approximation gestures, but I could easily
imagine width of gestures indicating the approximations on quantities
(e.g., between fingers of one hand or between hands). Further, I could
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easily imagine that some of the wiggling gestures that we previously coded
as uncertainty gesture might actually be approximation gestures (e.g., spe-
cific movement between particular points).

In this section, the uncertainty gesture data are used as a cross-validation:
do uncertainty gestures co-occur with uncertainty speech (and less so with
approximation speech)? It is important to note, however, that speech and
gesture need not always line up perfectly. Speech-gesture mismatches do
happen and are not thought to be simply noise in interpretation; rather they
are thought to signal coactivation of competing ideas/strategies (Alibali &
Goldin-Meadow, 1993; Alibali et al., 1999).

We examined the overlap between uncertainty gesture and speech in the
four science/applied science domains. Figure 2 presents the percentage of
segments with uncertainty gestures when the segment has speech uncer-
tainty or speech approximation present/absent in the three domains with
cued-recall think-alouds. The first thing to note is that uncertainty gestures
are relatively less common that uncertainty or approximation speech codes.
The second thing to note is the strong cross-validation across all three
domains: uncertainty gestures occurred much more often when uncertainty
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speech occurred (ps < 0.01 in all three), whereas uncertainty gestures had
no consistent relationship to whether approximation speech occurred (only
the Weather difference is statistically significant, p < 0.05, and in the
reverse direction from the uncertainty speech pattern).

In the naturalistic science conversation Mars data, 5.3% of segments with
an uncertainty code had an uncertainty gesture, in comparison to 2.7% of
segments without an uncertainty speech code (X2(1) ¼ 16.0, p < 0.001)—
in other words, uncertainty gestures occur twice as often in the context of
uncertainty speech. There is an association between approximation state-
ments and uncertainty gestures (X2(1) ¼ 6, p < 0.02), but the association is
weaker; uncertainty gestures are only 50% more likely to appear in the
context of approximation speech than without approximation speech.
Overall, then, uncertainty speech and uncertainty gesture are clearly related,
whereas uncertainty gesture and approximation speech have a smaller
ambiguous relationship, perhaps reflecting some miscoding of approxima-
tion gestures as uncertainty gestures.

To further validate that there is indeed something called an uncertainty
gesture that signals an internal state of uncertainty, we can examine gesture
data from the fMRI, Weather, and Submarine domains, focusing on the
relative frequency of uncertainty gestures in response to the Know and Not
know questions. In all three domains, 2% of segments co-occurred with an
uncertainty gesture during the response to the Know question. In response
to the Not know question, rate of uncertainty gestures increased signifi-
cantly (ps < 0.05) and generally more than doubled (5% fMRI, 8%
Weather, and 4% Submarine).

5. Uncertainty, Approximation, and Expertise

With multimodal affirmation of the somewhat surprising distinction
between uncertainty and approximation in hand, we can now explore a
third pragmatic question: whether the distinction plays a useful role in
explaining behavior, in this case behavior of scientists and engineers. One
intuition might be that uncertainty and approximation should differ by
expertise levels, with experts showing more approximation and less uncer-
tainty. Indeed, some expertise literature focuses on the amazing swiftness
with which experts can see problems in terms of solutions features and solve
problems (Chase & Simon, 1973; Chi, Feltovich, & Glaser, 1981; Gobet &
Simon, 1996; Larkin, McDermott, Simon, & Simon, 1980). However,
much of the expertise literature making those claims focuses on well-
defined problems such as simple physics problems that are purely education
tasks rather than problems an expert would actually encounter. The actual
life of an engineer and scientist is much less clear-cut. Indeed, experts in
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most domains deal with a very uncertain world, hence the large focus on
decision making under uncertainty within naturalistic decision-making
research. While an expert certainly can produce better solutions and in
less time than novices in the much more ill-defined contexts of real science
and engineering problem solving (Moss, Kotovsky, & Cagan, 2006; Schunn
& Anderson, 1999; Voss, Tyler, & Yengo, 1983), it is not a matter of
recognition of simple solutions for the expert. Issues involving uncertainty
must be recognized and then resolved through complex processes, like
mental simulation. It may be that novices do not even recognize what is
uncertain about the current situation, treating initial point estimates as fact
rather than estimates.

The fMRI, Weather, and Submarine cued-recall dataset provides an
opportunity to look at expertise effects on rates of uncertainty and approxi-
mation across domains to look for consistent patterns. We defined novices
as those individuals having already learned enough of the task basics to be
able to complete the analysis tasks on their own (e.g., analyze an fMRI
dataset, make a weather prediction). Experts were those at the top perfor-
mance levels. Intermediates were those with considerable experience
beyond novice levels, but far from expert levels in that domain. In our
participant pool for that study, only fMRI involved all three performance
levels. The Weather data included novices ( juniors and seniors in weather
forecasting school) and experts, and the submarine data had only intermedi-
ates and experts (both were submarine officers with field experience, but to
varying degrees).

Figure 3A presents the levels of uncertainty speech across the expertise
levels in each domain, and Figure 3B presents the levels of approximation
speech across the expertise levels in each domain. There are a few statisti-
cally significant differences, but no consistent differences across the three
domains. For example, in the submarine domain, the experts have the
highest levels of uncertainty, whereas in the Weather domain they have
the lowest. In all three domains, the differences by expertise level are small.
The best overall conclusion to draw is that recognizing uncertainty may
itself be a kind of expertise and the frequency of uncertainty comments will
involve two opposing trends as a function of expertise: (1) experts likely
recognize more facets of uncertainty and (2) experts are better able to
resolve the uncertainty. How those opposing trends balance in aggregate
will depend on the complexities of the task at hand. That is, I doubt that
even a whole domain will have general patterns by expertise level on
amount of uncertainty as some tasks within the domain will involve more
detection challenges and others will involve more resolution challenges.

In support of this idea that there are recognition and resolution elements
to uncertainty, one can divide a problem-solving session into two halves
(early and late). If experts recognize uncertainty more readily and then are
able to resolve it, we would expect their uncertainty levels to go down over
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time. By contrast, if novices are struggling to even see the issues of uncer-
tainty and are less able to resolve these uncertainties, then we would expect
novices’ uncertainty levels to go up over time. Figure 4 presents relevant
uncertainty speech data from the fMRI domain. We see that uncertainty
levels do go up for novices and intermediates whereas they go down
(directionally but not statistically significant) for experts. Similar (small)
interactions of early/late by expertise levels on uncertainty levels could
also be seen in the other domains.
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Figure 3 The percentage of segments (with SE bars) showing (A) uncertainty speech
and (B) approximation speech as a function of domain and expertise levels.
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Of course, more fine-grained coding of uncertainty detection and reso-
lutions’ strategies included in this analysis of expertise effects on uncertainty
and approximation would provide a more conclusive perspective on why
uncertainty is not clearly associated with expertise and appears to be chang-
ing in different ways over time. We have done this coding in all four
science/applied science domains. We specifically looked at what indicators
were used to identify sources of uncertainty. For example, uncertainty
becomes apparent when different data sources (as in two weather models)
produce conflicting results, or when one data source produces seemingly
impossible results (as in brain activation outside the skull). A number of such
general indicators could be found. We also looked at the strategies used to
resolve the uncertainty. It turns out that there are a very large number of
such general strategies that can be observed, some more spatial in form,
others less spatial. There are some expertise differences by strategy within
each of the domains, but the differences are not consistent across the
domains, probably because different strategies are differentially effective
within each domain. In sum, uncertainty and approximation have a com-
plex relationship to expertise levels rather than a simple-linear trend rela-
tionship, and the relationship likely depends upon the ease in which
uncertainty is detectable and resolvable in a given setting given available
tools and strategies.
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Figure 4 The percentage of segments (with SE bars) in the fMRI domain showing
uncertainty speech as a function of early and late minutes of problem solving
and expertise levels. Ns for each percentage vary between 130 and 300 segments of
speech.
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6. From Uncertainty to Approximation via
Spatial Reasoning

Thus far, I have focused on the differences between uncertainty and
approximations—how they are not the same. Now I would like to focus on
the positive relationship that they have to one another. In particular, the
theoretical assertion that I would like to make is that uncertainty and
approximation have an input/output relationship to one another with
spatial reasoning lying in between, at least in science and engineering
problem solving. The next three sections build up the evidence for this
theoretical assertion. Section 6.1 examines verbal protocol evidence that
uncertainty leads to mental spatial transformations. Section 6.2 examines
gesture data to examine the relative temporal relationship of uncertainty,
approximation, and spatial mental representations. Section 6.3 focuses on a
particular kinds of spatial problem solving that appears to be used to move
from uncertainty to approximation in problem solving.

6.1. Uncertainty and Verbally Coded Spatial Transformations
in Basic and Applied Science

InTrickett et al. (2007),we used the syntactic approach to coding uncertainty
in speech and then also coded the speech for the presence of spatial transfor-
mations. Spatial transformations are mental operations a person mentally
performs on an internal representation or an external visualization (on
paper or computer screen). Typical spatial transformations are creating a
mental image, adding or deleting features to an image, rotating or moving
an object, or making comparisons between different views. Table 2 provides
examples of uncertainty codes and spatial transformations from utterances.

In one study, we examined the relative co-occurrence of spatial trans-
formations with uncertainty in speech for an expert (over 16 years of
experience) making a weather forecast while giving a think-aloud (approxi-
mately 50 min of speech to analyze). We found that the rate of spatial
transformations was almost twice as high during speech with uncertainty
markers than in speech without uncertainty markers. Follow-up work with
more experts and novices (although still trained in weather forecasting)
found that both experts and novices showed this pattern but the effect is
much larger in experts than in novices.

In the second study of Trickett et al. (2007), a more rigorous test was
conducted using the fMRI andWeather cued-recall dataset described earlier,
but in a slightly different way. Here, spatial transformations were coded from
the think-aloud speech of the problem solver doing the initial fMRI data
analysis or weather forecast. Then relative levels of uncertainty were coded
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from the responses to the cued-recall questions. A minute of problem solving
wasdetermined tobeahigh-uncertaintyminute if the cued-recall phase for that
minute generated a high percentage of uncertainty speech codes whereas the
minute of problem solving was determined to be a low-uncertainty minute if
the cued-recall phase generated a low percentage of uncertainty speech codes.
Thus, spatial transformations and relative uncertainty levels were coded from
different datasets (and also by coders from different labs). Further, in our prior
analyses, uncertainty speech was coded at the utterance-by-utterance level,
whereas the underlying uncertainty is likely more pervasive (i.e., the speech
codesmaybe considered as the tip of the uncertainty iceberg).This designation
of entire minutes as being high or low uncertainty addresses this issue. Indeed,
using this approach toexamininguncertaintyagainst spatial transformations,we
found that spatial transformations were over four times greater during high-
uncertainty minutes than during low-uncertainty minutes.

6.2. Association of Uncertainty and Approximation with
Spatial Gestures in Basic Science

In addition to potentially capturing uncertainty or approximation in think-
ing, gestures can also capture spatial problem solving. If spatial problem
solving takes place between uncertainty and approximation, then we should

Table 2 Examples of Spatial Transformations and Certain and Uncertain Utterances
with Indications of Uncertainty in Bold and Spatial Transformation in Italics (adapted
from Trickett et al., 2007).

Utterance Code

Spatial transformations

(ST)

Nogaps [a mathematical model]
has some precipitation over the
Vancouver/Canada border
(while viewing a visualization)

Certain No ST

This is valid today Certain No ST
Possibly some rain over Port Angeles Uncertain No ST
And then uh, at Port Angeles, there’s
gonna be some rain up at the north, and
if that sort of sneaks down, we could
see a little bit of restriction of visibility,
but only down to 5 miles at the worst

Uncertain ST: mentally moving
rain [sneaks down]

I don’t think the uh front’s gonna get
to Whidbey Island, but it should be sitting
right about over Port Angeles right
around 0Z this evening

Uncertain ST: mentally moving
front/animation
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see more spatial gestures between uncertainty and approximation. But what
kind of gestures should we expect to see?

There are many different kinds of spatial representations. The spatial
reasoning literatures (in cognitive psychology, developmental psychology,
and cognitive neuroscience) frequently make distinctions between large
scale and small scale, egocentric and exocentric (or allocentric), and
between two-dimensional and three-dimensional visual–spatial representa-
tions. The work described in the prior section suggests that spatial transfor-
mations are frequently used by problem solvers to resolve uncertainty. The
cognitive neuroscience literature has suggested for multiple decades that a
ventral (‘‘what’’ or object type information) and dorsal (‘‘where’’ or object
location information) pathway is a critical distinction in thinking about
visual–spatial processing (Ungerleider & Mishkin, 1982). Later work (for a
review, see Kosslyn, Ganis, & Thompson, 2001) has suggested that the
parietal lobe (part of the where pathway) is heavily involved during spatial
transformations (e.g., during mental rotation). Other neuroscience work has
suggested that the parietal lobes are specifically involved in small 3D
representations of space (Previc, 1998). By inference, one would expect
to see high numbers of small 3D manipulation gestures following uncer-
tainty speech and preceding approximation speech if mental transformations
are doing the work of going from uncertainty to approximation and these
gestures map onto mental transformations of this type.

We have tested exactly this prediction in the Mars data described earlier.
In addition to coding uncertainty gestures, we also coded for several other
kinds of spatial and nonspatial gestures. The most common spatial gesture
was small-scale 3D gestures. Based on a theoretical framework I have
developed elsewhere (Harrison & Schunn, 2002), these are called manipu-
lative gestures. Specifically, manipulative gestures are gestures that place
objects and activity in a nearby space, such that the problem solver can
actually manipulate or place the imaginary objects. Examples of manipula-
tive gestures included one-handed gestures of a brain region (a cupped hand
facing up) and two-handed gestures showing dusting billowing over a small
crater lip (the left hand flat and held still at an angle to represent the crater lip
and the right hand swooping over the left with fingers wiggling to show the
billowing dust). Gestures in which the hand shape suggests placing or
holding as opposed to strictly pointing were also coded as manipulative.

To examine the relative temporal arrangement of uncertainty speech
and manipulative gestures, we divided speech segments into several differ-
ent types: segments with uncertainty speech (exact), segments that have
uncertainty 1–5 segments before the current one (before), segments that
have uncertainty 1–5 segments after the current one (after), segments with
both before and after relationships, and then segments not near uncertainty
speech (distant), which can be thought to establish a base rate of spatial
gestures. We then examined the rate of manipulative gestures during each of
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these segment types. The same analysis was also done for gestures’ temporal
relationship to approximation speech codes.

Figure 5 presents the results of this analysis. Focusing on manipulative
gestures relative to uncertainty speech, the highest rates of manipulative
gestures occur when the uncertainty speech occurs before the current
segment. The ‘‘during’’ cases (both and exact) have lower rates of manipu-
lative gestures, and the after case has a manipulative gesture rate similar to
segments distant from any uncertainty speech. Thus, it appears that uncer-
tainty speech occurs primarily before manipulative gestures and not after.
For approximation speech and manipulative gestures, a different pattern
appears. Here manipulative gestures are elevated anywhere near approxi-
mation speech, but particularly right during it. Thus, the approximation
representations appear to occur simultaneously with the spatial transforma-
tion work. Overall, these data are consistent with the view that uncertainty
leads to spatial transformations that produce approximation results.

6.3. From Approximation to Uncertainty via Mental
Simulations in Engineering Design

The Christensen and Schunn (2009) examination of uncertainty and
approximation in engineering design also examined the temporal relation-
ships of uncertainty and approximation relative to mental problem solving.
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Figure 5 The proportion of speech segments (with SE bars) with manipulative ges-
tures as a function of whether uncertainty speech occurred before (within five seg-
ments), after (within five segments), both before and after, or exactly in the segment.
Each proportion is based on between 300 and 600 segments of data, except the
‘‘distant’’ proportions, which are based on 1300 segments.
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In particular, we focused on a kind of problem solving that was quite
frequent in engineering design team meetings: mental simulations. These
mental simulations happened approximately once every two minutes on
average during the meetings. In the part of the meetings in which the
conversation was focused on active design of the product (vs. future
planning), the rate went up to one per minute.

The coding scheme for mental simulations was adapted from the coding
scheme developed by Trickett and Trafton (2007) for coding scientist
mental simulations. A mental simulation is a mentally constructed model
of a situation, building upon objects in memory of mental modifications of
objects currently present. A defining feature of a mental simulation is that
something is ‘‘running,’’ that is, that the process alters the representation.
The simulation is not just asking a ‘‘what if’’ question. It also provides an
answer about whether something will work, what a resulting feature will be,
etc. Mental simulations involve a sequence of three critical elements:
creating an initial representation, running the representation (elements or
functions are changed, added, or deleted), and a final changed representa-
tion. Each segment was coded as ‘‘mental simulation’’ or ‘‘no mental
simulation,’’ along with the separate steps. Table 3 presents an example
mental simulation from the transcripts coded into three components. The
interrater reliability for coding mental simulations was quite high,
kappa ¼ 0.9.

Figure 6 presents the rate of uncertainty and approximation speech as a
function of step during a mental simulation. The base rate of (speech coded)
uncertainty is 8% in this dataset. The rate of uncertainty speech was statisti-
cally significantly higher than the base rate at the initial representation and

Table 3 An Example Mental Simulation from the Engineering Design Domain (from
Christensen & Schunn, 2009).

Step Utterance

Initial representation Could you add something so that you couldn’t close
this thing because there would be something in
the way when you try to fold this way. . .

Run But if this thing goes this way, then it is in a position
to allow the ear to enter. . . But then I just don’t
know how it should be folded. . . ’cause if it is
folded this way then it will come out here. . .then
it should be folded unevenly somehow. . .You
should fold it oblique.

Changed representation It wouldn’t make any difference one way or the
other. It would fold the same way, and come out
on this side the same way.
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during the simulation run, but not during the resulting representation. By
contrast, approximation speech was at baseline levels (3%) at the initial
representation step, and rose to significantly higher levels by the resulting
representation. Thus, the temporal patterns are perfectly consistent with the
hypothesis that mental simulations have the effect of turning uncertainty
into approximations.

More recently, Linden and Christensen (2009) coded for uncertainty
and mental simulations in a different engineering design dataset and found
exactly the same results—a reduction of uncertainty in the initial represen-
tation down to base levels of uncertainty by the resulting representation
state of the mental simulation.

7. Summary and Discussion

Epistemic uncertainty is a huge area of scholarship. It has captured the
minds of scholars in psychology and many domain-specific studies of
reasoning and problem solving, presumably because uncertainty is ubiqui-
tous or nearly so in real-world problem solving. With all the rich distinc-
tions that could be made about uncertainty, I began this chapter with a
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Figure 6 Percentage of segments with uncertainty and approximation by mental
simulation sequential step, with SE bars (from Christensen & Schunn, 2009).
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different psychological distinction that seemed on first inspection a non-
distinction: the distinction between vaguely uncertain and certainly vague.

Indeed, when I began empirical investigations into uncertainty problem
solving, I assumed that uncertainty was the start state and precise certainty
was the end state. That is, I assume a problem solver moved along a
continuum of precision, with initial states involving little precision and
final states involving high precision. Yet, examination of problem-solving
transcripts hinted at a different transformation: from uncertainty to impre-
cision, or, as I call it now, approximation.

In the early coding work on the uncertainty/approximation distinction,
we had many arguments within the lab about what the distinction even was
and how it could be coded with any conceptual integrity. Yet, the initial
intuition about the need for such a distinction appeared to have merit.
The distinction can be defined psychologically, even though the logical or
information theoretic definitions are lacking. More importantly perhaps to
researchers who are empirically rather than philosophically oriented, the
distinction could be coded reliably in real problem-solving transcripts, and
cross-validation investigations were also very successful.

Ofcourse, subtledemandcharacteristicsof contextmighthavecreated these
distinctions in theminds of the coders. For example, it is hard to hide from the
coders the context of participants being askedwhat did they know versus what
did they not know. Even with the questions themselves being hidden, the
participants often repeat the question verbatim or with minor rephrasings.
However, the same pattern was observed in many different datasets, which
involvedmany different coders (spread across labs in different cities), and cross-
validations of different forms. Furthermore, we focused on more syntactic
approaches to coding uncertainty and approximation to reduce the possible
influence of situational demand characteristics significantly determining our
results. Finally, we did not find that expertise levels had clear associations with
uncertainty levels, even though someof the coders had strong expectations that
there would be such patterns. Thus, effects of coder expectations on coding
behavior were not strong enough to create results through expectations alone.

Perhaps, most persuasive and interesting are the patterns of uncertainty
and approximation against reasoning indicators. We found clear temporal
patterns: (1) uncertainty invokes mental spatial transformations; (2) spatial
gestures seem to reside between verbal uncertainty and verbal approxima-
tion; and (3) mental simulations seem to reside between verbal uncertainty
and verbal approximation.

Before declaring victory in this appeal for a new general distinction,
I want to return to the information theoretic/logical basis or nonbasis for
the distinction. In cognitive science, there is a general view that cognition is
but computation. Further, considerable recent theorizing has focused on the
optimality or rationality of human cognition (Anderson, 1990; Gigerenzer,
2000; Griffiths & Tenenbaum, 2006). It should make the reader nervous to
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accept a distinction as the basis of rational, expert problem solving when the
computational/logical basis of the distinction is fundamentally flawed.

As I noted before, the definition for uncertainty and approximation
could not be made simply on the basis of logical informational ambiguity.
That is, one could imagine uncertain cases that had less ambiguity than
other approximation cases. However, I also noted that, empirically, prob-
lem-solving processes would generally reduce the underlying ambiguity as
the problem solver moved from uncertainty to approximation. Therein lies
the true rational basis of this mode of processing.

The computational work of Forbus (1997) building running conceptual
simulations (called qualitative reasoning) shows how approximate quantitative
answers can be derived from incomplete information. To extend a computa-
tional framework to the current proposal, the idea is as follows. A problem
solver is working on a task and discovers that the informational ambiguity is
above some threshold such that a critical decision/inference cannot be made
(e.g., will a design choice produce a satisfactory outcome?). A state of uncer-
tainty is thus taken on, which motivates problem-solving processes (such as
spatial transformations or mental simulations) to reduce the underlying ambi-
guity. When the ambiguity is sufficiently reduced to enable decision making,
then the resulting ambiguity is declared an approximation.

I should also add an important caveat. While uncertainty frequently
resolves in approximation in science and engineering, I am not claiming
that it always results in approximation; sometimes it just ends in more
uncertainty and the problem solvers move on, and sometimes it even ends
in precise certainty. Although the world of scientists and engineers is
complex enough that exact, certain values are not the norm, it does happen.

A final caveat involves my focus on science and engineering. Many
psychologists avoid rich real domains because of the difficulties in obtaining
access to participants and the complexities of studying real tasks. Those
psychologists who do study real domains tend to pick a particular domain to
study. I have presented data from many different domains, including several
basic sciences, several applied sciences, and engineering design. Hopefully,
the case is now persuasively made for science and engineering. But certainly
the space of domains involving informational uncertainty is much broader
still. I suspect that similar distinctions will be relevant in these other
domains, but that remains an empirical question for others to examine.

8. Future Directions

I have attempted to provide a simple and rational account for what
problem solvers do with uncertain information, but many questions remain.
For example, we have at best a very incomplete understanding of how
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information uncertainty is detected by the problem solver. In science and
engineering, the problem solver might encounter hundreds to thousands of
quantities, all of which may involve some uncertainty and yet psychological
uncertainty is not triggered for all of those values. Most values are simply
accepted. What raises the uncertainty hairs of the problem solver in these
complex settings?

A related question involveswhat itmeans, exactly, to have the uncertainty
hairs raised. We know that information ambiguity is troubling to problem
solvers. It motivates them to reduce the ambiguity and the ambiguity reduce
procedures appear to be useful for problem-solving success. But this behav-
ioral description does not precisely unpack the mental state of uncertainty. Is
it purely cognitive or does it have a core emotional component? Does it have
underlying phenomenological primitives or is psychological uncertainty a
foundational concept? As mentioned in Section 1, we know that uncertainty
derived from different factors produces different behaviors, but that, by itself,
does not answer the phenomenological question. Cognitive neuroscience
may provide some interesting data on this front. We know that relative
predictability of outcomes is a key variable in predicting the reactions of
certain brain areas (e.g., the anterior cingulate cortex or the basal ganglia), and
this relative predictability is heavily implicated in learning.

Another further direction involves the qualitative. Thus far I have empha-
sized psychological uncertainty about quantitative dimensions. What about
qualitative dimensions? Perhaps, the enemy will come by plane or by train.
Perhaps, it will snow or it will rain. Psychological uncertainty is clearly
relevant to these qualitative ambiguities. What about approximation? Let
us briefly consider some of the hedgewords that we used for coding approxi-
mation in speech: ‘‘pretty much,’’ ‘‘virtually,’’ ‘‘generally,’’ ‘‘frequently,’’
‘‘usually,’’ ‘‘normally,’’ ‘‘basically,’’ and ‘‘almost.’’ All of these hedges could
be applied to the qualitative ambiguities in enemy transportation method or
precipitation type. Semantically, those qualifiers would be ones of probabil-
ity, which is a quantitative dimension attached to discrete qualitative states.
Indeed, many of the things that were coded in our datasets as approximations
involved these sorts of probabilistic hedges to qualitative issues. The task for
future research is to fathom whether approximation on quantities and
approximate probabilities on qualities is actually the same basic thing.
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