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Abstract: We propose that causal networks representing canonical scientific models can be a 
useful analytic tool for specifying how student knowledge resources are aligned with canonical 
science as well as the ways that they need to be recoordinated in learning science. Using causal 
networks to analyze student-generated science explanations, we highlight three results that 
illustrate the ways in which student thinking can simultaneously align with and break from correct 
scientific reasoning. This initial study highlights the potential benefits of causal networks for 
specifying the role of student resources in learning science. 

An analytic approach to characterize student resources for scientific reasoning 
Understanding the processes by which people change their conceptual knowledge from naïve beliefs to expert 
knowledge is a longstanding goal of the cognitive and learning sciences. From a knowledge-in-pieces perspective, 
novice intuitions are resources for, rather than barriers to, learning canonical scientific concepts (Hammer et al., 
2005; Smith et al., 1993). Although incorrect thinking can stem from the inappropriate use of these knowledge 
resources, learning is, in part, characterized by improved coordination and use of these productive existing resources 
in canonically correct ways.  
 We propose that Bayesian causal networks (Pearl, 2000) are analytic tools that can specify the role of 
student resources in learning science. Causal networks represent cause-effect relationships through a graphical 
representation of nodes and links. For example, the causal network representing projectile motion (Figure 1) shows 
the relations between seven key physical factors. In this study, we compare student reasoning to a causal network 
representing the canonical physical model. In doing so, we identify three ways in which student resources can be 
productively aligned with canonical physics while still needing to be recoordinated in learning science.  

 

  
Figure 1. A sample physics problem, taken from FlipItPhysics (Gladding et al., 2015), and the causal network 

representing the underlying causal relations.  

Method  
One-hour interviews were conducted with 16 undergraduate students, who were either enrolled in or had completed 
at least one college physics course, at a large research university. On two focal multiple-choice physics questions 
(Two Boats Q1 and Q2), students were asked to: (i) for each choice (A, B, or C), generate the most convincing 
explanations for why someone might choose it and (ii) rate how likely they thought each choice was correct on a 
scale from 0 (“it’s not likely at all”) to 100 (“it’s definitely correct”).  Two Boats Q2 differs from Two Boats Q1 



(Figure 1) in that the two projectiles do not have the same initial speed but instead reach the same peak height. The 
generate task was designed to elicit a range of student resources and inferences from those resources. The rate task 
indicated which explanations students found most plausible. Through multiple rounds of iterative coding, the first 
and second author developed and refined a coding scheme, coded all student explanations, and identified 
explanations that were well-modeled by the canonical causal network for projectile motion.  

Result #1: correct explanations given were not viewed as the most plausible 
One correct explanation relies on a subset of the causal network in Figure 1, that we denote by the shorthand  
ymax ← viy  → tin air. This sub-network has a common cause structure, where viy is the common cause of two other 
variables, ymax and tin air. Because these two effects have the same sole cause, they are correlated. For Q1, this means 
that, since ymax is smaller for projectile 2, it also has a smaller tin air, so (B) target 2 will be hit first. Although seven 
students generated this explanation, only one of these students rated (B) as the most likely choice. For Q2, the two 
projectiles have the same ymax, so they have the same tin air, and (C) they are hit at the same time. Three students gave 
this correct explanation, but none of these students rated (C) as the most likely choice. Although these students could 
generate the correct explanations, they largely did not believe in them. 

Result #2: ignoring one factor in a common effect structure 
One class of error ignored one factor in a common effect structure, where two causes influence a single effect. Four 
incorrect explanations fell within this class (Table 1). These errors show how student reasoning can rely on 
canonically valid factors, demonstrating students’ productive resources for learning physics. They also show what 
ignored factors need to be integrated into student reasoning, demonstrating exactly how student thinking needs to be 
recoordinated for learning science.  
 
Table 1: Incorrect explanations that ignore one causal factor in a common effect structure. 
 

Incorrect Explanation Common effect 
structure 

Factor 
considered  

Factor 
ignored 

Q1 # given  
(# most likely) 

Q2 # given  
(# most likely) 

(A) Target 1; it is closer 
to the battleship 

tin air → Δx ← vx tin air → Δx Δx ← vx 14 (0) 12 (9) 

(B) Target 2; projectile 
2 has a lower q 

vi → tin air ← q   tin air ← q vi → tin air [correct 
answer in Q1] 

2 (1) 

(B) Target 2; projectile 
2 has a greater vi 

vi → tin air ← q   vi → tin air tin air ← q [initial speeds 
equal in Q1] 

12 (3) 

(C) Same time; they 
have the same vi. 

vi → tin air ← q   vi → tin air tin air ← q 5 (4) [speeds not 
equal in Q2] 

Result #3: invalid compensation arguments in a common effect structure 
Another class of error highlighted by the causal network analysis is an invalid compensation argument: identifying 
changes in two factors, but incorrectly concluding that these changes exactly offset each other so that a third factor 
was unchanged. For Q2, one student gave a speed-distance compensation argument aligned with the common effect 
structure tin air → Δx ← vx to argue for (C) They are hit at the same time. They reasoned that although Δx is greater 
for projectile 2, this greater distance is offset entirely by projectile 2’s greater vx. Six other students gave a speed-
distance compensation argument that had the same structure but did not explicitly refer to the horizontal component 
of speed or distance. These compensation arguments again illustrate recognition of valid scientific relationships while 
also showing how students need to recoordinate their use of these relationships for correct scientific reasoning.  
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