Teachers’ goals predict computational thinking gains in robotics

Eben Witherspoon
Department of Education, University of Pittsburgh – Learning Research and Development Centre, Pittsburgh, Pennsylvania, USA, and

Christian D. Schunn
University of Pittsburgh – Learning Research and Development Centre, Pittsburgh, Pennsylvania, USA

Abstract

Purpose – Computational thinking (CT) is widely considered to be an important component of teaching generalizable computer science skills to all students in a range of learning environments, including robotics. However, despite advances in the design of robotics curricula that can teach CT, actual enactment in classrooms may often fail to reach this target. Understanding the various instructional goals teachers’ hold when using these curricula may offer one potential explanation for disparities in outcomes.

Design/methodology/approach – In this study, the authors examine results from $N = 206$ middle school students’ pre- and post-tests of computational thinking, attitudinal surveys and surveys of their teacher’s instructional goals to determine if student attitudes and learning gains in computational thinking are related to the instructional goals their teachers endorsed while implementing a shared robotics programming curriculum.

Findings – The findings provide evidence that despite using the same curriculum, students showed differential learning gains on the computational thinking assessment when in classrooms with teachers who rated computational thinking as a more important instructional goal; these effects were particularly strong for women. Students in classroom with teachers who rated computational thinking more highly also showed greater maintenance of positive attitudes toward programming.

Originality/value – While there is a growing body of literature regarding curricular interventions that provide computational thinking learning opportunities, this study provides a critical insight into the role that teachers may play as a potential support or barrier to the success of these curricula. Implications for the design of professional development and teacher educative materials that attend to teachers’ instructional goals are discussed.

Keywords Robotics

Paper type Research paper

This work was supported by a grant from the National Science Foundation, Division of Research on Learning in Formal and Informal Settings (DRL 1418199). The opinions are those of the authors and do not represent the policies of the funding agency. The authors would also like to acknowledge Ross Higashi and Josh Jarvis for their consultation and support with the development and design of the curricular materials and Mary Kay Stein for her insights and comments on an earlier draft. This research has been approved by the Human Research Protection Office at the University of Pittsburgh.
Introduction

Computer science education is now widely considered to be an integral part of a well-rounded K-12 science, technology, engineering and mathematics (STEM) education. In the USA, the Computer Science for All initiative urges that computer science (CS) learning opportunities be provided not just within specialized elective classes or after-school clubs, but also in general education classes that offer these experiences to every student (Smith, 2016). In part, this policy shift is driven by a growing need for some base level of competence in computing for students to remain competitive in a job market that increasingly requires computational knowledge and skills, regardless of career trajectory. The USA Bureau of Labor Statistics (2017) predicts that the fastest growing careers in the coming decade are likely those that will require some degree of computational literacy, and the ability to use computers and programming logic to solve problems in a variety of applications. Educational researchers have sometimes used the term computational thinking (CT) to describe this particular twenty-first-century skill. While many definitions of CT exist, most emphasize the importance of applying the knowledge and skills of computer science to problem solve across a variety of contexts and subjects (Barr and Stephenson, 2011). Educational psychologists have studied the possible cognitive benefits of using computer science in K-12 to develop generalizable problem solving skills such as CT for decades (Klahr and Carver, 1988; Pea and Kurland, 1984). However, still relatively little is known about particular pedagogical practices that might be linked to effective instruction in this class of generalizable computational skills.

Robotics is one field that has been studied by educational psychologists as a learning environment that could potentially provide authentic opportunities to learn generalizable computer programming skills in an applied setting (Grover and Pea, 2013). Relatively recent advances in the design of educational technologies, informed by research in the learning sciences, have shown promise in providing students with generative learning experiences that may help develop the generalizable programming knowledge and skills prioritized by initiatives such as CS for All (Lye and Koh, 2014). For example, block-based, graphical programming languages can reduce syntax errors, allowing novice programmers to focus on the logic of their programs control structure (Kelleher and Pausch, 2005; Robins et al., 2010). Specific to robotics, virtual simulations can reduce the mechanical errors that may add to the cognitive load of beginning programmers, and have been proven to teach programming and physical robotics, but more efficiently (Liu et al., 2013b). Additionally, there is emerging evidence that certain features of these virtual robotics learning environments may be associated with measurable gains in generalizable CT knowledge and skills (Witherspoon et al., 2017, 2018).

In the context of CS for All, educational robotics programs present themselves as a convenient option for school districts aiming to take up this initiative. In the past few decades, robotics programs have become almost ubiquitous in middle schools and high schools, both in elective after-school programs and more recently within general education classrooms, as the required technology becomes more broadly affordable (Melchior et al., 2005). However, in many K-12 settings, technology-rich programs such as robotics are implemented within Technology Education ("Tech Ed") departments, which have historically focused on vocational training in specific and often localized industrial technologies, and are taught by teachers with varied training and experience in computer programming (Shields and Harris, 2007). Teachers in these classrooms often hold a broad range of teaching certifications, from business, computer and information technology to career, technical and agricultural education, and most teachers who are tasked with teaching robotics are unlikely to have received specific professional development targeted toward
teaching either CS or CT (Ericson et al., 2008; Stephenson and Gal-Ezer, 2010). As use of robotics for teaching CT expands, limitations in teacher expertise may act as a bottleneck on positive learning outcomes.

The critical role of teachers

It is well established that teachers play a critical role in student learning and attitudes; however, a variety of mechanisms may mediate these effects in technology-rich environments. Generally speaking, teacher beliefs about pedagogy and content interact with the written curriculum to determine ways that instructional materials are implemented, often creating disparities between curriculum as designed and curriculum as enacted (Remillard, 2005). Particularly in technology-rich environments, teachers’ familiarity and confidence with technology have been theorized to interact with content and pedagogical expertise to either limit or enhance instructional implementation (Mishra and Koehler, 2006). External barriers such as lack of training and hardware or software resources, and internal barriers such as confidence with the material, valuation of technology, and beliefs about how students learn, could inform how teachers interpret and enact curriculum (Ertmer et al., 1999). Further, inquiry and project-based STEM reform curricula like those often found in robotics, which aim for students to construct knowledge through largely self-directed exploration, require substantial shifts in teaching practice from traditional, direct instruction methods (Schneider and Krajcik, 2002). Therefore, it is likely that large variance exists in the particular curricular focus and pedagogical approach to CT instruction across robotics programs, as well as in learning outcomes for students.

In addition to influencing achievement, variation in the way curricular materials are presented in robotics classrooms may also influence another important outcome of CS for All: students’ attitudes toward programming (Witherspoon et al., 2018). Maintaining students motivation to engage in programming activities may be particularly difficult in general education classrooms; research suggests that overall student valuation of STEM subjects tends to decline beginning in the middle school years (Wigfield and Eccles, 2000). However, it is possible for well-supported activities in middle school to maintain individual interest levels, which can predict long term, self-generated engagement through college (Harackiewicz and Hulleman, 2010; Hidi and Renninger, 2006). Other attitudinal interventions that can be linked to pedagogy, such as identity development through engagement in authentic tasks of the discipline and fostering students beliefs about their ability to do programming, can also predict students achievement and continued participation in CS majors and careers (Collins, 2006; Engle, 2006; Lent et al., 2016). Therefore, examining students’ attitudinal responses to different pedagogical approaches while using a robotics programming curriculum could also offer important insights into effects on both students’ achievement and persistence.

Teacher goals

Understanding teachers’ instructional goal setting could provide one useful framework for predicting how teachers activate resources in ways that differ from the designed curriculum. By “instructional goal”, we mean a specific statement that expresses what students should learn in the language of a particular discipline, and is situated within a student-driven model of how learning progresses (Stein and Meikle, 2017). Teachers’ goals that are explicitly stated and refined into sub-goals at the lesson planning stage may improve the design of instructional activities that increase student achievement (Hiebert et al., 2017). Research has also suggested that instructional goal setting may be an emergent process that is responsive to a particular context (Aguirre and Speer, 1999).
In complex and ill-defined learning environments such as Tech Ed classrooms, it is likely that teachers hold multiple instructional goals simultaneously, and that those may at times conflict with the written curriculum, determining which goals are implemented in the classroom (Davis et al., 2016). Therefore, rather than circumventing these challenges with “teacher-proof” curricular materials, it is necessary for curricular designers to consider curricular enactment as a “local phenomenon that arises as a result of a number of factors, including [...] teachers’ goals, local constraints, and teachers’ pedagogical values” (Drake and Sherin, 2006). Curriculum developers aiming to teach CT may benefit from understanding the goals endorsed by Tech Ed robotics teachers implementing their curriculum, to better provide strategies to deal with potentially competing goals. Additionally, understanding Tech Ed robotics teachers’ instructional goals could aid in the design of professional development that ensures all teachers have the knowledge and skills needed to align their instructional activities with higher level curricular goals.

Therefore, while robotics curricular materials may be designed with intent to provide opportunities to learn CT, these goals are often altered by teachers on the ground during moment-to-moment interactions with students. Particularly, in-service Tech Ed robotics teachers may hold alternate goals for their classrooms based on past experiences (i.e. general goals about problem solving vs specific goals about CT), and under the pressure of a complex and novel learning environment may be more likely to revert to prior pedagogical practices that are more familiar (i.e. focusing on performance outcomes such as building the physical robot vs learning outcomes such as understanding computational concepts). This variation in goals can lead to variation in student learning by classroom, even when teachers have relatively similar experience, teach in similar learning contexts, and are using the exact same curricular materials.

A better understanding of the importance teachers place on the different goals they have in these classrooms may help predict when and how these differences in enactment may manifest, and the effect that they have on student learning. Importantly, this information will be useful for curriculum designers to account for in development of teacher instructional materials and professional development. In this study, we examine how teachers’ ratings of the importance of instructional goals around CT in middle school robotics classrooms are related to student learning of CT. Specifically, we were interested if we would find differences based on CT instructional goals for Tech Ed teachers using the same virtual robotics programming curriculum, suggesting that these goals may be contributing factors to discrepancies in enactment that produce variation in students CT learning opportunities.

Methods

Sample

We examined the development of CT in general education robotics classes within schools across multiple regions of the USA. All human subjects research received Institutional Review Board (IRB) approval prior to the commencement of the study. The analyses presented here examine a sample of $N = 206$ middle-school aged students ($M_{age} = 12.3$, $SD_{age} = 1.1$) within classrooms in four school districts, focusing on teachers with clearly differentiated instructional goals (described below). Students in this sample predominately identified as White (72 per cent), with multi-racial (18 per cent) and Asian (6 per cent) making up the next two largest groups. These general education robotics classrooms consisted of a relatively evenly split by self-identified gender (51 per cent female), unlike elective robotics classes which are often predominately male. Many of the students in these courses (69 per cent) had some prior experience with robotics before, but the majority of
students (77 per cent) were engaging with this particular virtual robotics curriculum for the first time.

In addition to student assessments, we also distributed multiple rounds of weekly surveys to $N = 10$ teachers across the US, which asked them to rate their instructional goals for their classes on a weekly basis. Overall, our response rate from the teacher surveys was about 47 per cent. All of the responding teachers had earned a Master’s degree, were certified in a range of specialties closely related to Technology Education (e.g. business, computers and information technology; career and technical education, technology education), and had a relatively high number of years of teaching experience overall ($M_{years} = 12.6$, $SD_{years} = 6.0$). Additional details on the four teachers selected for further analysis are presented in a later section.

Curricular materials
The robotics curriculum used here, developed by Carnegie Mellon University and Robomatter, involves a sequence of lessons in robotics programming utilizing a visual programming language, ROBOTC Graphical (see Figure 1). On average, instruction with the curriculum ran for about 10 weeks. Earlier versions of a similar virtual robotics curriculum have been reported on in previous studies (Authors et al., 2017, 2018). The curricular materials incorporate elements which were designed to support efficient learning and transfer of generalizable computational skills: procedural scaffolds (worked examples, guided videos), dynamic mini-challenges, visual programming language, and Robot Virtual Worlds (RVW), a virtual robotics programming environment (Figure 1). These features reflect a constructionist approach to instruction, in which learners build increasingly complex programmed solutions and construct an understanding of the requisite programming principles (Papert, 1980).

First, to provide a shared context, students are provided with a short introductory video to frame the activity. These videos are learner-paced and present visual support together with a conversational narrative around the key concepts, to reduce extraneous processing and foster generative processing (Mayer, 2008). Partial scaffolding (Puntambekar and Hubscher, 2005) is introduced by way of questions to check students understanding, step-by-step instruction on a conceptually related robotics programming activity, and a brief post.
activity quiz to assess understanding, followed by the open-ended application of these skills within a game-like challenge in the virtual programming environment, allowing students to apply their knowledge more independently.

Students interact with the curriculum through Robot Virtual Worlds, a simulated 3D game-like virtual environment (Figure 1) designed to emphasize the programming aspects of robotics, while maintaining student interest and engagement. Students can iteratively test modular programed solutions with simulated VEX IQ robots in a three-dimensional virtual platform. Finally, these solutions are “remixed and reused” (Brennan and Resnick, 2012) to complete more complex virtual challenges, in which learners must apply their previous programming knowledge to problem solving tasks that foreground CT principles such as abstraction, decomposition and systems thinking. To solve these challenges, students used a programming language called ROBOTC Graphical (Figure 1a) to develop programed solutions. ROBOTC Graphical has a visual programming language interface, intended to allow students to focus on the broader logic of programming while deemphasizing the particular syntactic requirements of more traditional programming languages.

By representing robotics challenges in a virtual environment, this curriculum offers affordances over physical robotics programs by reducing the potential frustration and distractors of mechanical error, enabling students to focus on higher-level computational principles of programming. While physical robots may have some advantages, a study by Authors (2013) found that students using an earlier version of this technology achieved learning gains in programming content equivalent to students using physical robots, but in significantly less time. Further, simulating robot movement reflects an authentic engineering practice (Michel, 2004), and virtual robots are also less expensive than physical ones, allowing the benefits of the curriculum to reach a broader population where the costs of physical robotics curricula can be prohibitive.

Measures and Procedures

Teacher instructional goals. To understand which instructional goals teachers were emphasizing in these classrooms, we distributed a weekly online survey to teachers throughout the semester in which they were using the curriculum, that asked them to rate the importance of a set of goals focused on specific CT learning outcomes (e.g. “During class this week, my goal was that students would learn [...] that programs execute commands in sequence”) on a three-point Likert scale from (1) Least Important to (3) Most Important (see Appendix A for sample teacher goals measures). Additionally, teachers were asked to provide demographic information such as level of teaching experience, teaching certification, and prior exposure to the curriculum. These surveys were purposefully kept relatively brief to promote survey completion.

Overall, teachers were given nine opportunities to respond to the survey over the course of a semester. From the total group of ten teachers who received the survey, four teachers provided a sufficient number of responses (n ≥ 5) across all items to generate a reasonably robust measure of their average rating of each goal, and so these four teachers were purposively selected for additional analysis. The four teachers selected for final analysis were all male and had a similar level of teaching experience (Myears = 13.8, SDyears = 3.0). Based on the distribution of these teachers’ responses, we grouped them into two categories: “Low CT”, consisting of two teachers who had an average overall rating of CT goals of 2.2 or below (Mrating = 2.1, SDrating = 0.3) across 11 combined ratings, and “High CT”, consisting of two teachers who had an average overall rating of CT goals of 2.8 or higher (Mrating = 2.8, SDrating = 0.4) across 12 combined ratings. In other words, teachers who typically rated the goals as only moderately important versus teachers who typically rated the goals as most
important; this difference in ratings was a large effect size (Cohen’s $d = 2.2$). Both High CT teachers held Technology Education certifications, while one Low CT teacher held a business, computers and information technology certification, and the other held both career and technical education and biology certifications. In each group, one teacher reported having approximately four years of experience with the curriculum, while the second teacher in each group was using the curriculum for the first time.

Computational thinking assessments. After grouping the four teachers based on their rating of CT goals, we then examined the pre- and post-test scores of students in each of these teachers’ classrooms, to see if there were significant differences in learning as measured by the assessments of CT for students in Low CT teachers’ classrooms ($n = 57$) and students in a High CT teachers’ classrooms ($n = 149$; Table I).

The primary outcome measure was an externally-created CT assessment used as a post-test. It consisted of five multiple choice items that were adapted for a robotics context from the Exploring Computer Science – Principled Assessment of CT (PACT) (Goode and Margolis, 2011). These assessments were specifically created using evidence-centered design to assess knowledge, skills and attributes associated with CT practices[1].

An alternative assessment was needed that could be used to verify equivalence of both general programming skills and CT skills across classes before instruction, and avoid test-retest effects. We had previously developed such an assessment that contained programming and CT items (see Appendix B for sample assessment items). These items were developed to target three core programming concepts common across a range of accepted frameworks of programming and CT; sequences, conditions and iteration (see AP Computer Science Principles, 2016, Interim CSTA K-12 Computer Science Standards, 2016; Bienkowski et al., 2015) and have been shown in prior work to be a reliable measure of students programming and CT knowledge (Authors, 2017, 2018).

To reduce class time required for an assessment that is only establishing equivalence at the class level, students first received one of four randomly assigned sections of the CT assessment at pre-test; each of the four sections of the pre-test consisted of five multiple choice items each. The overall average Armor’s θ of the pre-test items was $\theta = 0.44$.

<table>
<thead>
<tr>
<th>Teacher characteristics</th>
<th>CT Low ($N = 57$)</th>
<th>CT High ($N = 149$)</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher rating of CT</td>
<td>2.1 (0.30)</td>
<td>2.8 (0.38)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Teacher exp. (years)</td>
<td>14.0 (1.4)</td>
<td>13.5 (4.9)</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student characteristics</th>
<th>CT Low ($N = 57$)</th>
<th>CT High ($N = 149$)</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student robotic exp.</td>
<td>33%</td>
<td>30%</td>
<td>−0.5</td>
<td>−18%, 10%</td>
</tr>
<tr>
<td>Student CS2N exp.</td>
<td>9%</td>
<td>28%</td>
<td>−2.9**</td>
<td>−31%, −6%</td>
</tr>
<tr>
<td>Student age (years)</td>
<td>11.7 (1.2)</td>
<td>12.5 (1.0)</td>
<td>−5.2**</td>
<td>−12, −0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student assessments</th>
<th>CT Low ($N = 57$)</th>
<th>CT High ($N = 149$)</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test</td>
<td>2.2 (1.2)</td>
<td>2.3 (1.1)</td>
<td>0.7</td>
<td>−0.21, 0.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student surveys</th>
<th>CT Low ($N = 57$)</th>
<th>CT High ($N = 149$)</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competency Beliefs</td>
<td>0.53 (0.20)</td>
<td>0.51 (0.20)</td>
<td>0.6</td>
<td>−0.04, 0.08</td>
</tr>
<tr>
<td>Identity</td>
<td>0.59 (0.13)</td>
<td>0.52 (0.19)</td>
<td>1.5</td>
<td>−0.02, 0.17</td>
</tr>
<tr>
<td>Interest</td>
<td>0.66 (0.15)</td>
<td>0.60 (0.19)</td>
<td>1.2</td>
<td>−0.04, 0.15</td>
</tr>
</tbody>
</table>

Notes: $^p < 0.10$, $^{*}p < 0.05$, $^{**}p < 0.01$ for teacher data, a dash (−) is shown in place of t-statistics and 95%CI because of low teacher sample size.

Table I. Descriptive statistics of student and teacher background characteristics and pre-test levels for high CT and low CT classroom groups (SD in parentheses), along with the t-test contrast of the pre-test group means and the 95 per cent CI of the difference in means for each measure.
Relatively low theta values are common for relatively short assessments that are intended to cover a range of concepts. Overall, the pre- and post-test were only moderately correlated, with a polychoric correlation of $r = 0.34$, which was relatively high given that each student only did one subtopic section at pre-test (i.e. the validity correlation was bounded above by both topic variation and relatively low reliability from such short assessments).

Attitudes toward programming. Additionally, students also completed a short attitudinal survey prior to the pre and post-test exams, with 12 items that asked students about their interest, competency beliefs, and development of identity in computer programming (see Appendix C for sample survey items). Interest was gauged through four items (e.g. “I wonder about how computer programs work”, Cronbach’s $\alpha = 0.87$), rated along a four-point Likert scale (e.g. “Never” to “Every Day”). Four items gauged level of identity as a programmer (e.g. “My family thinks of me as a programming person”, $\alpha = 0.88$), rated along a four-point Likert scale (e.g. NO! to YES!). Competency beliefs were gauged through four items (e.g. “I am sure I could do advanced work in programming”, $\alpha = 0.83$) rated along a six-point Likert scale (e.g. Strongly Disagree to Strongly Agree”). Based on a prior pilot survey, which suggested that students struggled to accurately rate their competency prior to obtaining some knowledge of the content, only these items were measured using retrospective pre-items (i.e. students were asked at post to rate both their competency at the beginning of the curriculum and their competency now.) Attitudinal measures at both pre and post were significantly correlated with each other, but not so high as to be redundant measures. For ease of interpretation across these different scales, prior to analyses all attitudinal measures were converted to a proportion, with the lowest rating as 0 and the highest rating as 1.

Analyses

Average pre-test scores of students in the two High CT teachers’ classrooms were compared against the average pre-test scores of students in the two Low CT teachers’ classrooms using a simple t-test, and other teacher and student characteristics to establish that the High CT and Low CT groups were comparable. Post-test scores were analyzed using ANCOVA, comparing differences in average post-test scores in the two groups while controlling for the pre-test score, age, and curricular experience, to increase statistical power by accounting for individual differences in students’ pre-tests, and to account for slight differences in pre-group composition on those variables. Finally, motivation variables were also measured using an ANCOVA of post-survey scores, controlling for pre-survey scores, age and curriculum experience.

Results

We first examined whether or not initially the two groups of students in the Low CT and High CT classrooms were relatively comparable on the assessment of CT. A Levene’s robust test for homogeneity of variance showed that there were no significant differences in variance between the two Low CT and High CT groups at pre-test, $F(1, 204) < 1, p = 0.79$. Further, no significant differences were found in pre-test scores ($t = -0.75, p = 0.45, d = 0.11$), between students in a classroom taught by a teacher with a Low CT rating ($M_{\text{score}} = 2.2, SD_{\text{score}} = 1.2$) or students in a classroom taught by a teacher with a High CT rating ($M_{\text{score}} = 2.3, SD_{\text{score}} = 1.1$; Figure 1).

Critically, on the post-test, being in a classroom taught by a High CT rating teacher was associated with significantly higher scores ($M_{\text{score}} = 2.6, SD_{\text{score}} = 1.3$) than being in a classroom with a teacher who gave a Low CT rating ($M_{\text{score}} = 2.1, SD_{\text{score}} = 1.4; t = -2.67$, $p = 0.01$).
Thus, we have evidence of differential gains by teacher goals even when the same curriculum is being used.

However, the two groups were not fully equivalent by background. To account for small differences found in age and prior experience with the curriculum between the Low CT and High CT groups, an ANCOVA was conducted on post-test scores, controlling for pre-test scores, age, and prior experience with the curriculum. Even with these controls, students in the High CT group showed higher post-test scores than students in the Low CT group, \(F(4,198) = 2.90, p = 0.06 \), although with reduced effect size, \(d = 0.29 \) (see Figure 2).

Importantly, aligning with the priority of CS for All in this general education classroom, our results also show that in High CT classrooms, girls had a significantly higher score \([F(4,141) = 3.95, p < 0.05, d = 0.30] \) on the post-test \((M_{score} = 2.8, SE_{score} = 0.1) \) than boys \((M_{score} = 2.4, SE_{score} = 0.2) \), when controlling for pre-test scores, age and curriculum experience.

For the final set of analyses, we examined differences in attitudinal measures for students in classroom with Low or High CT teachers. Overall, at pre-test, there were no significant differences between the two groups in Competency Beliefs \((t = 0.62, p = 0.54) \), Identity \((t = 1.2, p = 0.23) \) or Interest \((t = 0.70, p = 0.48) \). At post, an ANCOVA revealed that while there were no significant differences between the two groups in Competency Beliefs \([F(4,192) = 1.22, p = 0.27, d = 0.16] \), the High CT group had significantly higher scores in on post-survey scores in both Identity \([F(4,108) = 6.73, p < 0.05, d = 0.59] \) and Interest \([F(4,108) = 10.88, p < 0.01, d = 0.71] \), when controlling for pre-survey, age and curriculum experience (Figure 3). Importantly, these higher scores represent a relative maintenance of programming Identity and Interest from pre-test scores for those students in the High CT group, while students in the Low CT group largely experienced declines in programming Identity and Interest.

Discussion

Overall, our results show that when teachers endorsed CT as a critical instructional goal, their students had greater gains in CT and also had greater maintenance of
positive attitudes toward programming. Importantly, these differences in outcomes were found across teachers with similar experience and who were implementing the same virtual robotics curriculum. These findings suggest the key role instructional goals play in the development of CT, similar to the mathematics education literature which propose that teachers’ goals act as a “north star”, guiding a variety of instructional decisions (Stein and Meikle, 2017). Further, this study lays the foundation for future work examining how the diverse goals held by educators who teach CT, in a broad range of learning environments, may determine how designed curriculum materials are adapted during curricular enactment. While the current study did not examine the specific curricular adaptations that were made, this study makes clear that an understanding of the instructional goals endorsed by the teacher is a significant contributor to student learning outcomes, and one that must be accounted for in the design of curriculum, perhaps through teacher educative materials that include goal alignment activities during lesson planning.

Additionally, these findings suggest a need for ongoing professional development support for teachers that not only provides instruction on the use of the materials, but also explicitly attends to the goals of the curriculum and potential areas where these goals may come into conflict with goals held by the teacher. This may be particularly important in the expanding range of educational programs such as robotics in Technology Education environments, which are often tasked with incorporating computer science and CT into their ongoing curriculum. The demands of these new initiatives often represent a large shift from the prior pedagogical approaches and instructional goals teachers in these spaces are familiar with (Schneider and Krajcik, 2002). Without adequate attention paid to the ways in which these goals may diverge from those already in place, initiatives such as CS for All and innovative curricular reforms may experience a bottleneck in their ability to see the desired gains in student learning.
Limitations
The inferences that can be drawn from this study are limited by a number of factors. First, the analyses conducted are correlational in nature and there was no random assignment to experimental condition. Therefore, we cannot be certain whether the combination of exposure to the curriculum and the teacher instructional goals are in fact causing the observed differences in scores, or if other unobserved factors may be contributing to the larger gains for students in the High CT group. In a related way, due to our limited sample size, analyses were unable to account for nesting within schools or classrooms. We are therefore uncertain that there are not school-level differences that may be contributing to differences in student gains.

Second, due to the distributed nature of the classrooms around the USA, we did not have observational measures of instruction, and therefore we do not know what teachers did to produce the changes in outcome. Future research should explore the ways in which teachers introduce activities, guide class discussion, and respond to student questions/struggles as possible vehicles of the effects of teacher goals on student learning outcomes (Stein et al., 2008; Stein and Meikle, 2017).

Conclusion
While prior studies using a similar virtual robotics curriculum have demonstrated that students may gain generalizable programming knowledge and skills from these learning experiences, here we show that even within similar classrooms using the exact same curriculum, differences may appear, and that teachers’ instructional goals may be a significant contributor to these differences. Future work would benefit from gathering a larger teacher sample which would allow us to statistically account for nesting effects within different schools. Further, additional development of the survey of instructional goal setting, and qualitative interviews and classroom observations with teachers, could provide additional insight into the mechanisms through which these goals manifest in classroom activities, how teachers conceptualize goals around CT in the classroom, and what framing of these goals may be most productive for teaching students generalizable programming knowledge and skills.

Notes
1. Sample items can be found at https://pact.sri.com/resources.html
2. Armor’s θ is similar to Cronbach’s α, but is more appropriate for binary data (item correct vs item incorrect).

References

Further reading

Corresponding author

Eben Witherspoon can be contacted at: ebw13@pitt.edu

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm

Or contact us for further details: permissions@emeraldinsight.com