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Abstract

Computational and mathematical models, in addition to providing a method for demonstrating qualitative predictions resulting from interacting mechanisms, provide quantitative predictions that can be used to discriminate between alternative models and uncover which aspects of a given theoretical framework require further elaboration. Unfortunately, there are no formal standards for how to evaluate the quantitative goodness-of-fit of models to data, either visually or numerically. As a result, there is considerable variability in methods used, with frequent selection of choices that misinform the reader. While there are some subtle and perhaps controversial issues involved in the evaluation of goodness-of-fit, there are many simple conventions that are quite uncontroversial and should be adopted now. In this paper, we review various kinds of visual display techniques and numerical measures of goodness-of-fit, setting new standards for the selection and use of such displays and measures.

Evaluating Goodness-of-Fit in Comparison of Models to Data

As theorizing in science becomes more complex, with the addition of multiple, interacting mechanisms potentially being applied to complex, possibly reactive input, it is increasingly necessary to have mathematical or computational instantiations of the theories to be able to determine whether the intuitive predictions derived from verbal theories actually hold. In other words, the instantiated models can serve as a sufficiency demonstration.

Executable models serve another important function, however, and that is one of providing precise quantitative predictions. Verbal theories provide qualitative predictions about the effects of certain variables; executable models (in addition to formally specifying underlying constructs) can be used to predict the size of the effects of variables, the relative size of the effects of different variables, the relative effects of the same variable across different dependent measures, and perhaps the precise absolute value of outcomes on particular dimensions. These quantitative predictions provide the researcher with another method for determining which model among alternative models provides the best account of the available data. They also provide the researcher with a method for determining which aspects of the data are not accounted for with a given model.

There are many subtle and controversial issues involved in how to use goodness-of-fit to evaluate models, which have lead some researchers to question whether goodness-of-fit measures should be used at all (Roberts & Pashler, 2000). However, quantitative predictions remain an important aspect of executable models, and goodness-of-fit measures in one form or another remain the via regia to evaluating these quantitative predictions.
  Moreover, the common complaints against goodness-of-fit measures focus on some poor (although common) practices in the use of goodness-of-fit, and thus do not invalidate the principle of using goodness-of-fit measures in general.

One central problem with the current use of goodness-of-fit measures is that there are no formal standards for their selection and use. In some research areas within psychology, there are a number of conventions for the selection of particular methods. However, these conventions are typically more sociological and historical than logical in origin. Moreover, many of these conventions have fundamental shortcomings (Roberts & Pashler, 2000), resulting in goodness-of-fit arguments that often range from uninformative to somewhat misleading to just plain wrong. The goal of this paper is to review alternative methods for evaluating goodness-of-fit and to recommend new standards for their selection and use. While there are some subtle and perhaps controversial issues involved in the evaluation of goodness-of-fit, there are many simple conventions that should be quite uncontroversial and should thus be adopted now in research.

The goodness-of-fit of a model to data is evaluated in two different ways: 1) through the use of visual presentations methods which allow for visual comparison of similarities and differences between model predictions and observed data; and 2) through the use of numerical measures which provide summary measures of the overall accuracy of the predictions. Correspondingly, this paper addresses visual presentation and numerical measures of goodness-of-fit.

The paper is divided into three sections. The first section contains a brief discussion of the common problems in goodness-of-fit issues. These problems are taken from a recent summary by Roberts and Pashler (2000). We briefly mention these problems as they motivate some of the issues in selecting visual and numerical measures of goodness-of-fit. Moreover, we also briefly mention simple methods for addressing these problems. The second section reviews and evaluates the advantages and disadvantages of different kinds of visual displays. The third section finally reviews and evaluates the advantages and disadvantages of different kinds of numerical measures of goodness-of-fit.

Common Problems in Goodness-of-Fit Measures

Free Parameters

The primary problem with using goodness-of-fit measures is that usually they do not take into account the number of free parameters in a model—with enough free parameters, any model can precisely match any dataset. The first solution is that one must always be very open about the number of free parameters. There are, however, some complex issues surrounding what counts as a free parameter: just quantitative parameters, symbolic elements like the number of production rules underlying a model’s behavior (Simon, 1992), only parameters that are systematically varied in a fit, or only parameters that were not kept constant over a broad range of data sets. In most cases scientists refer to a model parameter as “free” when its estimation is based on the data set that is being modeled. Nevertheless, it is uncontroversial to say that the free parameters in a model (however defined) should be openly discussed and that they play a clear role in evaluating the fit of a model, or the relative fit between two models (for examples see Anderson, Bothell, Lebiere, & Matessa, 1998; Taatgen & Wallach, in press).

Roberts and Pashler (2000) provide some additional suggestions for dealing with the free parameter issue. In particular, one can conduct sensitivity analyses to show how much the fit depends on the particular parameter values. Conducting such a sensitivity analysis also allows for a precise analysis of the implications of a model’s underlying theoretical principles and their dependence upon specific parameter settings.

There are several methods for modifying goodness-of-fit measures by computing a penalty against more complex models (Grünwald, 2001; Myung, 2000; Wasserman, 2000). These methods also help mitigate the free parameter problem. Many of these solutions are relatively complex, are not universally applicable, and are beyond the scope of this paper. They will be discussed further in the general discussion.

Noise in Data

The differences in various model fits can be meaningless if the predictions of both models lie within the noise limits of the data. For example, if data points being fit have 95% Confidence Intervals of 300 ms and two models are both always within 50 ms of the data points, then differential goodness-of-fits to the data between the models are not very meaningful. However, it is easy to determine whether this is the case in any given model fit. One should examine (and report) the variance in the data to make sure the fidelity of the fit to the data is not exceeding the fidelity of the data itself (Roberts & Pashler, 2000). This assessment is easily done by comparing measures of model goodness-of-fit to measures of data variability, and will be discussed in a later section.

Overfitting


Because data are often noisy, a model that fits a given dataset too well may generalize to other datasets less well than a model that fits this particular dataset less perfectly (Myung, 2000). In other words, the free parameters of the model are sometimes adjusted to account not only for the generalizable effects in the data but also the noise or nongeneralizable effects in the data. Generally, model overfitting is detected when the model is applied to other datasets or is tested on related phenomena (e.g., Richman, Staszewski, & Simon, 1995; Busemeyer & Wang, 2000). We make recommendations for goodness-of-fit measures that reduce overfitting problems. Most importantly, one should examine the variance in the data, as will be discussed in a later section.

Uninteresting Inflations of Goodness-of-Fit Values

A general rule-of-thumb in evaluating the fit of a model to data is that there should be significantly more data than free parameters (e.g., 10:1 or 5:1 depending on the domain). As the ratio of data points to free parameters approaches 1, it is obvious that overfitting is likely to occur. Yet, the number of data points being fit is not always the best factor to consider—some data are easy to fit quantitatively because of simplifying features in the data. For example, if all the data points lie exactly on a straight line, it is easy to obtain a perfect fit for a hundred thousand data points with a simple linear function with two degrees of freedom. One can easily imagine other factors inflating the goodness-of-fit. For example, if there is a flat-line condition in which a variable has no effect, then it is easy to predict the effect of that variable in the flat-line condition with just one free parameter for an arbitrary number of points. The more general complaint is that the number of data points to be fit is only a very rough estimate of the true difficulty in fitting the data; data complexity in an information-theoretic sense is the true underlying factor that should be taken into account when assessing the quality of fit relative to the number of free parameters in the model. However, data complexity cannot be measured in a theory-neutral fashion in the way that data points can be simply counted—data complexity must always be defined relative to a basis or set of primitives.

The consequence of this problem is not that goodness-of-fits are meaningless. Instead, the consequence is simply that one cannot apply absolute standards in assessing the quality of a particular goodness-of-fit value. For example, an r2 of .92 may or may not be impressive, depending on the situation. This relative standard is similar to the relative standard across sciences for alpha-levels in inferential statistics. The standard for a high quality fit should depend upon the noise levels in the data, the approximate complexity of the effects, the opposing or complementary nature of the effects being modeled, etc.

Moreover, goodness-of-fit measures should not be treated as alpha-levels. That is, one cannot argue that simply because a certain degree-of-fit level has been obtained, a “correct” model has been found. On the one hand, there are always other experiments, other ways of measuring the data, and other models that could be built (Moore, 1956). A model taken as “correct” in the light of available empirical data could easily fail on the next dataset. On the other hand, a model should not be thrown out simply because it does not exceed some arbitrarily defined threshold for goodness-of-fits. Datasets can later prove unreplicable, a victim of experimental confounds, or a mixture of qualitatively distinct effects. Moreover, models have heuristic and summative value. They provide a detailed summary of the current understanding of a phenomenon or domain. Models also provide specific suggestions for conducting new experiments to obtain data to elucidate the problems (areas of misfit or components with empirical justification) with current theoretical accounts. Each goodness-of-fit should be compared to those obtained by previous models in the domain; the previous work sets the standards. When no previous models exist, then even a relatively weak fit to the data is better than no explanation of the data at all. 

Visual Displays of Goodness-of-Fit

The remainder of the paper presents an elaboration on types of measures of fit, common circumstances that produce problematic interpretations, and how they can be avoided. This section covers visual displays of goodness-of-fit. The next section covers numerical measures of fit. Note that both visual and numerical information provide important, non-overlapping information. Visual displays are useful for a rough estimate of the degree of fit and for indicating where the fits are most problematic. Visual displays are also useful for diagnosing a variety of types of problems (e.g., systematic biases in model predictions). However, the human visual system is not particularly accurate in assessing small to moderate differences in the fits of model to data. Our visual system is also subject to many visual illusions that can produce systematic distortions in the visual estimates of the quality of a fit. 

The suggestions presented here are not based on direct empirical research of how people are persuaded and fooled by various displays and measures. Rather, these suggestions are based on 1) a simple but powerful human factors principle—more actions required to extract information produces worse performance (Trafton & Trickett, 2001; Trafton, Trickett, & Mintz, 2001; Wickens, 1984), 2) a logical decomposition of the information contained in displays and measures, and 3) examples drawn from current, although not universally-adopted practice that address the common problems listed earlier with using goodness-of-fit measures.
There are five important dimensions along which the display methods differ and are important for selecting the best display method for a given situation. The first dimension is whether the display method highlights how well the model captures the qualitative trends in the data. Some display methods obscure the qualitative trends in the model and data. If it is difficult to see the qualitative trend in the model or empirical data, then it will be difficult to compare the two. Other display methods force the reader to rely on memory rather than using simple visual comparisons. Relying on human memory is less accurate than using simple visual comparisons. Moreover, relying on human memory for trends leaves the reader more open to being biased by textual descriptions of what trends are important.

The second dimension is whether the display method allows one to easily assess the accuracy of the model’s exact point predictions. Some methods allow for direct point-to-point visual comparison, whereas others methods require the use of memory for exact locations or large eye-movements to compare data points. Graphs with many data points will clearly exceed working memory limitations. Because saccades are naturally object-centered (Palmer, 1999), it is difficult to visually compare absolute locations of points across saccades without multiple additional saccades to the y-axis value of each point.

The third dimension is whether the display method is appropriate for situations in which the model’s performance is measured in arbitrary units that do not have a fixed mapping on the human dependent measure. For example, many computational models of cognition make predictions in terms of activation values. Although some modeling frameworks have a fixed method for mapping activation units onto human dependent measures like accuracy or reaction time, most models do not. This produces a new arbitrary mapping between model activation values to human performance data for every new graph. This arbitrary scaling essentially introduces two additional free parameters for every comparison of model to data, which makes it impossible to assess the accuracy of exact point predictions. In these cases, display methods that emphasize point-by-point correspondence mislead the reader. 

The fourth dimension is whether the display method is appropriate for categorical x-axis (independent variable) displays. Some display methods (e.g., line graphs) give the appearance of an interval or ratio scale to the variable on the x-axis, and such methods are not appropriate for categorical variables.

The fifth dimension is whether the display method is appropriate for evaluating the fit of models to complex data patterns, especially when the model predictions have significant deviations from the data. In those cases, methods that rely on superimposition of model performance and data produce very difficult-to-read graphs.

Overlay Scatter Plots and Overlay Line Graphs 

The best method for assessing the accuracy of point predictions is to use overlay scatter plots (see Figure 1) and overlay line graphs (see Figure 2) 
. In these graphical forms, the model and data are overlaid on the same graph. Because the relatively small size of point types used in scatterplots do not typically create strong Gestalt connections by themselves, scatterplots do not emphasize the qualitative trends in the data or model particularly well, whereas line graphs strongly emphasize trends. In overlay graphs, it is important for the model and data to be on the same scales. If the model’s performance is measured in arbitrary units, then overlay graphs are inappropriate. Line graphs are not appropriate for categorical x-axis variables. Both overlay and line graphs are not optimal for displays of complex data patterns not fit particularly well by the model because the graphs become very difficult to read.

As an additional consideration, overlay graphs may become too cluttered if error bars are added to them. Also, for line graphs, the usual convention is to have data indicated with closed icons and solid lines and to have model performance indicated in open icons and dotted lines.

Interleaved Bar Graphs

Another common visual comparison technique is to use interleaved bar graphs (see Figure 3). Interleaved bar graphs tend to obscure the qualitative trends in the data because the natural comparison is between the adjacent data and model items. Without color, either the model or the data bars tend to fade to the background. Exact point correspondence is relatively easy to evaluate with interleaved bars, although not as easy as with overlay graphs because the corresponding points are adjacent rather than on top of one another. Interleaved bar graphs are also not appropriate for model performance plotted on arbitrary scales because they mislead the reader. However, interleaved bar graphs are the best choice for categorical x-axis plots.

 Interleaved bar graphs are better for displaying error bars without obscuring points, especially when there are multiple dimensions plotted simultaneously (i.e., when there would already be multiple data lines) or when the fit to data is poor in the context of complex data patterns.

Side-by-Side Graphs

A very common technique used to hide poor quality of fits to data is to use side-by-side graphs in which data are plotted in one graph and model performance are plotted on a nearby graph (see Figure 4). Another form of this visual technique involves placing a small inset version of the data in a corner of the graph displaying the model performance. These display techniques are generally undesirably because they make it more difficult to assess fit to relative trend magnitudes or to exact location. However, these graphs may be preferable when only the fit to qualitative trends is relevant or when the model performance is plotted on an arbitrary scale. Also, side-by-side graphs may be desirable for very complex graphs involving many factors and the model performance is only being compared at the qualitative level (because the quantitative fit is poor). In this circumstance, an overlay or interleaved graph would be almost impossible to read and the qualitative-only degree of fit should be obvious.

Distant Graphs (across figures or pages)

The weakest method for visual displays of models fit to data is to have model graphs displayed on entirely different pages from data graphs. It is very difficult for the reader to compare models to data on either qualitative trends or the accuracy of point predictions with this technique because the comparison process is subject to visual and memory biases. The only possible good reason for using this technique is when three conditions are simultaneously met: 1) if the conditions for which side-by-side graphs can be used are met (i.e., complex data with very poor quantitative fit); and 2) multiple models are being fit to the same data; and 3) figure space is at a very high premium (i.e., it would not be possible to display side-by-side graphs for each different model). Even in this relatively obscure case (in which all of those 3 conditions are met), one would prefer to have the data re-presented as an inset in a corner of the model performance graph if at all possible.

Table 1 provides an overview of the advantages and disadvantages of different visual display methods. No one visual display method is best for all circumstances, although one method is not best for any circumstance. The table makes it clear which display methods should be selected or avoided for a given circumstance.

General Comments on Visual Displays of Model Fits

Several other points should be made about visual displays of model fits. First, visual displays are generally misleading if the data and theory could be presented on similar scales (i.e., the model’s scale is not in arbitrary units) and they are not presented on similar scales. For example, the reader is likely to be confused or mislead if the data is presented on a 0 – 100 scale and the model is presented on a 0 – 50 scale.

Second, we recommend that error bars be displayed on the graphs of data being fit whenever possible. The function of the error bars in this context is to give the reader a direct measure of the noise levels surrounding each point representing a measure of central tendency. This information is especially important in evaluating the significance of deviations between model and data, and whether differences in model fits are all within the noise levels of the data. We recommend that 95% Confidence Intervals (95%CIs)
 be used as the error bar of choice in almost all settings. These error bars indicate the confidence in knowledge about the exact locations of data points. Standard error bars are another good choice—they provide information about the uncertainty in the data, but require the reader to multiply them by a fixed amount to assess significant differences between model and data. Standard deviation bars are not appropriate because they are a measure of data variability (which is a measure of the population distribution) rather than data uncertainty (which is a function of both population distribution and sample size).
The one exception is for side-by-side graphs plotting data from within-subjects manipulations in the case where one does not want to evaluate the accuracy of exact point predictions (e.g., in arbitrary scale data). In this one case, within-subjects standard error bars or within-subjects 95% CI bars are more appropriate (Estes, 1997; Loftus & Masson, 1994). The within-subjects standard error is calculated as the RMSE (root mean square error) divided by the square root of n, where RMSE is the square root of the mean squared error term from the ANOVA table for the effect being plotted, and n is the number of data values contributing to each plotted mean. The within-subjects 95%CI multiplies this within-subjects standard error by the appropriate statistical criterion value (e.g., the alpha = .05 t-value). These within-subject error bars are more appropriate because they more accurately reflect the confidence of knowledge about the trend effects in the data—between subject CIs and standard error (SE) bars do not measure effect variability for within-subjects data.

Numerical Measures of Goodness-of-Fit

Numerical measures of goodness-of-fit can be divided into two types of measures. Some measures of goodness-of-fit are measures of deviation from exact data location and others are measures of how well the trend relative magnitudes are captured. Consider the graphs in Figure 5 that plot four different ways in which a model could match or mismatch data. In Panels A and B, the model captures the trends in the data, whereas in Panels C and D, the model does not capture the trends in the data. In Panels A and C, the model predicts the correct exact location of the data reasonably well, whereas in Panels B and D, the model does not predict the correct exact location of the data.

Any given quantitative measure captures only one of these two types of information. Ideally, assuming data and model predictions that are truly quantitative, one wants a measure of each type. We recommend a combination of r2 for trend relative magnitude and RMSD (root mean squared deviation) or RMSSD (root mean squared scaled deviation) for deviation from exact data location. Table 2 provides an overview of the advantages and disadvantages of different numerical measures of goodness-of-fit. Generally, we recommend noting the numerical measures used directly in the visual displays of model fits (as in Figures 1 – 6).

Badness-of-Fit Inferential Tests

2 frequency difference test (2-Freq). Before describing the true numerical goodness-of-fit measures, we will first discuss a class of inferential statistical tests that are commonly applied to models under the name of goodness-of-fit. The most common form is the 2 goodness-of-fit test, but other forms exist as well (e.g., binomial goodness-of-fit, Komogorov-Smirnov test). Here, the modeler compares a distribution of frequency of responses that were obtained in the data with the expected distribution predicted by the model. Note that this only works for comparing distributions of discrete events. For non-categorical dependent variables (e.g., response time), one must count the frequency of responses falling into different bins of ranges (e.g., number of responses between 0s and 0.5s, 0.5s and 1.0s, 1.0s and 1.5s, etc). The 2 computation is sometimes applied directly to continuous values, but this application (which we call 2-Mean) cannot be done as an inferential statistical test, and will be discussed later.

The goal of these inferential tests to establish whether there is sufficient evidence in the data to rule out the given model. For example, a given model predicts a certain distribution of responses. The data follow a slightly different distribution. These goodness-of-fit statistical tests examine whether the probability that the model could have produced the observed slightly different distribution by chance is less than some alpha level. If the probability is below the alpha level, the model is rejected. If the probability is above the alpha level, then one essentially has no conclusive result other than possibly accepting the null hypothesis. In other words, these tests are essentially badness-of-fit tests. They can show whether a model has a bad fit, but they cannot show that a model has a good fit.

For several reasons, these badness-of-fit tests should be avoided for assessing the fit of theoretical models to data, for several reasons. First, they only provide binary information (fits/does not fit). Second, they provide positive evidence only by accepting the null hypothesis. Third, they reward researchers for sloppy research (low Ns in the data and high-within condition variance) because with increased noise the modelers are less likely to receive a "does not fit" outcome. Fourth, models have heuristic and summative value. Even though a model does not capture all the non-noise variance in the data, it may capture many important aspects. If a model is currently the only model of a phenomenon or best model, then one should not discard it as completely false because one aspect of the data is not yet captured.

Some modelers may use these badness-of-fit tests as a heuristic in directing the model development process (rather than a rhetorical device in publications). The argument is that these badness-of-fit tests show the researcher which models are approximately “good enough,” or direct attention to aspects of the model that need more work. However, the measures of relative trend magnitude and deviation from exact location (described in the next sections) also give the researcher a ballpark sense of how well the data is being fit and direct attention to aspects of the model that need more work.

Measures of How Well Relative Trend Magnitudes are Captured

Much of psychological theorizing and analysis is a science of relative direction (above/below, increasing/decreasing) and relative magnitude (small effect/large effect, interactions). For this reason, it is quite valuable to have a summative measure of how well a model captures the relative direction of effects and relative magnitude of effects. In quantitative theories, the relative magnitude predictions usually are quite precise, and thus ideally one wants quantitative measures that assess how well the quantitative aspects of the relative magnitude predictions are met. Note, however, that when the focus is on relative magnitudes, a model can appear to fit the data quite well and yet completely miss the exact locations of the data (e.g., Panel B of Figure 5).

Pearson r and r2. There are two common measures of how well relative trend magnitudes are captured: r (Pearson correlation coefficient) and r2. These measures of relative trend are appropriate when the dependent measure is an interval or ratio scale (e.g., frequency counts, reaction time, proportions). r and r2 measures have very similar properties as measures of how well relative trend magnitudes are captured. However, r2 is slightly preferable. First, it has a more straightforward semantic interpretation—the proportion of variance accounted for. Second, it is a more stringent criterion that does a better job of separating models with strong correlations with the data.

The primary value of r and r2 is that they provide a sense of the overall quantitative variance in relative effect sizes accounted for in a direct way. This quantitative measurement is similar to effect size computations of experimental effects that are a gold standard in many areas of psychology (Cohen, 1988). In some cases, there are no alternative models and it is good to have some measure on a domain independent scale (e.g., 0 to 1) that indicates how well the current model is doing.

Spearman’s rank-order correlation (rho). An alternative measure for measuring fit to relative trend is Spearman’s rank-order correlation. rho is appropriate for examining how well the model captures the relative trends when the dependent measure is not an interval or ratio scale (e.g., Likert ratings). In those cases, a difference of a given size on one part of the scale is not necessarily the same psychological as the same sized difference on another part of the scale. The Pearson correlation would treat them as the same in meaning, penalizing differences between model and data that are purely in terms of the size of effects. By contrast, a Spearman correlation only cares about the relative ordering of data points, and thus is unaffected by changes in effect sizes at different points on the dependent measure scale. Thus, for non-interval scales, in which a given difference between points on the scale changes in meaning across the scale, this insensitivity to effect sizes is an important feature.

rho is also useful when the model dependent measure is only loosely related to the data dependent measure, and thus exact correspondence in effect sizes is not a meaningful prediction of the model. For example, sometimes the number of epochs (exposures to the training set) required to train a connectionist model to learn a given concept is sometimes compared to the age of acquisition of the concept in children. Here, training epochs is only loosely correlated with age of acquisition (because children receive differential amount of exposure to most concepts at different ages), and thus the model is not making precise quantitative predictions for age of acquisition per se and should not be compared to the data for more than rank-order consistency with the data.

Kendall’s Tau (Kendall, 1938) is another measure of rank-order correlation. However, there is no particular reason to prefer Tau over rho, and rho is more commonly used. Thus, for ease of comparison across research projects, we recommend keeping things simple and always using rho instead of Tau.

It should be noted that rho is not a very stringent criterion in that it is easier to produce high rho values than high r values. Thus, rho is even less meaningful than r for small numbers of data points and rho requires even larger numbers of data points than r to be able to differentiate among models that produce relatively good fits to the data.

Issues for Measures of Fit to Relative Trend. One must be careful, however, about examining the characteristics of the data in using relative trend goodness-of-fit measures. The first issue is amount of noise in the data, as was discussed earlier. Inherently noisy data is going to produce worse fits. Thus, for some datasets, it may be impossible to produce consistently very high fits to the data without adding ad hoc parameters. This implies that the standard for what counts as a good fit to data must be relative to the stability of the data itself.

The second issue is the relative size of effects in the data. When the effect of one variable (or small subset of variables) in the data is an order of magnitude larger than all the other variable effect sizes, then a model may be able to obtain a very high overall correlations even though it only correctly predicts the direction of that one effect (or set of effects) and the relative size (but not direction) of the other effects (relative to the one large effect). In other words, in such a case, one can completely mispredict the relative direction of the other effects and their relative sizes with respect to one another, and yet still obtain a high overall r2. Consider the data and model fits presented in Figure 6. In panel A, the model fits the large effect in the data (zero delay versus other delays) but completely mispredicts the direction of the smaller effect in the data (the small decrease across increasing delays). Yet, the model is able to produce a high r2, because the match to the larger effect overwhelms the mismatch to the smaller effect. As a comparison case, panel B shows that an equally close match to each point that correctly predicts both small and large trends does not produce a significantly higher r2.

It is very easy to diagnose situations in which this problem can occur using any type of effect size information. For example, one can use the relative slopes of linear effects. One can use the relative differences in condition means for binary variable effects. One can use sum of squares of each effect for calculating effect sizes in ANOVA tables for mixed or more complex effects. When the ratio of effect sizes is large (e.g., 5 to 1 or larger), then one should realize that the quality of fit to the direction of the smaller effects can be completely missed, although the fit to the approximate size of the effect is being correctly measured. The advantage of using ANOVA table effect size ratios for diagnosis is that this information is usually readily available to the modeler, the reviewers, and the readers.

In those cases where there are dominant effect sizes and there are enough data points for each dimension, one should compute r2 separately for large effects and small effects. Note, however, that the parameter values should be kept constant across the various component fits. The caveat is that there has to be at least 3 points in each separate fit for the correlation measure to be meaningful. With only two points, the correlation is necessarily equal to 1.000. Indeed, the more points in one graph the more meaningful and convincing.

Measures of Deviation from Exact Location


The second type of measure of goodness-of-fit that should be presented involves the deviation from the exact location of the data. As discussed above, a model can fit the trends of a dataset quite well, but completely miss the exact locations of the data. This result can be achieved by having the effects in the model by a constant multiple of the effects in the data (e.g., every effect is twice as large). Alternatively, the result can be achieved by having each data point different from the model predictions by a constant value (e.g., every point is 400 ms higher in the model than in the data). In other words, either the slope or the constant are off in the regression function that is fitting the model to the data. Ideally, one would want the model to not only capture the relative trends in the data, but also the exact absolute location of the data points. Hitting the numbers exactly can be especially difficult/important when there are multiple interconnected dependent measures. For example, it is sometimes easy to fit a given reaction time profile and a given latency profile, but not fit them both given a common set of parameter values.

In some cases, the exact locations of the data are arbitrary because of the type of dependent measure being used. For example, some scales (like ratings obtained in a cross-modal perceptual matching scale) have arbitrary anchor points on the scale. By contrast, some scales, like error rates and reaction time, have clear, non-arbitrary, domain-independent meaning. Another problem is when the absolute locations on the dependent measure are somewhat arbitrary with respect to the model because the performance of the data and the model is not being measured on the same dimension. For example, when models are fit to time data, there is often an arbitrary scaling function converting model units (e.g., activation or number of cycles or number of learning epochs) to time units (seconds, minutes, hours, years, etc). In either of these cases of arbitrary scales in the data or in the model, measures of deviation from exact location are not informative.

More recently, some modeling frameworks have included into their frameworks a fixed scaling framework such that exact predictions can be made for dependent measures like reaction time. For example, the Soar architecture (Newell, 1990) includes a standard time of 50ms for each production cycle that all Soar models must use. EPIC (Kieras & Meyer, 1997) and ACT-R (Anderson & Lebiere, 1998) have developed comparable conventions. These conventions, formally embedded in the theories, severely limit the flexibility of scaling the model data to arbitrarily fit reaction time functions.

Another problem is when the dependent measure is not an interval scale (e.g., ordinal scales like Likert ratings). In these cases, averages of quantitative deviations from exact location are not meaningful because the meaning of a given difference varies across the scale. Thus, measures of deviation from exact location are not meaningful for non-interval dependent measures.

Assuming that one has a situation in which the model makes clear, exact location predictions and the dependent measure is an interval scale, there are several different measures of deviation from exact location that can be used to evaluate the accuracy of the model's predictions. We will now discuss several common measures. Note, however, that none of these measures indicate whether the model is correctly predicting the direction and relative magnitude of the effects in the data. That is, one model can have a better absolute location fit than another model but a worse relative trend fit (e.g., comparing the fit in panels B and C in Figure 5). Of course, in the extreme case, when the model fits the data exactly (i.e., zero location deviation), logically it must also fit the trends perfectly as well. However, most psychological data is rarely so noise-free that one can expect to fit data perfectly without worrying about overfitting issues.

2 mean difference test (2-Mean). There is another application of the 2 calculation that cannot be used as a statistical inferential test, but can be used as a descriptive measure  (given a ratio scale with a fixed point of zero). Here the deviation between model and data on each condition mean is squared and divided by the model value (i.e., 
[image: image1.wmf]), and these scaled deviations are summed across condition means. This measure of goodness-of-fit is disastrous for most applications. First, there is a temptation to (incorrectly) compare the values to the 2 distribution, presumably with number of degrees of freedom equal to the number of condition means. However, this comparison is impossible because the 2 distribution assumes a count of discrete event that is scale independent, and 2-Mean is very scale dependent. For example, changing the scale of measurement from s to ms multiplies the 2-Mean value by 1000. Second, the 2-Mean computation weights deviations as a function of the size of the model prediction values. The rationale is that variability tends to increases with mean (i.e., conditions with larger means tend to have large variability). However, variability rarely goes up as a linear function of mean, which is the weighting function used by the 2-Mean calculation. Moreover, some dependent measures do not have even a monotonic relationship means and variability (e.g., proportion or percentage scales). Third, when measures approach zero, model deviations are grossly inflated. For example, a deviation in a proportion correct measure between .02 vs .01 is treated as 100 times as important as a deviation between .98 vs. .99.

Percentage of points within 95% CI of data (Pw95CI). One simple measure of degree of fit to the absolute location of the data is the percentage of model predictions that lie within the 95% confidence interval of each corresponding data point. The advantage of this method is that it takes into account the variability of the data. However, it also has much of the flavor of the badness-of-fit test, despite providing more than just binary information about the fit of the model overall. That is, it is providing a series of badness-of-fit tests with each 95% CI, and a desirable outcome is to accept the null hypothesis: there is no evidence in the data to reject the model. Moreover, this measure does not provide information regarding how close the model fits each data point. Model predictions just barely outside a confidence interval are treated the same as model predictions that are 4 standard deviations away from the data.

Mean Squared Deviation (MSD) or Root Mean Squared Deviation (RMSD). The most popular measures of goodness-of-fit to exact location are the Mean Squared Deviation and its square root (Root Mean Squared Deviation). That is, one computes the mean of the squared deviation between each model prediction and the corresponding data point:
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and 
[image: image3.wmf]
where, mi is the model mean for each point i, di  is the data mean for each point i, and k is the number of points i being compared. The consequence of squaring the deviations is that more emphasis is placed on points that do not fit well than on points that do fit well (i.e., a prediction that is two units off the data produces a penalty four times as large as a point that is one unit off the data). Because of the noise found in almost all behavioral data, this result is desirable because it reduces the tendency to overfit the data. The applicability of RMSD to a broad range of situations and familiarity to the general research community makes it one of the measures of choice for measuring deviation from exact location.

Mean Absolute Deviation (MAD). A conceptually easier to understand measure of goodness-of-fit to exact location is Mean Absolute Deviation. The MAD is the mean of the absolute value of the deviation between each model prediction and its corresponding data point:


[image: image4.wmf]
where, mi is the model mean for each point i, di  is the data mean for each point i, and k is the number points i being compared. One advantage of this measure is that is provides a value that is very easy to understand, much like r2. For example, a model fit with a MAD of 1.5 seconds means that the model's predictions were off from the data on average by 1.5 seconds. Unlike MSE and RMS, MAD places equal weighting on all deviations. When the data is not relatively noise-free (as is the case in most behavioral data), then this is a disadvantage, both because of overfitting issues and because one is being penalized for deviations that are often not real.

Note that because MAD involves the absolute value of the deviation, this measure does not differentiate between noisy fits and systematically biased fits (i.e., off above and below the data versus only below the data). Measures of systematic bias are presented in a later section.

Mean Scaled Absolute Deviation (MSAD) and Root Mean Squared Scaled Deviation (RMSSD). We propose two new methods for measuring goodness-of-fit to exact location called Mean Scaled Absolute Deviation and Root Mean Squared Scaled Deviation. They are very similar to MAD and RMSD except that each deviation is scaled by the standard error of the mean of the data. For example, for MSAD, the absolute value of each model-to-data deviation is divided by the standard error for each data mean (i.e., the standard deviation of each mean divided by the square root of the number of data values contributing to each mean). This type of scaling is similar to the scaling done with standardized residuals in statistical regression and structural equation modeling. There, deviations between the statistical model and the data (i.e., the residuals) are divided by the standard error of the data. The rationale and base computation for MSAD and RMSSD is the same, but MSAD takes the mean absolute value of these standardized residuals and RMSSD takes the square root of the mean squared value of these standardized residuals. MSAD is defined as follows:
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where mi is the model mean for each point i, di  is the data mean for each point i, si is the standard deviation for each data mean i, ni is the number of data values contributing to each data mean di, and k is the number points i. By contrast, RMSSD is defined as:
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where mi is the model mean for each point i, di  is the data mean for each point i, si is the standard deviation for each data mean i, ni is the number of data values contributing to each data mean di, and k is the number points i.

The standard error of the mean (
[image: image7.wmf]) combines variability information with amount of data contributing to each point and is used in common statistical tests (t-tests, confidence intervals, etc). This scaling has three advantages. First, it shows how close the models are getting to the true resolution of the data. The reader need not always be given both SEc and RMSD to evaluate the quality of a fit—these measures combine both pieces of information. Second, this scaling more heavily penalizes misfits to data points that are precisely known than to data points whose locations are imprecisely known—the weighting function is directly the degree of imprecision. Third, like r2, MSAD and RMSSD are scale invariant; that is, regardless of whether the data is measured in terms of errors, reaction time, or percent of a certain choice, a MSAD value of 1.5 has the same meaning: on average, the model is 1.5 standard errors off from the data.  This scale invariance makes overall evaluation of the quality of the fit to the data quite easy. Of course, in order to compute these values, one needs to have access to variance information about the data, which may not be available for fits to older data sets.

In the case of within-subjects data, one might argue that a different scaling factor should be used, namely the within-subject standard error rather than the between-subject standard error. However, we find this context-dependent definition of the scaling factor unnecessary and inappropriate. First, the within-subjects standard error measures uncertainty in the difference between conditions, not the uncertainty in the absolute location of points. The whole point of measures of deviation from exact location is that the absolute location of the data points is important. Thus, it makes no sense to use the uncertainty in cell differences to scale the deviations from exact locations. Second, if the absolute location of data points is not meaningful, as within-subject designs sometimes assume (because theoretically-irrelevant participant individual differences drive absolute performance levels), the fitting the exact locations is not particularly meaningful. For example, in a Likert rating task, it is typically uninteresting that participants rate stimuli a 4 out of 7 on average. Instead, it is more important that one condition has a mean rating of 1.2 higher than another condition. Third, the use of the within-subject standard error assumes equal levels of uncertainty across cells. One of the important contributions of the cell-specific scaling of deviations is that different means often have different uncertainties. Thus, the usual, between-subjects standard error term should be used in all circumstances as the scaling factor—unless absolute values are truly irrelevant, in which case no measure of deviation from absolute location should be used. 

One potential problem with MSAD and RMSSD is that a lower n will produce a lower MSAD and RMSSD, thus apparently rewarding fits to low n studies. However, including 95%CI bars in the graphical presentations of the data will make clear the low fidelity of the data, thereby reducing the persuasiveness of the model fits. Moreover, low n studies also produce highly noisy data, which is usually much harder to fit, especially in fits to a series of points on a single dimension (as in Figures 1-6) or in fits to multiple data sets. Thus, MSAD and RMSSD do not clearly reward low n studies in the same way that badness-of-fit measures do.

Another potential problem with MSAD and RMSSD is the case of data points with zero variance (e.g., zero errors in a condition when fitting error data) because the denominator in the scaling becomes zero and the deviation is then difficult to include in an average. The solution is to use pooled standard errors (from the data set as a whole) for the zero variance data points, under the assumption that the true population variance for those cells is not actually zero.

As with MAD and RMSD, MSAD and RMSSD have the same relative advantages and disadvantages. That is, MSAD does not overweight large deviations but can lead to overfitting problems, whereas RMSSD does overweight large deviations but reduces overfitting problems. Thus we generally recommend RMSSD for most behavioral data. In choosing between MSAD and RMSSD, we suggest the following rule-of-thumb: when MSAD drops below 2, then RMSSD values should be used to avoid overfitting.
 If the MSAD or RMSSD drop below 1, then the model has reached the fidelity of data.

Table 3 presents the calculations of MD, MAD, MSAD, Pw95CI, RMSD, and RMSSD for the example model and data values plotted in Figures 1 – 4.
 Note that Pw95CI can be calculated by comparing the MSAD values to the appropriate statistical cutoff value. For cell ns of 30 or greater, a cutoff value of 1.96 can be used. For cell ns less than 30, the appropriate t value should be used. 

Measures of Systematic Deviation from Exact Location

There is another class of measures that are a special case of the measures of deviation from exact location. In some situations, it is helpful to know whether model predictions differ from the exact location of the data points in a systematic fashion, rather than simply mismatching randomly above and below the data points. For example, are the model predictions systematically higher than the data? Measures of systematic deviation provide more detailed information than the regular measures of deviation from exact location. This more detailed information may be useful in diagnosing likely sources of mismatch between model and data.

Mean Deviation (MD). The most common measure of systematic deviation is mean deviation. It is simply the mean of the differences between model values and data values. The convention is to subtract data from model values, such that positive values indicate predictions that are too high and negative values indicate predictions that are too low. Note that this measure is different from mean absolute deviation and can produce radically different values. For example, one could have a very large MAD and yet have a very small MD. However, a large MD necessarily implies a large MAD. Thus, MD cannot be used as a substitute for MAD (or other deviation from exact location measures). Because the deviations are not squared, the MD measure does not reduce overfitting problems.

Linear Regression Coefficients (LRCs 0 and 1). Another measure of systematic deviation from exact location involves the regression coefficients in the linear regression between model predictions and corresponding data points (Schunn, Reder, Nhouyvanisvong, Richards, & Stroffolino, 1997). This linear regression produces two regression parameters: one for the intercept (0) and for the slope (1). If there is no systematic deviation between model and data, then 0 should be equal to 0 and the 1 should be equal to 1. If 0 differs from 0 significantly, then the model is systematically overpredicting or underpredicting the data.
 For example, a model might make predictions that are 400 ms too slow in all conditions. If 1 differs from 1 significantly, then model is systematically over or underpredicting the size of effects in the data. For example, a model might predict the correct trends in the data, but always predict effects that are half the size of the observed effects.

LRCs allow one to include an inferential statistical element to evaluating the deviations in model fits to data. The formula for the confidence interval of 0 is:


[image: image8.wmf]
where b0 is the estimate of 0, k is the number of data points being fit, MSE is the mean squared error in the regression (i.e., mean squared deviation between data points and the regression line), t is the t-statistic with appropriate  level and degrees of freedom, mi are the model predictions, and 
[image: image9.wmf] is the mean value of all model predictions.

The formula for the confidence interval of 1 is:
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where b1 is the estimate of 1, and the other values are defined in the preceding paragraph.

By looking at the 95%CI intervals on these coefficients, one can evaluate whether there is statistical evidence for systematic deviations (e.g., if the 95%CI for 0 includes 0). One can also evaluate whether there is great confidence in these decisions about systematic deviations by looking at the size of the confidence intervals. If the confidence intervals are small, then one is more confident in the observed existence (or absence) of systematic deviations in the model predictions.

Note that this inferential aspect of LRCs is in essence a badness-of-fit test, and has some of the dangers of such a test (e.g., rewarding sloppy research practice, and providing positive evidence through accepting the null hypothesis). However, LRCs provide more information than standard badness-of-fit tests. First, LRCs provide information about how the model predictions differ from the data, rather than just that they differ from the data. Second, by presenting 95%CIs for the LRCs rather than simply the outcomes of t-tests on the LRCs  (against 0 or 1), the power of the significance test is revealed, thereby punishing sloppy research practice.

Summary

As can be seen in Table 2, each of the measures has its relative advantages and disadvantages. In order to present a complete and accurate assessment of the model fit in typically occurring situations, we recommend providing a combination of r2 and RMSSD (or rho alone in the case of non-interval scale or arbitrary model scale dependent measures). These measures, in combination, provide information about fit to relative trend magnitudes and deviation from exact location, are scale invariant, reward good data practice, reduce overfitting, and take into account the variability in the data.

General Discussion 

Caveats

This paper has reviewed the advantages and disadvantages of various visual and numerical methods for assessing the goodness-of-fit of a model to data. We would like to mention a few caveats to our arguments: First, it is important to note that there are other important dimensions in evaluating the worth of a model or for selecting among alternative models, of which the quantitative fit to data is only one dimension. These other dimensions include the ability of a model to generalize to new datasets (Busemeyer & Wang, 2000; Forster, 2000), the relative complexity of models (Myung, 2000), and the falsifiability of a given model (Bamber & van Santen, 2000).

Second, the value of a good quantitative fit depends in part on the value of the data to which it is being fit. If the dependent measure or the level of aggregation is pragmatically and theoretically uninteresting, then good fits will be much less uninteresting. That is, one should not fit the model to aspects of the data that one would not bother to report in presentations of the data alone, and the model should be fit to aspects of the data that would always be reported in presentations of the data alone. A quantitative fit should be made to the theoretically interesting and controversial components of data, and the model’s fidelity to each phenomenon should be evaluated separately. For example, if the shape of the curve in the data is theoretically crucial rather than the precise location of particular points, then the model is best compared to the data in terms of some measure of curvature in the same way that one might compare the model’s variability predictions against the variability observed in the data.

Third, not all data is measured quantitatively (e.g., verbal protocol analysis), and models fit to those data are typically not evaluated using the measures described here (although quantitative measures can be derived from protocol data, see Schunn & Anderson, 1998). In those qualitative data situations, there exist other methods for comparing the model output to the data (Fu, in press; Ritter & Larkin, 1994).

Fourth, there exist other measures for assessing quantitative goodness-of-fit. Our review focused on choices that are relatively easy to compute, thereby ensuring that the additional work required to report appropriate goodness-of-fit measures is not a deterrent. There are also other approaches to assessing goodness-of-fit, such as the Bayesian approach, in which one computes the probability of the data given the model (Wasserman, 2000). The Bayesian approach is particularly powerful, but has less general applicability because of the complex calculations required that are not always currently solvable.
Fifth, while models are typically fit to condition means of data, our discussion generalizes beyond this. Just as one fits a model to condition means, one can compare other population parameters (variance, skewedness, kurtosis) observed in the model to those same parameters observed in the data. For example, one can assess the fit of the model’s standard deviations in each condition to the data’s standard deviation in each condition using the same procedures applied to assessing fits for the condition means. See Schunn and Wallach (2001) for a discussion of the special issues involved in fitting variability data.

Combined Goodness-of-Fit and Model Complexity Measures

Our paper has focused on measures of goodness-of-fit per se. There have been several measures proposed for formalizing the tradeoff between goodness-of-fit and model complexity into a single model selection equation. Examples include Minimum Description Length (Grünwald, 2001), the Akaike information criterion (AIC; Akaike, 1973; Bozdogan, 2000), the Bayesian information criterion (BIC; Schwarz, 1978; Wasserman, 2000), the information theoretic measure of complexity (ICOMP; Bozdogan, 1990, 2000), and RMSDk (see Forster, 2000). Each of these measures combines a measure of the goodness of fit of the model to the data with a penalty that is a function of the complexity of the model. Thus, a better fit of one model over another to a given data set is a reason to prefer that better fitting model only if the difference in fit is greater than the difference in the complexity values. A detailed discussion of these fit-complexity tradeoff measures is beyond the scope of this paper, but there are several things to note about these measures.
 First, they are all measures of deviation from absolute location, and thus are appropriate only when deviation from absolute location is meaningful.

Second, these fit-complexity tradeoff measures do not work well for computational models that do not have a convenient closed mathematical form for making predictions. With closed-form equations, it is possible to have a general method for measuring model complexity than can be effectively combined with measures of fit to produce an overall selection criterion. However, in the absence of closed-form equations, it is difficult to determine the exact relative advantage conveyed by each additional free parameter, and thus it is difficult to determine the exact tradeoff between additional free parameters and improved fit in an overall selection criterion. 

Third, the mathematics involved in computing some of these measures is far from trivial, especially when the models have many components or do not have convenient closed mathematical forms. Whether or not these fit-complexity tradeoff measures are in theory better measures to use, applying them may be well beyond the abilities of most psychologists for many of the complex models being currently tested. 

Fourth, almost all of these measures take into account the variability in the data in assessing the goodness-of-fit to data, and thus have the advantage of this important feature as well. However, the way in which these other methods include variability information is complex and thus not as easily interpreted.

Conclusion


More than three decades ago, (Fridja, 1967, p. 65) stated that there is “hardly any methodology existing” in comparing the predictions of computational models to empirical data: “We are largely left to our subjective impressions of what we consider good or bad correspondence.” In the early days of mathematical psychology, Atkinson (1961, p.  46) wrote: “At this point it would be nice if we could refer to a list of criteria and a decision rule which would evaluate the model and tell us whether this specific development or similar mathematical models are of genuine value in analyzing the phenomena of interest to psychologists. Of course, such decision procedures do not exist.” Since that point, several evaluation procedures have emerged, of which goodness-of-fit measures are the most popular. Unfortunately, the procedures to use with goodness-of-fit have not yet been formally specified, requiring researchers and students to make many ad hoc decisions that are often made poorly. We have provided a much more detailed specification of the procedures that should be used with goodness-of-fit measures for evaluating models, focusing on aspects that are not yet standardized, are unlikely to be controversial, and are easy to implement.
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Table 1.

Advantages and disadvantages of different visual goodness-of-fit display methods on the dimensions of 1) ease of comparing qualitative trends in model and data, 2) ease of assessing accuracy of the model’s point predictions, 3) appropriateness for arbitrary scale of model in dependent measure, 4) appropriateness for categorical variables along the x-axis, and 5) ability to graph poor model fits to complex data.

	Visual Methods
	Qualitative trends
	Accuracy of point predictions
	Arbitrary model scale
	Categorical x-axis
	Complex & poor fit

	Overlay Scatter
	-
	++
	--
	+
	-

	Overlay Line
	+
	++
	--
	-
	-

	Interleaved Bar
	-
	+
	--
	++
	+

	Side-by-Side
	++
	-
	++
	0
	++

	Distant
	--
	--
	+
	0
	+


Note. ++=best, +=good, 0=irrelevant, -=poor, --=terrible

Table 2

Advantages and disadvantages of different visual goodness-of-fit numerical methods (grouped by type) on the dimensions of 1) scale invariance, 2) rewarding good data collection practice (large N, low noise), 3) reducing overfitting problems, 4) functioning when the performance of the model and the data are measured in different units, 5) appropriateness for non-interval scale or arbitrary model dependent measures, and 6) making use of data uncertainty information.

	Measure
	Scale invariant
	Reward good data practice
	Reduces overfitting
	Model in diff. units
	Non-interval non-arbitrary
	Use data uncertainty

	Badness of fit
	
	
	
	
	

	2-Freq
	+
	-
	-
	-
	-
	-

	Relative trend
	
	
	
	
	

	r and r2
	+
	+
	-
	+
	-
	-

	rho
	+
	+
	-
	+
	+
	-

	Location deviation
	
	
	
	
	

	2-Mean
	-
	+
	+
	-
	-
	-

	Pw95CI
	+
	-
	+
	-
	-
	+

	RMSD
	-
	+
	+
	-
	-
	-

	MAD
	-
	+
	-
	-
	-
	-

	RMSSD
	+
	+
	+
	-
	-
	+

	MSAD
	+
	+
	-
	-
	-
	+

	Systematic location deviation
	
	
	
	

	MD
	-
	+
	-
	-
	-
	-

	LRCs
	-
	+
	-
	-
	-
	-


Table 3

Goodness-of-fit calculations for the example data and model presented in Figures 1 – 4.

	data
	model
	data SE
	data - model
	| data – model|
	|data-model| data SE
	 is SAD < 1.96
	(data - model)2
	(data - model)2 (data SE)2

	0.511
	0.532
	0.013
	0.021
	0.021
	1.639
	1
	0.0004524
	2.68706

	0.501
	0.518
	0.013
	0.017
	0.017
	1.352
	1
	0.0003009
	1.82898

	0.459
	0.478
	0.015
	0.020
	0.020
	1.274
	1
	0.0003802
	1.62228

	0.408
	0.427
	0.020
	0.019
	0.09
	0.939
	1
	0.0003508
	0.88115

	0.376
	0.383
	0.018
	0.007
	0.007
	0.368
	1
	0.0000448
	0.13510

	0.355
	0.354
	0.021
	-0.001
	0.001
	0.065
	1
	0.0000018
	0.00429

	0.478
	0.441
	0.017
	-0.037
	0.037
	2.231
	0
	0.0013576
	4.97582

	0.363
	0.321
	0.016
	-0.042
	0.042
	2.684
	0
	0.0017479
	7.20547

	0.463
	0.417
	0.016
	-0.046
	0.046
	2.937
	0
	0.0020808
	8.62865

	0.440
	0.415
	0.016
	-0.025
	0.025
	1.592
	1
	0.0006154
	2.53344

	0.374
	0.283
	0.017
	-0.097
	0.097
	5.466
	0
	0.0083652
	29.88006

	0.495
	0.401
	0.015
	-0.094
	0.094
	6.386
	0
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Footnotes

Figure Captions

Figure 1: Example for an Overlay Scatter Plot (with 95% CI on human data).

Figure 2: Example for an Overlay Line Graph (with 95% CI on human data).

Figure 3: Example for an Interleaved Bar Graph (with 95% CI on human data).

Figure 4: Example for Side-by-Side Graphs (with 95% CI on human data).

Figure 5. A) Good fit to data trends and absolute location. B) Good fit to data trends but poor fit to absolute location. C) Poor fit to data trends but good fit to absolute location. D) Poor fit to data trends and poor fit to absolute location. Error bars indicate 95%CI confidence intervals.

Figure 6. A) Example of a model than completely mispredicts the smaller of two trends in a dataset but has a high r2. B) Example of a model that correctly predicts both larger and smaller trends but does not have a much higher r2 than in A. Error bars represent 95% confidence intervals.
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Figure 1: Example for an Overlay Scatter Plot (with 95% CI on human data).
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Figure 2: Example for an Overlay Line Graph (with 95% CI on human data).
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Figure 3: Example for an Interleaved Bar Graph (with 95% CI on human data).
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Figure 4: Example for Side-by-Side Graphs (with 95% CI on human data).
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Figure 5. A) Good fit to data trends and absolute location. B) Good fit to data trends but poor fit to absolute location. C) Poor fit to data trends but good fit to absolute location. D) Poor fit to data trends and poor fit to absolute location. Error bars indicate 95%CI confidence intervals.


[image: image20.wmf]

 EMBED Excel.Chart.8 \s [image: image21.wmf]
Figure 6. A) Example of a model than completely mispredicts the smaller of two trends in a dataset but has a high r2. B) Example of a model that correctly predicts both larger and smaller trends but does not have a much higher r2 than in A. Error bars represent 95% confidence intervals.













� We use the term “model prediction” in the generic sense—to refer to the best fitting values from the model. The term postdiction would be more appropriate for any model values involving free parameters that were modified to maximize the fit to the data.


� The reaction time data shown was collected in an unpublished sequence learning experiment in which participants had to respond with a discriminative response to visuospatial sequences in a speeded, compatible-response-mapping, serial reaction-time task. Participants were exposed to systematic sequences (S) or random sequences (R) in each block for a total of 12 blocks. The model data was generated by applying a sequence-learning model � ADDIN ENRfu ��(Lebiere & Wallach, 2000)� on the new empirical data without changing the parameter settings.


� For simplicity, we use the 95% cutoff value for inferential statistics (e.g., in selecting 95%CIs). The same arguments and general procedures could be used with other cutoff values.


� With large ns, and scaled deviation less than 1.96 is within the 95%CI of the data. Thus, a MSAD less than 2 is likely to have a majority of points within the 95%CIs of the data, and thus overfitting is a strong possibility. However, more exact decision thresholds for when to use MSAD versus RMSSD should be determined empirically from a large number of cross-validation experiments.


�An example Microsoft Excel© file that computes these values automatically as well as plot the data appropriately can be found at http://www.lrdc.pitt.edu/schunn/gof/ModelFitEx.xls.


� One must be careful in interpreting the meaning of a non-zero intercept when the slope also differs significant from 1. There may be no overall bias if the intercept is less than zero and the slope is greater than 1, or if the intercept is greater than zero and the slope is less than 1.


� See Forster (2000) and Myung (2000) for an evaluation of the relative advantages and disadvantages of each of these measures.
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