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Abstract

Background: Skill integration is vital in students' mastery development and is espe-

cially prominent in developing code tracing skills which are foundational to program-

ming, an increasingly important area in the current STEM education. However,

instructional design to support skill integration in learning technologies has been

limited.

Objectives: The current work presents the development and empirical evaluation of

instructional design targeting students' difficulties in code tracing particularly in inte-

grating component skills in the Trace Table Tutor (T3), an intelligent tutoring system.

Methods: Beyond the instructional features of active learning, step-level support,

and individualized problem selection of intelligent tutoring systems (ITS), the instruc-

tional design of T3 (e.g., hints, problem types, problem selection) was optimized to

target skill integration based on a domain model where integrative skills were repre-

sented as combinations of component skills. We conducted an experimental study in

a university-level introductory Python programming course and obtained three

findings.

Results and Conclusions: First, the instructional features of the ITS technology sup-

port effective learning of code tracing, as evidenced by significant learning gains

(medium-to-large effect sizes). Second, performance data supports the existence of

integrative skills beyond component skills. Third, an instructional design focused on

integrative skills yields learning benefits beyond a design without such focus, such as

improving performance efficiency (medium-to-large effect sizes).

Major Takeaways: Our work demonstrates the value of designing for skill integration

in learning technologies and the effectiveness of the ITS technology for computing

education, as well as provides general implications for designing learning technolo-

gies to foster robust learning.
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1 | INTRODUCTION

Skill integration is important and challenging for students' mastery

development. Based on research evidence from the science of learn-

ing and the science of instruction, Ambrose et al. (2010) proposed a

general framework of mastery development: students must acquire

component skills, practice integrating skills, and know when to apply

skills. In their view, the second phase, skill integration, is a difficult

phase with high cognitive load demands where students need to com-

bine component skills with fluency and autonomy. The Knowledge-

Learning-Instruction (KLI) framework that aims at bridging instruc-

tional decision making and the science of learning (Koedinger, Cor-

bett, & Perfetti, 2012), also stated that integrative knowledge has

significance for learning and instruction. In particular, they defined an

‘integrative knowledge component’ as a knowledge component

(KC) that ‘integrates or must be integrated (or connected) with other

KCs to produce behavior’ (p. 771). The notion of integrative skills1 in

the current work is based upon this framework. Rigorous empirical

evidence of integrative skills can be found in the investigations into

the composition effect, the phenomenon of the whole being more diffi-

cult than the sum of the parts, in mathematics learning (Alibali

et al., 2014; Heffernan & Koedinger, 1997). In particular, Heffernan

and Koedinger et al. (1997) found that students were significantly

worse at translating two-operator algebra story problems into expres-

sions (e.g., 800-40x) than they were at translating two closely

matched one-operator problems (e.g., with answers 800-y and 40x

separately). They suggested that the students missed a specific inte-

grative skill, namely a recursive grammar rule that indicates expres-

sions (e.g., 40x) can be embedded in other expressions (e.g., 800-40x).

Despite the importance and difficulty of skill integration, instruc-

tional design for skill integration in learning technologies has been lim-

ited. Most of the time, the emphasis has been on decomposing

complex tasks and domain knowledge into component skills without a

deliberate differentiation between component skills used in simple

tasks and integrative skills that may be needed. This approach has

been taken in the design of many intelligent tutoring systems (ITS), a

well-established technology proven to be highly effective for skill

mastery in various domains (Ritter et al., 2007; VanLehn et al., 2005).

An ITS provides step-by-step problem-solving support and individual-

ized deliberate practice on each skill (Koedinger & Anderson, 1993;

Lovett, 2001). In particular, deliberate practice has been generally

established as crucial for expertise acquisition where training is

focused on specifically designed tasks with feedback and repetition

for improving critical aspects of performance (Ericsson, 2006;

Schnackenberg et al., 1998); ITSs can deliver deliberate practice in an

optimized form by providing as-needed repetition for each student.

Admittedly, mastering each component skill is the first phase towards

mastery of the task domain and targeted practice on weak component

skills can improve students' overall performance. But to foster more

robust learning on more complex and realistic tasks students also

need to master skill integration. For example, prior work has shown

that some new misconceptions were only revealed when component

skills are combined in ways subtly different from how they were typi-

cally combined in examples in lectures (Vainio & Sajaniemi, 2007). A

few studies have started the investigation into instructional design for

skill integration in mathematics learning (Koedinger et al., 2013; Koe-

dinger & McLaughlin, 2010). For example, to better teach students to

write algebraic expressions in story problems (i.e., symbolization),

Koedinger and McLaughlin (2010) designed substitution problems

(e.g., ‘Substitute 62-f for b in 62+b.’) for learning the integrative skill

identified in a prior study (Heffernan & Koedinger, 1997). These

substitution problems provide focused practice where certain skill

requirements are removed from the problem formulation (e.g., com-

prehending stories) or steps are removed from the interface, so that

students could focus attention on a single skill or step, following the

Focused Practice Task Design method (Huang et al., 2021). Students

under the substitution condition significantly improved their perfor-

mance on two-operator story symbolization compared to the control

group given the more similar, one-operator story problems instead of

substitution problems.

To investigate instructional design for skill integration, we con-

sider an increasingly important domain, programming, where skill inte-

gration is critical throughout even introductory courses. In particular,

we focus on code tracing, a foundational skill in programming that

involves stepping through a program to predict values of variables and

outputs. Novices struggle with code tracing across variations of how

programming constructs are used together (Lister et al., 2004;

Sorva, 2012; Stephens-Martinez et al., 2017). For example, executing

an addition assignment statement inside a for loop for computing a

cumulative sum (i.e., integrating an addition assignment statement and

a for statement) already posed a difficulty for novices and revealed

misconceptions that students harboured after standard lectures and

exercises according to our prior work (Huang, 2018). Meanwhile,

there is some initial evidence of the effectiveness of explicit instruc-

tions on skill integration in programming: Muller et al. (2007) and de

Raadt (2008) showed that novices who studied using a revised course

with explicit emphasis on programming patterns, which typically

involve skill integration as we refer to here, exhibited better problem-

solving competence than those who studied in a traditional manner.

Meanwhile, the ITS technology is still underused or only used in a

partial form in programming education, and one reason may be the

1In this work, we use the terms skill and integrative skill as synonyms for ‘knowledge

component (KC)’ and ‘integrative KC’. A KC in the KLI framework (Koedinger, Corbett, &

Perfetti, 2012; Koedinger, McLaughlin, & Stamper, 2012) is defined as an acquired unit of

cognitive function or structure that can be inferred from performance on a set of related

tasks, such as a concept or a skill.
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high demand involved in the construction of an accurate domain model,

the key component of an ITS. A domain model specifies the skills that a

novice must learn to reach expertise and often includes a mapping from

a problem or a problem step to the skills. It is the base for a learner

model, another component of an ITS that maintains dynamic estima-

tions of each student's skill levels for achieving individualized problem

selection. A domain model can also inform the design of hints and prob-

lem types. Past research showed that instructional (re)design driven by

a refined domain model led to significant improvements in learning

(Koedinger et al., 2013; Liu & Koedinger, 2017). To realize effective

instructional design to support skill integration, an important prior step

is to identify the integrative skills and represent them in the domain

model. Constructing a domain model for any kind of ITS is challenging,

but it is especially challenging for such a complex domain as program-

ming due to its integrative nature. In our prior work (Huang, 2018), we

analysed students' errors in Python code tracing and identified a set of

important integrative skills apart from component skills. The current

work builds on this prior work and evaluates an instructional design for

skill integration driven by an integration-level domain model that repre-

sents the identified integrative skills as combinations of component

skills with structural constraints as in Huang (2018).

The paper reports on the development and empirical evaluation

of instructional design targeting students' difficulties in Python code

tracing particularly in integrating component skills through an ITS,

Trace Table Tutor (T3). We investigated the following research ques-

tions (RQs):

RQ1. Do the instructional features of an ITS support

effective learning in code tracing?

RQ2. Does performance data support the existence of

integrative skills?

RQ3. Does tutored practice focused on skill integration

enhance learning?

RQ1 investigates whether the instructional features of a full-scale

ITS, particularly active learning, step-level interaction and feedback,

and individualized problem selection, which are the core features of

T3, support effective learning in code tracing. This sets the base for

investigating RQ3. Next, RQ2 investigates whether students' perfor-

mance data from T3 supports the existence of integrative skills apart

from component skills, which helps examine the robustness of our

prior finding, that is, the mental existence of latent integrative skills

(Huang, 2018), in a new student population. This also sets the base

for investigating RQ3. Finally, RQ3 investigates whether an integra-

tion-focused instructional design that provides deliberate practice and

focused practice on integrative skills yields learning benefits beyond a

design without such features. Altogether, besides demonstrating the

effectiveness of the ITS technology in programming education as one

contribution, a core contribution of the current work involves demon-

strating the value and providing implications of integration-focused

instructional design in learning technologies in general.

The article is structured as follows. Section 2 reviews related liter-

ature. Section 3 introduces our code tracing tutor T3, including the

basic design and the integration-focused design. Section 4 provides

details about our classroom study. Section 5 reports the results of the

study centring on our research questions. At the end, in Section 6, we

summarize and discuss our main results.

2 | RELATED WORK

2.1 | Domain modelling in programming
learning technologies

In recent years, programming skills have become increasingly important

in STEM education, yet introductory programming courses have long

been regarded as challenging to students (Guzdial, 2015). Although

there is abundant educational research documenting common difficul-

ties and misconceptions in novice programmers (c.f., Qian &

Lehman, 2017), it is still an ongoing challenge for the computer science

education community to construct good domain models that both

address the integrative nature of programming skills and maintain ease

of development. Moreover, there is a lack of empirical studies investi-

gating whether an integration-level domain model (i.e., a domain model

that captures the integrative nature of programming skills) in program-

ming learning technologies leads to improved instruction and learning

compared to alternative domain models. Empirical evaluations, often

referred to as ‘closing the loop’, have received increasing attention in

mathematics learning technologies (Huang et al., 2021; Liu &

Koedinger, 2017). Below, we review the existing domain modelling

approaches and evaluations in programming learning technologies.

Many recent efforts have represented programming skills as pro-

gramming constructs (e.g., a for statement), also referred to as compo-

nent-level domain modelling in the current work, with the advantage

of the ease of development (Berges & Hubwieser, 2015; González-

Brenes et al., 2014; Hooshyar et al., 2015; Vesin et al., 2012; Wang

et al., 2017). This approach makes it straightforward to apply auto-

matic concept or skill extraction when building the domain model. For

example, Rivers et al. (2016) used node types from Abstract Syntax

Trees (ASTs)2 produced by code parsers automatically; Hosseini and

Brusilovsky (2013) used a combination of AST nodes and domain

ontologies. However, Rivers et al. (2016) pointed out that the

component-level representation is deficient because students' under-

standing of programming constructs is highly contextualized. For

example, they found that errors on for loops actually increased over

the course of the semester because they were used in new contexts

with other constructs. Systems designed based on component-level

representations likely lead to shallow learning, because a student con-

sidered as having mastered a skill may still perform poorly when the

skill is used with other skills in new ways.

2An AST is a tree-based structure that represents the syntactic structure (i.e., the essential

structural information) of a program. Each node in an AST represents a syntactic unit such as

a variable, an operation or a logical operator. The children of the node represent the lower-

level units associated with the current one.
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On the other hand, some early programming tutors have explored

domain modelling on the level of integrative skills by using relatively

complex production rules or algorithmic patterns (Anderson

et al., 1989; Spohrer, 1992; Weber, 1996), and provided initial evi-

dence of the effectiveness of such integration-level representations in

supporting learning. For example, Weber (1996) represented program-

ming skills as algorithmic patterns stored in a hierarchy of episodic

frames and associated concepts. This ‘episodic’ learner model has

proven effective for the adaptive recommendation of programming

examples in ELM-ART (Weber & Brusilovsky, 2001). However, these

early representations have never been expanded or ported to other

systems or languages, due to the high demand involved in their knowl-

edge engineering. Only recently have there been advances in using

automatic methods to construct complex representations of programs

that have the potential to represent integrative skills. For example,

Akram et al. (2020) and Kovalenko et al. (2019) represented a program

using features or paths each of which is the combination of a number

of nearby nodes with specific relations in an AST. However, such

work typically examined prediction performance in specific prediction

tasks of models constructed based on the representations, rather than

the effect on students' learning.

Two prior efforts have represented integrative skills using pairs of

component skills (i.e., programming constructs), a simple variation to

the above approaches, and have provided initial evidence of positive

effects on learning. In Brusilovsky (1992), multiple programming con-

cept pairs were connected by ‘usage’ links in the domain model of

their ITEM/IP system, where a usage link indicated that one concept

could be used in the context of another. For example, a specific kind

of condition could be connected by one usage link with a loop and by

another with a conditional operator. They conducted a qualitative

evaluation and found that students using ITEM/IP had higher interest

and performance and lower need for teachers' help to understand

their bugs, compared to those using a traditional approach. In another

study, Huang et al. (2017) represented integrative skills in Java code

tracing as pairs of constructs (e.g., ‘for & +=’ denoting the use of an

addition assignment statement inside a for statement to compute the

sum of numbers) identified by experts assisted by an automatic Java

parser (Hosseini & Brusilovsky, 2013). They compared such an

integration-level domain model with a component-level domain model

(e.g., ‘for’ denoting the use of a for statement across all contexts) by

constructing learner models based on different domain models. They

found that the integration-level model led to significantly better pre-

diction of students' performance, parameter plausibility, and expected

instructional effectiveness, as evaluated using the log data of a code

tracing learning system; it also led to more helpful recommendations

ranked by students in a lab study.

Building on the initial positive evidence of integration-level

domain models in supporting learning, the current work furthers the

investigation and evaluation of integration-level domain models in

supporting learning to address the deficiency of component-level

domain models. Specifically, we evaluated an integration-focused

instructional design driven by a paired-based integration-level domain

model in supporting learning of code tracing. The current work builds

on our prior study of students' errors committed when integrating

component skills in Python code tracing (Huang, 2018). Different from

prior work on skill integration in programming that mostly emphasized

procedural or cognitive load demands (du Boulay, 1986; Spohrer &

Soloway, 1985), our error analysis (Huang, 2018) indicates that inte-

gration involves new skills that require knowing how component skills

work together, in addition to cognitive load demands. In the current

work, we represented the key integrative skills in the domain model

and derived an instructional design targeting both kinds of demands.

2.2 | Code tracing skills and relevant learning
technologies

Code tracing involves stepping through a program to predict changes

of values of variables and outputs (Nelson, 2021). It helps students

build a correct mental model of how a computer traces instructions,

understand the language syntax and program semantics

(Kumar, 2015). Prior work suggested that code tracing is a prerequi-

site for code writing (Lopez et al., 2008) and transfers to code writing

(Kumar, 2015). Research also showed that introductory programming

courses organized around code tracing led to significant learning out-

comes (Hertz & Jump, 2013). It has been common practice for intro-

ductory programming courses to include code tracing in lectures or

exercises (Hertz & Jump, 2013; Nelson, 2021; Stegeman, 2019).

Meanwhile, code tracing has two features that ease the development

of supporting learning technologies: (1) a new worked example or

problem can be created by directly taking code from any program and

running it to get the values of variables or the program outputs; and

(2) there is usually a single correct answer for a code tracing question

since the program is given. Thus, it is relatively easy to create a large

number of code tracing problems for any programming language.

A sizable body of learning technologies has been developed to

support learning code tracing. The leading approach is arguably pro-

gram visualization, a visual step-by-step execution of programs

(Jin, 2020; Sorva et al., 2013). Numerous program visualization sys-

tems were developed and evaluated over the last 20 years, yet empiri-

cal studies of their effect on learning have mixed results. Some

studies reported significant improvements of learning outcomes from

the use of a program visualization tool than learning without such a

tool (Čisar et al., 2011), while others did not find any significant differ-

ences between them (Rajala et al., 2008). The low impact of visualiza-

tion is usually attributed to its passive non-engaging nature (Naps

et al., 2005). For example, Kaila et al. (2009) found that their program

visualization system was useful for novices only if it was used in ways

that required higher levels of engagement (e.g., requiring students to

actively respond to questions during the visualization).

Another stream of research has focused on automatic assessment

tools where students engage in problem solving, enter answers, and

the answers are automatically graded. Although they allow for a more

active learning process, learning-by-doing, such tools often only offer

support at a coarse-grained problem level whereby students get feed-

back relative to the final output or final value of a variable of a code-
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tracing problem (Hsiao et al., 2010; Shah et al., 2021; Thomas

et al., 2019) or the final submission of code (Ihantola et al., 2010), lim-

iting their effectiveness for supporting learning. Anderson et al.

(1989), in their experiments with the LISP programming tutor, found

that students who received step-level support (i.e., error feedback and

hints) learned more than students with program solution evaluation

only at the end of each problem, and they did so in one third the time.

Without step-level guidance, novices may struggle with reaching the

correct solutions, and may even disengage with learning.

An increasing number of researchers have started to study and

develop code tracing technologies that offer both active learning-by-

doing activities and step-level support to address the shortcomings of

the above technologies. Some evidence has been found regarding the

effectiveness of such technologies in supporting learning code tracing

(Höppner, 2019; Jennings & Muldner, 2020, 2021; Kumar, 2020;

Nelson, 2021; Qi & Fossati, 2020). These technologies can be consid-

ered as simplified instances of intelligent tutoring systems (ITS) that

have been demonstrated to improve student learning in various STEM

domains such as mathematics (Huang et al., 2021; Ritter et al., 2007)

and physics (VanLehn et al., 2005). These empirically validated ITSs typi-

cally afford two forms of adaptivity (Aleven, McLaughlin, et al., 2016):

step-loop adaptivity, that is, learning-by-doing support during problem

solving by giving step-by-step feedback or hints personalized to each

student's needs, and task-loop adaptivity, that is, selecting or recom-

mending the most beneficial next activity to a learner based on their skill

levels estimated by a learner model. However, many code tracing learn-

ing systems either lack task-loop adaptivity for different students

(Höppner, 2019; Jennings & Muldner, 2020, 2021; Nelson, 2021), or

afford limited step-loop adaptivity where no hints are provided

(Jennings & Muldner, 2021) or explanations are provided after complet-

ing a problem (Kumar, 2020). Existing code tracing learning systems also

vary interaction granularities (i.e., the number of intermediate steps that

are required to fill in), and the most straightforward design compatible

with ITS principles is to let students fill in a trace table recording the

values of variables and printed outputs after the step-by-step execution

of a piece of code (Kakeshita & Ohta, 2019; Risha et al., 2021; Risha &

Brusilovsky, 2020). To sum up, none of the prior work has implemented

and investigated a full-blown ITS technology, which affords both step-

loop adaptivity and task-loop adaptivity, for teaching code tracing,

which has the potential to promote highly effective learning.

The current work investigates the effectiveness of the instructional

features provided by ITSs, specifically, the combination of active learn-

ing, step-level support, and individualized problem selection, for assist-

ing learning in code tracing. Following the Adaptivity Grid framework

(Aleven, McLaughlin, et al., 2016) which organizes research results in

adaptivity into three forms of adaptivity (i.e., step-loop, task-loop, and

design-loop adaptivity), the current work also implements design-loop

adaptivity, where system designers use data about the learners in the

task domain to create a new version of the system that is better

adapted to common difficulties learners encounter. To start this design

loop, we identified integrative skills novices struggled with in code trac-

ing through analysis of students' errors in our prior work (Huang, 2018).

In the current work, continuing this loop, we augmented a component-

level domain model with integrative skills and conducted instructional

design that attends to difficulties in skill integration. To close the loop,

we conducted a classroom study to assess the value of the instructional

features afforded by ITSs and the value of integration-focused instruc-

tional design, as well as connected the evaluation results with the origi-

nal assumptions about skill integration.

3 | THE CODE TRACING INTELLIGENT
TUTORING SYSTEM (T3)

Our Trace Table Tutor (T3) is an ITS for learning Python code tracing

and can attend to students' difficulties in skill integration. T3 contains

instructional features of an ITS, particularly active learning, step-by-step

support, and individualized problem selection, which are realized by the

interface, domain model, learner model, and pedagogical model (for

problem selection). T3 covers multiple topics (e.g., for, lists) and has

66 problems, with 64% requiring integrative skills. T3 has two versions,

the basic T3 (tutor) and the integrative T3 (tutor), explained as follows.

3.1 | The basic T3 tutor

The interface of T3 shared by both versions contains a program, a hint

box, instructional text, and a trace table (Figures 1 and 2). Students

need to fill in the table after each program line's execution. At each

step (i.e., a table cell), students receive immediate correctness feed-

back through colours (red or green). Students can also ask for hints at

each step, and the last hint provides the correct answer. This interface

design was tested in a pilot study where we interviewed nine under-

graduates taking introductory Python programming courses.

The basic T3 uses a component-level domain model with only

component skill labels: // (floor division), % (modulo), += (compound

assignment3), if, for, a[i] (list) (see Appendix A, Table A1 for their defini-

tions and exemplar code). Its underlying hypothesis is a component

compositionality hypothesis that students do not need to acquire addi-

tional integrative skills beyond component skills, and they may benefit

from some practice on problems involving integration. This hypothesis

is a reasonable one to be considered in a basic design of T3, because

it underlies a large number of learning technologies that also follow a

component-focused instructional design. In the backend, a Bayesian

network-based learner model constructed based on the domain model

constantly updates estimates of students' skill levels (i.e., probabilities

of knowing a skill) using a previously validated formulation

(Huang, 2018). The pedagogical model prioritizes the strongest

unmastered skill for a student (i.e., the one among the unmastered

skills that is closest to being mastered) and the problem with highest

focus on this skill (i.e., having fewest other skills); when all of the stu-

dent's skill levels have reached mastery (i.e., the probability of each

skill exceeds 0.95), the system stops practice for the student. This

3There were other kinds of compound assignment in T3, such as *=. We used the label +=

for simplicity.
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selection mechanism builds on the widely-adopted cognitive mastery

learning-based problem selection in ITSs (Corbett & Anderson, 1994).

Details can be found in Appendix B.

3.2 | The integrative T3 tutor

The integrative T3 optimizes the basic T3 using an integration-

focused instructional design driven by an integration-level domain

model. The domain model of the integrative T3 contains both compo-

nent skills and integrative skills. An integrative skill is represented as a

combination of component skills with certain structural constraints

(e.g., a nesting relation). For example, ‘for & a[i]’ denotes the combina-

tion of ‘for’ and ‘a[i]’ component skills where ‘a[i]’ is inside a ‘for’
loop and one has to access an updated list element from a previous

iteration to conduct operations in a new iteration. There are five inte-

grative skills (see Appendix A, Table A2 for definitions and exemplar

code) in addition to the six component skills in the integrative T3. The

F IGURE 1 A basic problem in T3 requiring the component skill ‘for’

F IGURE 2 A basic problem in T3 requiring the component skill ‘a[i]’
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underlying hypothesis of the integrative T3 is an integrative skill hypoth-

esis that students need to acquire additional integrative skills beyond

component skills, and they need deliberate practice and focused prac-

tice on integrative skills. The identified integrative skills and the integra-

tive skill hypothesis were supported by our prior study (Huang, 2018)

where we designed quizzes with matched integration and decomposed

problems, following the Difficulty Factors Assessment approach used in

studying integrative skills in algebraic symbolization (Heffernan &

Koedinger, 1997). Through analysis of student performance and errors

committed in integration problems, we identified new integrative skills

that require knowing how component skills work together, in addition

to cognitive load demands. For example, we found that although many

students knew ‘a[i]’ (i.e., access list elements from a list that has been

initialized but has not been updated) and ‘for’ (i.e., print numbers with a

for loop where later iterations do not require values from earlier itera-

tions), they did not know ‘for & a[i]’ and used the initial rather than the

updated value of the list element in new iterations. This specific inte-

grative skill is related to a more general misconception in skill integra-

tion, maintaining values across iterations, that is, always using the initial

value of the accumulator variable in each loop iteration rather than the

updated value from a previous iteration identified in our prior study

(Huang, 2018). Meanwhile, the integrative T3 shares the same learner

modelling mechanism and problem selection mechanism as the basic

T3 (as described in Section 3.1).

Both versions of T3 contain three types of problems and the

same problem set: A basic problem not involving skill integration

(Figures 1 and 2 above), a focused integration problem only requiring

filling in the steps of integrative skills with other steps automatically

filled in (Figure 3), and a full integration problem requiring filling in all

steps for both kinds of skills (Figure 4).4 In particular, the design of

focused integration problems applied one proven instructional design

method, Focused Practice Task Design (Huang et al., 2021) explained

before. We created five focused integration problems each of which

isolates an integrative skill and reduces cognitive load demands, draw-

ing students' attention to the key properties of integrative skills.

Both versions of T3 differ in the step-to-skill mapping and thus

also have differences in hints. In the basic T3, all steps are labelled

with component skill labels and associated with hints explaining com-

ponent skills. In the integrative T3, the basic steps are labelled with

component skills and have the same hints as the basic T3, but the

integrative steps are labelled with integrative skills and associated

with hints explaining how component skills work together (Figure 3).

We also ensured that the length of a hint in the integrative T3 was

similar to the length of the hint of the same problem step in the basic

T3 (see Appendix A, Figure A1 for a comparison).

The differences in the domain models between the two versions

of T3 result in their differences in problem distribution and sequenc-

ing, according to the shared problem selection mechanism (as described

in Section 3.1). First, the integrative T3 provides integration problems

as the main problems, provides focused integration problems as the

main integration problems, and has more such problems than the basic

T3. This is because the targeted population of T3 is students who

already have a good level of component skills after initial lectures and

F IGURE 3 A focused integration problem in T3 requiring the integrative skill ‘for & a[i]’. It only requires filling in the cells corresponding to
the integrative skill (e.g., the yellow cell but not the grey cells). The yellow cell corresponds to the integrative skill ‘for & a[i]’ where one has to
access the updated value of the list element from a previous iteration (3) in a new iteration rather than using the initial value (0). The displayed
hint is used in the integrative T3

4This problem requires another integrative skill ‘a[i] & =’, denoting the integration of a list

and assignment where one has to write down the updated list with all its elements. For

simplicity of illustration, we did not mention it in the caption.
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exercises but struggle with integration in more complex problems. The

integrative T3 labels integration problems with integrative skills not

used for labelling basic problems and tracks integrative skill levels sepa-

rately allowing such students to receive just what they need

(i.e., integration problems), whereas the basic T3 labels both basic and

integration problems with only component skill labels resulting in a high

proportion of basic problems. Second, the integrative T3 prioritizes

practice on basic problems before (rather than after) integration prob-

lems. This is because under the problem selection mechanism, if stu-

dents have not yet mastered component skills,5 the integrative T3

prioritizes component skills and basic problems; if a student has mas-

tered component skills, it avoids selecting component skills and thus

basic problems because only unmastered skills are considered. In com-

parison, the basic T3 interleaves the basic problems and integration

problems. It may select integration problems before a student has mas-

tered component skills and may still select basic problems after a stu-

dent has mastered component skills. This is because each skill label is

associated with both basic and integration problems, there is no guar-

antee of progressive problem selection between the two types.

Figure 5 shows the logic model contrasting the two versions of T3

through a hypothesized causal chain from the domain model and under-

lying hypothesis on skills and instruction, to instructional design fea-

tures, and finally to outcomes. We will explain the outcome measures in

Sections 4 and 5. We will report on the overall outcome comparison

between the two versions of T3 and mediating effects through specific

instructional features towards supporting the causal chain in Section 5.

To build T3, we utilized the Cognitive Tutor Authoring Tools

(CTAT),6 a widely-used tool to create ITSs (Aleven, McLaren,

et al., 2016; Aleven, McLaughlin, et al., 2016). We implemented an

infrastructure that can automatically generate CTAT required step-by-

step solution graphs (and HTML files) with skill labels and hints

embedded for a given Python program. To host T3, we used the learn-

ing management system TutorShop,7 which calls our customized

learner modelling and problem selection service. To log the data, we

used the service provided by DataShop.8 Details could be found in

Huang (2018).

4 | STUDY DESIGN AND DATA
COLLECTION

4.1 | Participants

We conducted a classroom study with 74 students in an introductory

Python programming course at a university in [a Spanish-speaking

country masked for review]. All students were first- or second-year

engineering school students, and 85% were male.

4.2 | Procedures

The study was held as an in-class practice session 2 weeks after the

lecture on the topic of lists (other topics involved in T3 had been cov-

ered earlier) and students had already done some basic exercises on

the lists topic. The session lasted for about 80 min and involved sev-

eral tasks: demo, pre-assessment, practice, and post-assessment. Stu-

dents were randomly assigned to one of the two versions: 36 used

the basic T3 (the control condition) and 38 used the integrative T3

(the experimental condition). All hints and instructions were provided

in Spanish.

F IGURE 4 A full integration problem in T3 requiring component skills ‘for’, ‘a[i]’ and the integrative skill ‘for & a[i]’

5In this paragraph, having mastered component skills means students are estimated to master

all component skills according to an accurate domain and learner model.
6https://github.com/CMUCTAT/CTAT/wiki.

7https://tutorshop.web.cmu.edu/.
8https://pslcdatashop.web.cmu.edu/.

484 HUANG ET AL.

 13652729, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12757 by U

niversity O
f Pittsburgh U

nive, W
iley O

nline L
ibrary on [02/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/CMUCTAT/CTAT/wiki
https://tutorshop.web.cmu.edu/
https://pslcdatashop.web.cmu.edu/


4.3 | Measures

The pre-assessment consisted of six basic problems, each of

which targeted one component skill.9 The post-assessment

included the same six basic problems with changes that did not

affect the involved skills (e.g., the values of the literals) and five

integration problems covering all the five targeted integrative

skills. Integration problems were not included in the pre-

assessment to reserve more time for practice, since we could not

limit time on the pre-assessment in the experimental platform.

Each problem displayed a small program and asked students to

write down the printed output or the final value of the key

F IGURE 5 The logic model contrasting the two versions of T3 through a hypothesized causal chain

9The last basic problem aimed at assessing students' levels on ‘%’, but it also involved ‘if’.
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variable; both assessments were computer based and offered no

trace tables (see Figure A2 in Appendix A for the interface). Each

problem was graded as correct or incorrect on the last attempt.

We refer to the proportion correct on the pre- or post-assessment

as pre- or post-assessment score for a student. This list of assess-

ment problems could be found in Appendix A, Tables A3 and A4.

The assessment problems allow us to study far transfer learning

since they did not provide trace table support and involved more

integrative skills or component skills in a single problem than most

practice problems,10 and to examine the overall problem level

performance.

In addition to the assessment data, we also collected and analysed

student learning data as they practiced with T3. We used only the first

attempts of problem steps for analyses following common practice in

analysing ITS log data. The learning data provides a relatively larger

amount of data per student, provides insights into step-level perfor-

mance, and allows us to study near transfer learning as we examine

student performance changes during instruction with trace table

support.

5 | RESULTS

This section presents three sets of analyses to answer our three

research questions. For statistical analysis, we used two-sided t-

tests (after confirming approximate normality and equal variance)

or Wilcoxon signed-rank tests; we also used multiple regression

and mixed-effects modelling. Cohen's d is reported for effect sizes.

Whenever the condition variable was used in a regression model,

we coded 0 for the basic T3 condition and 1 for the integrative T3

condition.

5.1 | RQ1: Student learning in the code tracing
ITS (T3)

RQ1 investigates whether the instructional features of a full-scale ITS,

T3, produce effective learning in code tracing. We examined learning

gains on data from both conditions.

First, we examined learning gains using assessment data by the

differences between post- and pre-assessment scores of students.

We only considered basic problems which were the only overlap-

ping problems in both assessments. The difference (M = 0.11,

SD = 0.19) between post-assessment scores (M = 0.89,

SD = 0.15) and pre-assessment scores (M = 0.78, SD = 0.20) was

statistically significant with a medium effect size [t(73) = 4.74,

p < 0.001, d = 0.55].

Then, we examined student learning on both basic and integra-

tive skills using the learning data starting with visual inspection of

learning curves. Learning curves were often used as a subtle way

to measure learning outcomes in adaptive educational systems

(Martin et al., 2011). A learning curve depicts the average error

rates of students over successive practice opportunities (i.e., first

attempts of problem steps) for one skill or aggregated over a group

of skills. The learning curves for component skills (Figure 6a) and

integrative skills (Figure 6b) show a decreasing error rate that indi-

cates students were learning throughout use of T3. As shown in

Figure 6a (the blue curve which is a smoothed curve), students had

an around 30% average error rate (i.e., 70% correct) on their first

opportunity on basic problems and that average error rate reduced

to 10–20% as students experienced more opportunities to learn

from practice and feedback (e.g., reaching less than 20% after

10 opportunities). As shown in Figure 6b (blue curve), students had

a much higher error rate on integration problems, starting at about

a 55% average error rate on the first opportunity, and gradually

transitioned to an error rate around 25% after 15 or so

opportunities.

We further utilized the Additive Factor Model (AFM; Koedin-

ger, McLaughlin, & Stamper, 2012), a learner modelling technique

often used in conjunction with learning curves (e.g., for plotting

the blue predictive curves in Figure 6) to rigorously examine learn-

ing in educational systems (Huang et al., 2021; Koedinger, Cor-

bett, & Perfetti, 2012; Koedinger, McLaughlin, & Stamper, 2012).

AFM is a growth model generalization of psychometric item

response theory models (De Boeck & Wilson, 2004). It is a logistic

regression model given a mapping between problem steps and

skills. AFM predicts the probability that a student i will get a prob-

lem step j correct based on the student's proficiency (θi), the initial

difficulty (βk) and learning rate (γk) of each required skill

k (indicated by qjk with value 0 or 1) as the student gets practice

opportunities on this skill (Tik). We used the DataShop (Koedinger

et al., 2010) implementation of AFM, which introduces the by-

student random intercepts.

ln
pij

1�pij

� �
¼ θþ

XK
k¼1

qjkβkþ
XK
k¼1

qjkγkTik: ð1Þ

We evaluated whether learning occurred by inspecting the skill

learning rate parameters (γk). The average learning rates of the

component skills, integrative skills, and overall skills are 0.13, 0.25

and 0.18 respectively. The positive learning rates indicate that stu-

dents increased their performance accuracy (correctness) as they

got more practice. Based on the fitted parameters, we further esti-

mated the learning gain using the fine-grained learning data when

students practiced with trace table support: we computed the dif-

ference in the probabilities of succeeding between the last and the

first practice opportunity of a given skill in the entire study span

for each student. We found significant learning gains

(i.e., differences) with large effect sizes for component skills, inte-

grative skills, and overall skills [basic: t(73) = 10.15, p < 0.001,

d = 1.18, M = 0.06, SD = 0.05; integrative: t(73) = 9.73, p < 0.001,

d = 1.13, M = 0.11, SD = 0.10; overall: t(73) = 11.38, p < 0.001,

d = 1.32, M = 0.08, SD = 0.06].

10Moreover, the last integration problem (id = 11) involved reversing a list by swapping list

elements that were not involved in any practice problems, which further adds to the

assessment of far transfer learning in post-assessment.
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5.2 | RQ2: Existence of integrative skills in code
tracing

RQ2 investigates whether students' performance data from T3 sup-

ports the existence of integrative skills, that is, confirms a composition

effect in code tracing, namely, that problems that involve a ‘composi-

tion’ of two (or more) component skills are harder than predicted by

student performance on problems involving those component skills

separately.

We examined the post-assessment data for evidence of a com-

position effect. In our past work (Huang, 2018), we investigated

the existence of a composition effect in Python code tracing by

comparing student performance on integration problems with

matched basic problems. We followed this approach here, compar-

ing correctness on an integration problem (pI) with estimated cor-

rectness from all the basic problems (pB) involved in that

integration. For example, the first row of Table 1 shows that for

the first integration problem, the average post-assessment correct-

ness (of students) on the basic problems for component skills ‘for’
and ‘a[i]’ is 95% and 88% respectively. Being correct on both (pB)

is estimated by the product at 84% correct. In contrast, student

performance on the integration problem involving the integrative

F IGURE 6 The learning curves for the component skills (a) and the integrative skills (b) in T3. In both curves, opportunities with fewer than
20 students were excluded. Red and blue curves correspond to the raw and smoothed (AFM predicted) error rates respectively
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skill ‘for & a[i]’ was only 35% correct. The difficulty of the whole

(pI) is significantly greater than the predicted difficulty of the parts

(pB) (see last three columns in Table 1). The product of the perfor-

mance on basic problems corresponds to a hypothesis that an inte-

gration problem is no more than getting all the decomposed basic

problems correct (95%*88% = 84%). However, the fact that the

integration problem has much lower performance (35%) than the

product indicates that some extra skill is needed for students to

learn to integrate component skills. We call this an integrative skill,

and we can predict integration problem correctness (pI) as the

product of integrative skill correctness (pIS) and combined compo-

nent skill correctness (pB), that is, pI = pIS*pB. We can thus esti-

mate integrative skill correctness as pIS = pI/pB.11 This value is

shown in the sixth column (pI/pB) and is 42% for the first integra-

tion problem.

Across the five integration problems, students did quite well on

basic problems, averaging 89% (see the last row in Table 1), and joint

correctness (pB) is also predicted to be high, averaging 80%. However,

correctness on integration problems (pI) is much lower, averaging

35%. Estimated integrative skill correctness (pI/pB) ranges from 33%

to 54% with an average of 44%. The last three columns in Table 1

show statistical analysis of composition effects (pB � pI), that is,

results of paired t-tests comparing each student's combined basic

problem performance (pB) with their integration problem performance

(pI). Across all integration problems this difference is highly significant

(p < 0.001 in all cases) and highly substantial with large effect sizes in

most cases (d > 0.8). These results confirm the substantial composi-

tion effect in code tracing and indicate that certain integrative skills

have to be acquired beyond component skills.

5.3 | RQ3: Learning benefits of integration-
focused instructional design

RQ3 investigates whether an integration-focused instructional design

yields learning benefits beyond a design without such focus. We

compared student learning in both conditions from both performance

accuracy and efficiency.12 We started with comparing the practice time to

confirm that any differences in learning outcomes between the two condi-

tions only resulted from instructional differences rather than differences in

total practice time. Indeed, there was only a small and nonsignificant dif-

ference [t(72) = �1.37, p = 0.17] in total practice time (control:

M = 41.00 min, SD = 9.40 min; experimental: M = 44.10 min,

SD = 9.70 min).

5.3.1 | Performance accuracy comparison

We first compared the performance accuracy (score) measured by the

assessment data where trace tables were not provided. We first

examined basic problems, which were the only overlapping problems

on pre- and post-assessments. Regarding pre-assessment levels, we

found a marginally significant difference [t(72) = 1.69, p = 0.096,

d = 0.39], with the basic T3 condition (M = 0.82, SD = 0.18) starting

slightly higher than the integrative T3 condition (M = 0.75,

SD = 0.21).13 To control for pre-assessment differences, we ran a

regression analysis predicting the post-assessment score per student

given the pre-assessment score and the condition indicator on basic

problems. The integrative T3 condition yielded higher post-

assessment scores, yet the difference was not statistically significant

(b = 0.01, p = 0.77). We also did not find an aptitude-treatment inter-

action when adding an interaction term between the pre-assessment

score and the condition (b = �0.01, p = 0.85). In addition, for integra-

tion problems, we ran a regression analysis predicting each student's

post-assessment score on integration problems given the pre-

assessment score on basic problems (since integration problems were

not available in the pre-assessment) and the condition indicator. There

was no statistical difference between conditions (b = 0.08, p = 0.36),

and we did not find an interaction between the pre-assessment score

and the condition (b = �0.08, p = 0.36).

TABLE 1 Integrative skill levels (pI/pB) and composition effects (pB � pI), along with their statistical significance and effect sizes, computed
using post-assessment performance

Integ. prob.
Component
skills

Basic problem average correctness
(component skill level)

Integration problem
average correctness (pI)

Integrative
skill level (pI/pB)

Composition effect statistical
analysis: Is pB � pI > 0?

Individual Product (pB) t(73) p d

1 for, a[i] 0.95, 0.88 0.84 0.35 0.42 8.78 <0.001 1.02

2 for, a[i], += 0.95, 0.88, 0.97 0.81 0.34 0.42 8.78 <0.001 1.02

3 for, a[i], if 0.95, 0.88, 0.91 0.76 0.41 0.54 5.75 <0.001 0.67

4 for, a[i] 0.95, 0.88 0.84 0.28 0.33 10.06 <0.001 1.17

5 for, a[i], // 0.95, 0.88, 0.88 0.74 0.35 0.48 7.08 <0.001 0.82

Average 0.89 0.80 0.35 0.44 10.66 <0.001 1.24

11In some post-assessment integration problems, multiple integrative skills were involved in a

single problem. pIS thus could denote the joint probability of getting all integrative skills

correct in a problem.

12In this section, performance is further decomposed into accuracy and efficiency; in other

sections, the word performance by default denotes performance accuracy specifically.
13Although students were randomly assigned to two conditions, statistically, random

assignment does not guarantee that the conditions are matched or equivalent and has a

possibility to fail (Goldberg, 2019).
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We then compared the performance accuracy measured by the learn-

ing data generated from student interactions with T3 problems which all

provided trace tables and we could estimate students' initial levels of inte-

grative skills from AFM models fit to the data. We examined the differ-

ence between the final and initial estimated probabilities of success (pS) by

AFM models fitted to the learning data of each condition. We ran three

regression models predicting the average final pS per student given the

average initial pS and the condition, where we computed the average final

or initial pS per student on overall skills, component skills, and integrative

skills respectively. The integrative T3 condition led to higher final pS than

the basic T3 condition, and the condition differences were significant with

medium effect sizes for overall skills (b = 0.05, p < 0.001, d = 0.66) and

component skills (b = 0.05, p = 0.008, d = 0.50), and the condition differ-

ence was marginally significant for integrative skills (b = 0.03,

p = 0.08, d = 0.66).

This set of analyses shows that the integrative T3 condition did not

lead to reliably higher performance accuracy improvement measured by

assessment data where trace tables were not provided and pre-

assessment on integrative skills was not available. However, it led to reli-

ably higher performance accuracy improvement for overall skills and

component skills measured by the learning data where trace tables were

provided and initial levels of integrative skills could be estimated and con-

trolled for, compared with the basic T3 condition.

5.3.2 | Performance efficiency comparison

The time students spend on performing a task captures another

important aspect of student performance: efficiency. This measure-

ment was used in the well-studied power law for practice that

depicts a phenomenon where learners' time to perform a task

decreases over practice (Neves & Anderson, 1981). Here we com-

pared time needed to complete an assessment problem and to

complete a practice problem step in two conditions to see whether

the integrative T3 condition led to performance efficiency

benefits.

First, we compared performance efficiency on the assessment data.

Since there were missing values due to some students' not completing

all problems,14 we employed two sets of analyses: t-tests on imputed

data and linear mixed effect modelling (LMM) without imputing the

data. We considered both incorrect and correct responses rather than

using only correct responses since those sample sizes were too small.

For the t-tests with data imputation, for each student, we calculated

the median time over a set of problems, and then compared the aver-

age of the medians of the two conditions. For students who failed to

submit all problems, the median time introduced bias towards the time

required on earlier problems (note that all basic problems were posi-

tioned before integration problems), so we conducted imputation as

follows: for a problem type (basic/integration) under an assessment

type (pre- or post-assessment) of a condition, we filled the missing

value with the average of the values from that problem type under the

same assessment type and condition, after conducting a 90% winsori-

zation if the distribution failed the normality test. Table 2 reports the

results. There was no statistical difference by condition in the pre-

assessment (p = 0.47). However, students in the integrative T3 condi-

tion spent significantly less time on post-assessment basic problems

(p = 0.04, 17% less), integration problems (p = 0.04, 20% less), and all

problems (p = 0.02, 19% less) with approximately medium effect sizes.

In the LMM analysis without imputation, we followed the com-

mon practice of logarithmic transformation of time since the time dis-

tribution was highly skewed. The LMM predicts the log-transformed

time on each submitted post-assessment problem of a student, based

on the condition indicator, the log-transformed total time on pre-

assessment (the coefficient of which was significant in our model), the

problem indicator (random factor), and the student indicator (random

factor). There was a significant difference between the conditions

(b = �0.15, SE = 0.07, X2(1) = 4.08, p = 0.04), and students in the

integrative T3 condition spent 15 seconds less per problem on aver-

age. Considering that there was no statistical difference in perfor-

mance accuracy in post-assessment, these results show that the

integrative T3 condition led to significantly higher performance effi-

ciency in post-assessment compared to the basic T3 condition.

Second, we examined performance efficiency within the learning

data. To reliably measure the decrease of time spent on an opportu-

nity (i.e., a problem step) over practice opportunities, we adapted

AFM to predict the time spent on each opportunity, using the same

predictors and domain model used in Section 5.1 Equation (1) and

only changed the dependent variable. Again, we applied a logarithmic

transformation to the time dependent variable when fitting the model

due to its skewed distribution and converted to the original scale in

follow-up analyses. We considered all attempts and only correct

TABLE 2 Descriptive statistics and statistical tests of the median time (second) of completing a problem in different problem sets between
the basic T3 control (CT) condition and the integrative T3 experimental (EP) condition

Assessment type
(problem type)

CT (N = 36) EP (N = 38)
CT-EP (CT-EP)/CT

Two-sample t-test

M SD M SD M Reduct. ratio t(72) p d

Pre-assess (basic) 72 29 67 25 5 – 0.73 0.47 –

Post-assess (basic) 38 15 31 11 7 17% 2.08 0.04 0.49

Post-assess (integ.) 97 42 77 36 20 20% 2.12 0.04 0.49

Post-assess (overall) 57 23 46 15 11 19% 2.39 0.02 0.56

14In the basic T3 and integrative T3 conditions, the proportion of students that submitted all

11 post-assessment problems were 75% (27/36) and 92% (35/38) respectively.
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attempts.15 We first checked differences in the average estimated time on

first opportunities and found that on all attempts, there was a significant

difference between the conditions on component skills [t(72) = 3.15,

p = 0.002]16 (where the basic T3 condition had a smaller mean), but not

on integrative skills [t(72) = 0.57, p = 0.57], nor on overall skills [t

(72)= 1.48, p= 0.14]. We then ran regression models predicting the aver-

age estimated time on last opportunities given the condition indicator and

the average estimated time on first opportunities over a set of skills for

each student. The integrative T3 condition led to less time on last opportu-

nities and the differences between conditions were significant with large

effect sizes for basic, integrative, or overall skills (basic: b = �0.40,

p < 0.001, d = 0.80; integrative: b = �2.19, p < 0.001, d = 1.39; overall:

b = �1.25, p < 0.001, d = 1.38). The same results hold when we consider

only correct attempts (basic: b = �0.28, p < 0.001, d = 0.78; integrative:

b = �1.21, p < 0.001, d = 1.16; overall: b = �0.71, p < 0.001, d = 1.10).

Considering that the integrative T3 condition led to higher performance

accuracy improvement during practice, these results show that the inte-

grative T3 condition led to greater performance efficiency gains during

practice than the basic T3 condition.

5.3.3 | Mediation analysis

In this section, we conducted a preliminary mediation analysis to

support the effectiveness of specific instructional design features

on the overall intervention effects. Among the outcome variables

covered above, we picked the one where we observed the largest

effect sizes: the performance efficiency variable on the learning

data measured by the average estimated time on last opportunities

of skills. Among the potential mediators, we only considered those

for which we could obtain measures with no or less ambiguous

interpretations of the effectiveness of a design.17 We conducted

the mediation analysis separately for different skill types since

different design features may impact differently for component

skills and integrative skills.

We investigated three hypothesized mediators: the number of

integration problems, the number of focused integration problems,

and a problem sequencing feature (explained below). The hypothe-

sized mediating processes are as follows. The integrative T3 condi-

tion should lead to more integration problems and more focused

integration problems (as explained in Section 3.2) which should

lead to greater overall efficiency improvement on integrative skills

than the basic T3 condition. Meanwhile, although the integrative

T3 condition was not expected to yield more basic problems, more

integration problems may also yield greater overall efficiency

improvement on component skills than the basic T3 condition,

because integration problems also contain steps of component

skills and practice on integrative skills may deepen the learning on

component skills through learning when and how to apply a spe-

cific type of skill. The integrative T3 condition may also select inte-

gration problems after (rather than before) basic problems or avoid

selecting basic problems after integration problems to a greater

degree (as explained in Section 3.2) which may yield greater overall

efficiency improvement for both basic and integrative skills than

the basic T3 condition, because the selected problems may be nei-

ther too difficult nor too easy for students. We report descriptive

statistics and statistical tests to first confirm that the values of the

mediators are different between two conditions, and then report

mediation analysis results.

We first compared the number and proportion of problems of dif-

ferent problem types between conditions. As shown in Table 3, the

integrative T3 had a greater focus on integration problems than the

basic T3: it led to a significantly higher number of integration prob-

lems and a much higher proportion of integration problems (79%

vs. 43%). The integrative T3 also selected significantly more focused

integration problems and a much higher proportion of the selected to

the available focused integration problems (3.4/5 = 68%

vs. 1.1/5 = 22%). Next, we compared problem sequencing features

between conditions. We defined four types of transitions for each

consecutive problem pair and computed the proportion of each type

for each student. Among the four types, the integration-to-basic tran-

sition is the type that is most likely to indicate suboptimal problem

selection. We found that the integrative T3 condition provided a sig-

nificantly lower proportion of integration-to-basic transition, reducing

TABLE 3 The number and proportion of problems selected in the two conditions. The mean (SD) over students, overall increase (inc.) ratios
and two-sample t-test significance are reported

Problem type

# of practice problems of a problem type Prop. of a problem type

Basic T3 Integ. T3 Difference Inc. ratio Basic T3 Integ. T3

Basic problem 6.8 (5.6) 2.9 (2.5) �3.9*** �57% 0.57 (0.22) 0.21 (0.13)

Integ. problem 6.1 (6.6) 10.3 (6.9) 4.2* 69% 0.43 (0.22) 0.79 (0.13)

Focused integ. problem 1.1 (1.3) 3.4 (1.4) 2.3*** 209% 0.08 (0.14) 0.34 (0.21)

Full integ. problem 5.1 (5.7) 6.8 (6.2) 1.7 33% 0.34 (0.21) 0.44 (0.18)

†p < 0.10; * p < 0.05; **p < 0.01; ***p < 0.001.

15There was sufficient data considering only correct attempts (>2000 transactions and

32 students per condition).
16Although there was no statistical difference between pre-assessment time between

conditions, it is possible that there was a statistical difference in the time on first

opportunities between conditions, because both conditions differed in when and which first

basic problems were given to students.
17An example of a potential mediator for which measures may lead to ambiguous

interpretation is the usage of hints, because higher usage may indicate higher usefulness of

hints from a good design, but it may also indicate higher difficulty of steps that make

students request hints from a suboptimal design.
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that of the basic T3 condition by 33%. Detailed statistics can be found

in Appendix C, Table C1.

We then conducted an mediation analysis (Rosseel, 2012). We

tested the indirect effect of the condition (Condition) on the average

estimated time on last opportunities of skills (TimeLastOpp) for students

through one or a few mediators, using 1000 bootstrapped samples. The

average estimated time on first opportunities of skills was included as a

covariate. Both time variables were in the original rather than logarith-

mic scale. For integrative skills, we first only considered a single media-

tor. The number of integration problems (NumIntegPb) significantly

mediated the relationship (ab = �0.72, 95% CI [�1.16, �0.34],

p = 0.001), and so did the number of focused integration problems

(NumFocusIntegPb; ab = �1.52, 95% CI [�2.25, �0.87], p < 0.001); but

the average proportion of the integration-to-basic problem transition

(PropIntegToBasic) did not mediate the relationship (ab = �0.01, 95% CI

[�0.16, 0.17], p = 0.95). We then considered the two variables that

showed mediating effects at the same time. As shown in Figure 7,

NumIntegPb significantly mediated the relationship (a1b1 = �0.54, 95%

CI [�0.95, �0.18], p = 0.007), and NumFocusIntegPb provided an addi-

tional significant mediation effect (a2b2 = �0.80, 95% CI [�1.61,

�0.12], p = 0.03). Both mediators together partially to fully mediated

the relationship (c0 = �0.86, 95% CI [�1.75, 0.05], p = 0.05). We also

confirmed that PropIntegToBasic did not provide an additional mediating

effect in a three-mediator model (ab = 0.01, 95% CI [�0.10, 0.13],

p = 0.84). For component skills, we consider a single mediator first. As

shown in Figure 8, NumIntegPb significantly mediated the relationship

(ab = 6.82 * (�0.04) = �0.27, 95% CI [�0.40, �0.15], p < 0.001) with

full mediation (c0 = �0.13, 95% CI [�0.37, 0.05], p = 0.25); PropInteg-

ToBasic did not mediate the relationship (ab = �0.01, 95% CI [�0.05,

0.03], p = 0.62). We also confirmed that PropIntegToBasic did not pro-

vide an additional mediating effect in a two-mediator model

(ab = �0.00, 95% CI [�0.03, 0.03], p = 0.87).

6 | DISCUSSION AND CONCLUSIONS

The current work presents the development and empirical evaluation

of instructional design targeting students' difficulties in code tracing

particularly in integrating component skills in an intelligent tutoring sys-

tem, Trace Table Tutor (T3). We obtained three major findings centring

on three research questions (RQs). First, the instructional features of

this full-scale ITS for code tracing, particularly active learning, step-level

support, and individualized problem selection, produced effective learn-

ing in code tracing, as evidenced by the significant learning gains with

medium to large effect sizes measured by the assessment data and

learning data. Second, students' performance data collected from T3

supports the existence of integrative skills in code tracing. Learning

how to trace basic programming constructs in isolation does not suffi-

ciently prepare students to trace more complex programs where these

constructs are combined; students' much lower-than-predicted perfor-

mance on integration problems indicates they need to acquire new

skills for integration. Third, an instructional design that provides deliber-

ate practice and focused practice on integrative skills yields learning

benefits beyond a design without such features. The integrative T3 led

F IGURE 8 The mediation model
with path unstandardized
coefficients for testing the indirect
effect of condition on performance
efficiency (measured in the learning
data) through a mediator for
component skills. (†p < 0.10,
*p < 0.05, **p < 0.01, ***p < 0.001)

F IGURE 7 The mediation model
with path unstandardized
coefficients for testing the indirect
effect of condition on performance
efficiency (measured in the learning
data) through mediators for
integrative skills. (†p < 0.10,
*p < 0.05, **p < 0.01, ***p < 0.001)
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to more efficient post-assessment performance (i.e., faster problem

completion) and greater performance efficiency gains during practice

(both significant with medium to large effect sizes), as well as higher

performance accuracy improvement during practice (significant with

medium effect sizes for overall skills and component skills), compared

to the basic T3. Below, we first discuss our findings in the context of

existing research and their practical implications (Sections 6.1–6.3) and

highlight limitations and future work (Section 6.4) at the end.

6.1 | ITS instructional features and scaling up T3

The current work demonstrates the effectiveness of instructional fea-

tures of a full-scale ITS, particularly active learning, step-level support,

and individualized problem selection for learning code tracing (RQ1). The

effect sizes of learning gains (medium to large) are comparable to those

reported in experimenter-designed tests in the classic successful studies

of ITSs in mathematics and physics (Koedinger et al., 1997; VanLehn

et al., 2005). The accumulated evidence across domains shows the value

of the combo of the three features supported by full-scale ITSs and sug-

gests that enhancing existing code tracing learning technologies to have

these three features may boost their effectiveness. Although the current

study did not experimentally investigate the effect of each individual fea-

ture, there is accumulated empirical evidence of the effectiveness of each

feature (Aleven, McLaughlin, et al., 2016; Koedinger et al., 2015). In addi-

tion, future research can investigate alternative forms to implement these

features (Aleven, McLaughlin, et al., 2016).

The current T3 only involves a small set of the integrative skills in

Python programming, yet it can be relatively easily scaled up to handle

more complex integrative skills due to our technical infrastructure. Given

a domain model and a skill-to-hint mapping, a new version of T3 can be

easily created automatically under our infrastructure. The main effort lies

in constructing the domain model: one needs to specify the combinations

of component skills and the structural constraints as integrative skills and

then these skill specifications will be implemented in a program extending

our existing program to automatically annotate the steps. Section 6.2

below outlines promising methods towards this goal.

The current work may also help build technologies for learning

code writing. For example, the empirical method for identifying integra-

tive skills and the instructional design for supporting learning integra-

tive skills can be applied to the code writing area. However, the

differences between code-tracing and code-writing skills demand new

investigation, since some studies raised doubts on the relation between

code tracing and code writing (Denny et al., 2008), and it is also unclear

whether the skill combination structures that cause difficulty in code

tracing are also the ones that cause difficulty in code writing.

6.2 | Integration-level domain modelling in
programming learning technologies

The current study provides support (RQ2) and shows the value of one

way of integration-level domain modelling (RQ3), that is, using the

combination of component skills, compared to the common

component-level domain modelling, which adds to prior work using

combination-based representations in programming learning research.

This combination-based representation is founded on our prior empir-

ical investigation of integrative skills in code tracing (Huang, 2018),

and the current analysis on a new student population (RQ2) further

supports the robustness of the existence of integrative skills apart

from component skills. The current study extends prior works using

pair-based representations for programming skills in other program-

ming languages and learning technologies (Brusilovsky, 1992; Hsiao

et al., 2010; Huang et al., 2017). Pair-based representations may be

considered as the simplest form among various representations of

programming skills, including generic program fragments encoding

specific arrangements of constructs (typically specified by experts) in

computing education research (e.g., plans (Soloway & Ehrlich, 1984),

schemas (Rist, 1989) and templates (Clancy & Linn, 1999)), common

basic algorithms (e.g., Sum and Average Value) in classic textbooks

(Horstmann, 2020), as well as combinations of nodes (some of which

correspond to programming constructs) from Abstract Syntax Trees

(ASTs) with structural constraints through automatic AST mining

(Akram et al., 2020; Kovalenko et al., 2019). Our current study adds to

this field by providing empirical evaluation of combination-based

domain modelling. Integration-level domain models should be more

systematically used and evaluated in programming learning technol-

ogy research.

A next important question is how to construct and scale up

integration-level domain models in programming learning technolo-

gies. For example, for an integration problem involving three compo-

nent skills, shall it be considered as involving two paired-based

integrative skills or one triple-based integrative skill? One can purely

base the decisions on common teaching practices. However, to avoid

expert blind spots (Nathan & Petrosino, 2003), we recommend adapt-

ing our empirical approach used in RQ2 to systematically vary prob-

lems and contrasting the performance between (higher-order)

integration problems and decomposed counterparts. Alternatively,

one could conduct predictive modelling on datasets with high, pro-

gressive variations in integration problems comparing different

domain models (Huang et al., 2017). More importantly, analysing com-

mon errors committed on (higher-order) integration problems but not

decomposed counterparts (Huang, 2018) can reveal whether a new

skill arises from the integration or not to further justify the creation of

a new a new higher-order integrative skill. Research into integration-

level domain models may advance theories of programming language

knowledge and theories of instructions for programming skills

(Nelson, 2021; Xie et al., 2019).

6.3 | Integration-focused instructional design

In the current work (RQ3), our integration-focused instructional

design has proven to be superior to component-focused instructional

design which resembles the designs used in a large number of learning

technologies. Combining the results from RQ2 and RQ3, our work
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provides further support for the integrative skill hypothesis (Figure 5).

Our preliminary mediation analysis showed that an increased amount

of practice on integration problems and focused integration problems

largely explained the advantageous effect of the integration-focused

instructional design on students' overall learning. These results sup-

port the effectiveness of two instructional design features: providing

deliberate practice and focused practice on integrative skills. We dis-

cuss our work in relation to prior work and its practical implications

under each feature as follows.

One effective instructional design feature supported by our work

is providing deliberate practice on integrative skills. This involves pro-

viding varied integration problems targeting different integrative skills

and repeated integration problems towards mastery of each integra-

tive skill. This is enabled by the integration-level domain model in an

ITS. With only around 40 min of total practice on average, the integra-

tive T3 already yielded significant learning benefits in both near-

transfer and far-transfer situations on both integration problems and

basic problems, compared to the basic T3. This indicates the potential

of systematic drill practice on integration problems for the mastery of

a domain through the acquisition of key integrative skills as well as

deepening the learning of component skills and integrative skills. Our

work adds to prior work on deliberate practice (Ericsson, 2006;

Schnackenberg et al., 1998) and shows how the same principle can be

applied to learning integrative skills. Our work also adds to prior

research on instructions that stresses systematic integration practice.

For example, Frederiksen and White (1989) have shown that a curric-

ulum where learners practiced individual components and their inte-

gration in a stepwise fashion led to superior performance and learning

than a curriculum without such a feature in psychomotor skill learning.

More generally, it has been established that for complex tasks that

can also be easily divided into component parts, students often learn

more effectively if the components are practiced temporarily in isola-

tion, and then progressively combined (Salden et al., 2006; White &

Frederiksen, 1990; Wightman & Lintern, 1985). Unfortunately, sys-

tematic, deliberate integration practice is still absent in many current

learning technologies. Our research calls for attention to and demon-

strates a promising way to do so.

Another effective instructional design feature supported by our

work is providing focused practice on integrative skills. Based on our

prior error analysis (Huang, 2018) indicating the existence of addi-

tional integrative skills beyond component skills and cognitive load

demands in integration problems, we designed focused integration

problems and the integrative T3 provided a significantly higher num-

ber of such problems (Table 3). A focused integration problem

(Figure 3) only requires the steps involving specific integrative skills

and provides hints that explain how component skills work together,

without requiring other steps that may pose cognitive load demands.

Such focused problems direct students' attention to the key proper-

ties of skill integration, aligning with the instructional design guide-

lines from the cognitive load theory (Sweller et al., 1998). Our work

corroborates the effectiveness of a prior instructional design method

called Focused Practice Task Design (Huang et al., 2021; Koedinger &

McLaughlin, 2010) in a new task domain. One recent study from

Žanko et al. (2022) also showed positive results of focused instruc-

tions: they adapted programming lectures to spend more time on spe-

cific program examples targeting identified misconceptions and

conceptual concepts, resulting in a decrease in students' mistakes

related to misconceptions. Although they did not study integrative

skills explicitly, their pedagogical approach is in line with our recom-

mendation and can benefit the teaching of integrative skills.

6.4 | Limitations and future work

The current study has several limitations and elicits opportunities for

future research. One unexpected finding is that we did not observe

significant differences in performance accuracy on post-assessment

problems between the two versions of T3. We think that on basic

problems, students' scores in both conditions were likely prone to a

ceiling effect (pre-assessment Ms ≥0.75 and post-assessment

Ms ≥0.89), which may have left little room for improvement. Mean-

while, the integration assessment problems may be too difficult for

the majority of students in both conditions (post-assessment

Ms = 0.35), since they did not provide trace table support and

involved more integrative or component skills in a single problem than

most practice problems. This may have posed overly challenging far-

transfer and high-fluency demands given the limited practice time.

Moreover, the ITS technology and basic design shared in both condi-

tions were already effective (RQ1), resulting in a high bar control con-

dition. To better compare the two conditions, a future study should

consider providing trace tables in assessment, providing assessment

problems with a similar number of skills, and extending the

study span.

Second, our pre-assessment can be further improved. The current

pre-assessment problems only consisted of six basic problems due to

the study time constraint, but we have enhanced the assessment of

students' initial levels by utilizing the learning data. Thus, the com-

bined data has increased the robustness of the measures of students'

levels. Moving forward, we may extend the study span so that we can

include more assessment problems or integrate assessment and learn-

ing together.

Third, a further mediation analysis can shed more insights into

design features that promote domain mastery. For example, we

may examine other problem sequencing features based on estima-

tions of the moment of mastery (Huang et al., 2021) such as how

often a tutor still selected a basic problem after a student had

mastered component skills. Despite the estimation challenges

(Huang et al., 2015), we may investigate whether the difference in

hints for integrative skills contributes to the overall differences in

outcomes (Goldin et al., 2012). We may also examine other out-

come variables not examined yet.

Fourth, it is valuable to investigate the transfer of learning

between integrative skills and between focused and full integration

problems and think about instructional designs for promoting greater

learning transfer, such as providing hints targeting the specific miscon-

ception a student has about the skill integration of a set documented
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in our prior work (Huang, 2018), or requesting students' self-

explanation on how skills integrate. This investigation may also inform

whether we need to create more focused integration problems to bet-

ter prepare students for full or new integration problems.

Lastly, our study is still limited in the scope and the population

(e.g., we tested on beginning engineering students with 85% being

male), and thus it is important to see whether results replicate in other

programming topics and in other student populations, and whether

socio-demographic factors moderate the intervention effects. Moreover,

the investigation of skill integration can be connected to a broader range

of research, such as the knowledge integration perspective based on

investigations of science learning and instruction (Linn, 2005), for build-

ing theories of the learning and instruction of skill integration.

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1111/jcal.12757.

DATA AVAILABILITY STATEMENT

The anonymous data is accessible through DataShop with the link

upon request and submission of their intended usage: https://

pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=2324. All co-

authors had complete access to data supporting the manuscript.

ORCID

Yun Huang https://orcid.org/0000-0002-9993-7332

Christian Schunn https://orcid.org/0000-0003-3589-297X

REFERENCES

Akram, B., Azizolsoltani, H., Min, W., Wiebe, E. N., Navied, A., Mott, B. W.,

Boyer, K. E., & Lester, J. C. (2020). A data-driven approach to automat-

ically assessing concept-level CS competencies based on student pro-

grams. In Proceedings of the CSEDM Workshop at the 13th International

Conference on Educational Data Mining. CEUR Workshop Proceedings

(CEUR-WS.org).

Aleven, V., McLaren, B. M., Sewall, J., van Velsen, M., Popescu, O.,

Demi, S., Ringenberg, M., & Koedinger, K. R. (2016). Example-tracing

tutors: Intelligent tutor development for non-programmers. Interna-

tional Journal of Artificial Intelligence in Education, 26(1), 224–269.
Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2016).

Instruction based on adaptive learning technologies. In R. E. Mayer &

P. Alexander (Eds.), Handbook of research on learning and instruction

(pp. 522–560). Routledge.
Alibali, M. W., Stephens, A. C., Brown, A. N., Kao, Y. S., & Nathan, M. J.

(2014). Middle school students' conceptual understanding of equa-

tions: Evidence from writing story problems. International Journal of

Educational Psychology, 3(3), 235–264.
Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., &

Norman, M. K. (2010). How learning works: Seven research-based princi-

ples for smart teaching. John Wiley & Sons.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and

the LISP tutor. Cognitive Science, 13(4), 467–505.
Berges, M., & Hubwieser, P. (2015). Evaluation of source code with item

response theory. In Proceedings of the 2015 ACM Conference on Innova-

tion and Technology in Computer Science Education (pp. 51–56). ACM.

Brusilovsky, P. (1992). Intelligent tutor, environment and manual for intro-

ductory programming. Educational and Training Technology Interna-

tional, 29(1), 26–34.
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APPENDIX A: SKILLS AND PROBLEMS IN T3

TABLE A1 Component skills and exemplar problems in T3

ID Label Description Exemplar basic problem in T3

1 // Conduct a floor division, that is, a normal division

operation except that it returns the largest possible

integer.

a = 5 // 2

b = 4 // 2

c = 4 // 3

2 % Conduct the modulo operation, that is, returns the

remainder or signed remainder of a division, after

one number is divided by another.

In T3, problems involving ‘%’ also involve ‘if’.

x = 10

if x % 3 == 2:

print(x, end=")
else:

print("yes", end=")

3 += Conduct compound assignment without involving

loops.a
x = 10

i = 5

x = x + i

4 if Use an if statement (sometimes with elif ) to change

the values of some variables based on some

conditions.

x = 19

y = 5

z = 12

min = x

if min > y:

min = y

if min > z:

min = z

5 for Print numbers with a for loop where later iterations do

not require values from earlier iterations.

for i in range(1, 3):

print(i, end=")

6 a[i] Access list elements from a list that has been initialized

but has not been updated.

a = [3, 2, 7, 5]

i = 2

print(a[i], end=")
print(a[i+1], end=")

aThere were other kinds of compound assignment other than += in T3, such as *=. We used the label += to refer to all kinds of compound assignments

for simplicity. Also, Assignment statements like x = x + i an x + =i are both called compound assignment and were both taught in lectures before students

used the tutor.

TABLE A2 Integrative skills and exemplar problems in T3

ID Label Description Exemplar integrat. problem in T3

1 for & for The integration of a for loop with another for loop where one has to print

a sequence of numbers resulting from a nested for loop where the

outer loop iteration variable decides the number of inner loop

iterations.

for i in range(2, 4):

for j in range(i):

print(j, end=")
print(';', end=")

2 for & += The integration of a for loop and compound assignment where one has to

retrieve the updated variable from a previous iteration to conduct

operations and store the result in the same variable in a new iteration

in a for loop.

x = 0

for i in range(5, 7):

x = x + i

3 for & if The integration of a for loop and an if statement where one has to update

a variable correctly based on conditions and retrieve the updated

variable in the new iteration in a for loop.

In T3, problems involving ‘for & if’ also involve ‘a[i]’ (list).

lista = [10, 2, 30]

m = lista[0]

for i in range(1, len(lista)):

if lista[i] < m:

m = lista[i]

4 for & a[i] The integration of a for loop and list access where list elements are

repeatedly updated and used in latter iterations in a for loop.

b = [1, 0, 0]

for k in range(1, len(b)):

b[k] = b[k-1] + 2

5 a[i] & = The integration of a list and assignment where one has to write down the

updated list (not the initial list) with all its elements.

In T3, problems involving ‘for & a[i]’ also involve ‘a & =’, but cells for
values of specific list elements are labelled with the former, while cells

requiring filling in the whole list are labelled with the latter.

b = [1, 0, 0]

for k in range(1, len(b)):

b[k] = b[k-1] + 2
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F IGURE A1 A focused integration problem in T3 requiring the integrative skill ‘for & a[i]’. The displayed hint is used in the basic T3 in
comparison with Figure 3

F IGURE A2 The interface for an assessment problem, the first
integration problem. Each problem in the assessment displayed a
small program and asked students to write down the printed output
or the final value of the key variable without offering trace tables.

TABLE A3 Pre-assessment problems. All are basic problems. The
numbers denote the order of the occurrence of a problem in the
assessment

#1

a = 17 // 5

b = 8 // 2

print(a, end=',')

print(b, end=';')

#2

x = 15

j = 5

x = x + j

#3

x = 5

y = 18

z = 16

result = x

if result > y:

result = y

if result > z:

result = z

#4

for k in range(4):

print(k, end=")

#5

a = [6, 3, 5, 7]

i = 2

print(a[i-1], end=")
print(a[0], end=")
print(a[len(a)-1], end=")

#6

x = 11

if x % 5 == 2:

print(x, end=")
else:

print(x % 5, end=")
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APPENDIX B: PROBLEM SELECTION MECHANISM IN T3

1. Update a student's learner model based on the just submitted

problem.

2. Pick an unmastered skill according to following steps:

a. Retrieve the student's latest learner model, that is, the probabil-

ities of knowing each skill k, P(known)k.

b. Find unmastered skills, which are the skills with P(known)k ≤ m

(the pre-specified mastery threshold); if there are no unmas-

tered skills, stop practice.

c. Compute the probability of an unmastered skill i being selected,

P(select)i, as follows, so that stronger unmastered skills are more

likely to be remediated first:

P selectð Þi ¼
P knownð ÞiP
uP knownð Þu

,

where u � unmastered skills in the skill set of the current topic.

d. Pick a skill according to the multinomial distribution (of the skill

index) specified by the set of P(select)i, so that skills with higher

P(select)i values have higher probabilities to be picked. Then,

move to pick a problem.

3. Pick a problem focusing on remediating the chosen skill w:

a. Compute the focus score Fwj for each problem j requiring the

chosen skill w as follows, considering the relative strength of

the skill w compared with other skills and the total amount of

unlearned knowledge in the problem j:

Fwj ¼ P unknownð ÞwP
sP unknownð Þs

,

where s � skills of the current problem j.

b. Pick the problem with the highest Fwj as the final selected prob-

lem, so that a problem with the most focus on skill w will be

chosen.

TABLE A4 Post-assessment problems. The first six problems are
basic problems and the last five problems are integration problems.
The numbers denote the order of the occurrence of a problem in the
assessment

#1

m = 10 // 5

n = 19 // 3

print(m, end=',')

print(n, end=';')

#2

x = 15

j = 5

x = x + j

#3

a = 8

b = 10

c = 3

x = a

if x < b:

x = b

if x < c:

x = c

#4

for i in range(3, 5):

print(i, end=")

#5

a = [4, 2, 5, 7]

i = 3

print(a[i], end=")
print(a[i-2], end=")
print(a[0], end=")
print(a[len(a)-1],

end=")

#6

x = 13

if x % 5 == 2:

print(x, end=")
else:

print(x % 5, end=")

#7

a = [8, 3, 0, 0, 0]

for i in range(2,

len(a)):

a[i] = a[i-2] - 2

#8

a = [2, 3, 1, 1]

for k in range(2,

len(a)):

for j in range(k):

a[k] = a[k] * a[j]

#9

a = [11, 4, 6, 12, 20]

z = a[0]

y = a[0]

for i in range(1,

len(a)):

if z < a[i]:

z = a[i]

if y > a[i]:

y = a[i]

x = z - y

#10

a = [1, 3]

for i in range(len(a)):

for j in range(a[i]):

print(j, end=")
print(';', end=")

#11

a = [1, 5, 3, 8]

m = len(a) // 2

k = len(a) - 1

for i in range(m):

t = a[i]

a[i] = a[k-i]

a[k-i] = t
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APPENDIX C: STATISTICS OF PROBLEM TYPE TRANSITION

TABLE C1 Proportions of different types of problem transition in consecutive problem pairs of the two conditions. The mean (SD) over
students, reduction ratio and statistical test (only for integration problem ! basic problem) are reported

Cond.

Integration problem ! Basic problem (pb.)

Basic pb. ! Basic pb. Basic pb. ! Integ. pb. Integ. pb. ! Integ. pb.Proportion Difference Reduction ratio

Basic T3 0.24 (0.19) �0.08* 33% 0.35 (0.27) 0.24 (0.15) 0.17 (0.17)

Integ. T3 0.16 (0.12) 0.04 (0.08) 0.18 (0.19) 0.63 (0.25)

*p < 0.05.
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