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A B S T R A C T

Time-series graphs are ubiquitous in scientific and popular communications and in mobile health tracking apps.
We studied if people can accurately judge whether there is a relation between the two variables in a time-series
graph, which is especially challenging if the variables exhibit temporal trends. We found that, for the most part,
participants were able to discriminate positive vs. negative relations even when there were strong temporal
trends; however, when there is a positive causal relation but opposing temporal trends (one variable increases
and the other decreases over time), people have difficulty inferring the positive causal relation. Further, we
found that a simple dynamic presentation can ameliorate this challenge. The present finding sheds light on when
people can and cannot accurately learn causal relations from time-series data and how to present graphs to aid
interpretability.

1. Introduction

Time-series graphs are commonly used in academic journals,
popular media, and also for personal decision making such as in fit-
ness and health trackers. When two variables are presented, often the
goal is to learn whether and how the two variables are related, for
example, tax rates and economic growth (Krugman, 2019) or vacci-
nation and outbreaks (Fig. 1 in Vyse et al., 2002). One question in-
volves determining whether one variable is the cause whereas the
other is the effect (Rottman & Keil, 2012; Soo & Rottman, 2014).
Another question, which we focus on, is whether there is a positive or
negative relation between the two variables (Redelmeier & Tversky,
1996; Soo & Rottman, 2018).

1.1. Time-series data with temporal trends

A major challenge when judging whether two variables are posi-
tively or negatively related is that the variables can undergo temporal
trends, obscuring the true underlying causal relationship (Yule, 1926).
Temporal trends are very common in time-series situations, and con-
trolling for them is critical for personal decision making based on
formal or informal “single-subject” research designs (e.g., Sidman,
1960). Consider two examples in which the correlation between X and
Y (rXY) leads to incorrect inferences about causation. In the first, a
patient takes increasing amounts of medication to cope with increasing

pain, which results in a positive correlation even though from day to
day an increase in the medication causes a decrease in pain. In this
example, disease progression is a confound that obscures the negative
causal influence. This sort of relationship is represented in the top left
causal structure in Fig. 1. Over time (t) the cause (X) and the effect (Y)
both increase, but from one day to the next, as X increases, Y decreases,
and vice versa.
Consider a second example, the infamous correlation between ice

cream sales and drownings. From winter to summer, ice cream sales (X)
and drowning deaths (Y) increase, though there is no direct causal re-
lation. The top-right “monotonic trend” in Fig. 1 depicts this sort of
causal relation. The temporal trends in both variables can make it falsely
appear as if there is a strong causal relationship. However, in a multiple
regression predicting Y, X is not significant after controlling for t.
Although we hesitate to say that it is possible to definitively uncover

the strength of a causal relation from observational time-series data, we
can say that causal structures produce characteristic patterns in time-
series data (Fig. 1). A positive causal relation produces “positive tran-
sitions”; X and Y tend to increase or decrease together. A negative
causal relation produces “negative transition”; X and Y tend to change
in opposite directions from one observation to the next. This fact is
revealed by two approaches used in time-series analysis to control for
temporal trends that are closely related (Shumway & Stoffer, 2011).
One approach is to run a regression predicting Y from X, with time as an
additional covariate. Another method is to compute change scores (ΔX
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and ΔY), and run a correlation between the change scores (rΔXΔY)1 .

1.2. Prior research, motivation, and hypotheses

Soo and Rottman (2018) tested whether people are able to correctly
infer whether a causal relation is positive or negative despite strong
temporal trends in X and Y. On average, participants were often able to
infer the correct relations; their judgments were more strongly influ-
enced by whether the transitions implied positive or negative causation
than the correlation between X and Y. However, Soo and Rottman
tested this using shapes that changed in size or opacity in a trial-by-trial
format, which mimics learning about events in one’s own life.
In the current study, we tested whether people can accurately un-

cover whether a relation is positive or negative from time-series graphs,
which is also a critical skill given the prevalence of time-series graphs in
science and in the news. We predicted that a static time-series graph
would make people attend less to the changes in X and Y and focus

more on the overall correlation between X and Y (e.g., noticing that
when X is high Y is low, and vice versa, in the negative correlation
positive causation example in Fig. 1), making it harder to accurately
infer the causal relation between X and Y. However, this hypothesis is
not a foregone conclusion; people might naturally scan the graph from
left to right, noticing changes in X and Y, possibly enabling accurate
inferences.
Furthermore, to understand the mechanism that drives potential

differences between formats, we added a hybrid of the trial-by-trial and
static graphs, a dynamic time-series graph in which the data are re-
vealed gradually. On the one hand, if participants in the static graph
condition already scan the graph from left to right and notice the
changes at each trial, then presumably in both of the graph conditions
they will perform similarly to the trial-by-trial condition. On the other
hand, if participants just notice the overall correlation in the static
graph condition, they might perform similarly in the dynamic graph
condition (the fully revealed dynamic graph looks identical to the static
graph), or the sequential revealing of the data in the dynamic graph
condition might help people notice the changes in X and Y on each trial
in which case they would perform similar to the trial-by-trial condition.
There is one other important difference between this study and our

prior research (Soo & Rottman, 2018). We added a fourth monotonic

Fig. 1. Causal structures depicting relationships between X, Y, and time t, corresponding time-series graphs of example datasets, and the averages of the correlation
and causation metrics of stimuli within each condition. In the causal graphs, + (–) means a positive (negative) causal relation and ++ means a very strong positive
causal relation. The node for time is dashed to represent the fact that it is not literally time that causes X and Y, but this node represents an unobserved variable that
causes X and Y, and that also changes over time.

1 In Soo and Rottman (2018), we called this strategy rΔContinuous, and con-
trasted it against another very similar strategy called rΔBinary in which the
changes were simply coded as +1 for increase and -1 for decrease. For this
paper, we did not compare the two, so we just call it rΔXΔY.
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trend condition (Fig. 1), in which one of the variables increases or de-
creases smoothly over time. The monotonic trend condition tests
whether people can infer the absence of a causal relation, which has
been challenging for people with other sorts of time-series data
(Redelmeier & Tversky, 1996).

2. Method

2.1. Participants

Participants were recruited on Amazon Mechanical Turk in two
batches of 151 and 152.2 The experiment lasted 7–10minutes and
participants were paid $1.40.

2.2. Cover story

Participants judged how the dosage of a drug (X) influenced the size of
a microorganism (Y). Each dataset consisted of 20 observations, framed as
20 sequential days. After viewing the entire dataset, participants estimated
the causal strength of the drug on a scale from 8 (“high levels of the drug
strongly cause the microorganism to increase in size”) to -8 (“high levels of
the drug strongly cause the microorganism to decrease in size”), with zero
indicating there was no causal relationship. Each scenario was framed as
involving a different drug and microorganism.

2.3. Design

The experiment used a 3 (presentation format: trial-by-trial, dynamic
graph, or static graph; between-subjects) × 2 (correlation: positive vs.
negative; within-subjects) × 5 (causation: negative transitions, random
order, positive transitions, monotonic trend in X, or monotonic trend in
Y; within-subjects) design. We ran two batches of participants because
we only realized after the first that we could create the monotonic trend
conditions. We report the study with the data aggregated for concision.

2.4. Stimuli

2.4.1. Manipulation of correlation and causation
We created time-series data that implied different degrees of cor-

relation and causation (see Fig. 1 for examples). We first created 20
datasets, and then manipulated the order of the observations for the
different conditions. Thus, while at a high level we manipulated the
causation (positive or negative) implied by the dataset, we accom-
plished this by manipulating the order of the observations.

All datasets consisted of 20 observations of a cause (X) and effect
(Y), each of which could take on values between 0 and 100. We gen-
erated 20 datasets with rXY= .70 ± .01 using the R package ecodist.
For the negative correlation (rXY = -.70) condition, we flipped the
values of X around the midpoint.
We manipulated the causation implied by the datasets by varying the

order of the observations. Table 1 shows the mean and standard deviation
of the measures of correlation and causation for the datasets across all 10
conditions. Table 1 reports two ways of trying to infer the strength of the
causal relation by controlling for temporal trends: rΔXΔY and regression
with time as a linear covariate (Shumway & Stoffer, 2011). These two are
closely related. For the analyses, we used rΔXΔY for consistency with prior
research (Soo & Rottman, 2018) and because some of the conditions have
high standard deviations in the regression coefficients due to multi-
collinearity. Using regression does not meaningfully change the results.
In the random condition, the 20 trials were in a random order, re-

sulting in datasets in which the measures of correlation and causation
are related. In the positive correlation random order condition, usually
when X increased Y increased, and when X decreased Y decreased
(positive transitions). In the negative correlation random order condi-
tion, most of the transitions were negative.
In the positive transitions condition, the trials were ordered so that

increases in X were always accompanied by increases in Y, resulting in
extremely strong positive causation. In the negative transitions condi-
tion, the trials were ordered so that X and Y always changed in opposite
directions, resulting in extremely strong negative causation.
Finally, there were two monotonic trend conditions; either X or Y

always increased or decreased across the 20 trials.3 When creating the
datasets, those that that had repeated values of X or Y (e.g., X was
exactly 56 on two trials) were slightly modified (e.g., the value of X on
one trial was changed to 58) so that the trials could be ordered
monotonically. This change in the dataset was made in all the condi-
tions. According to both metrics of causation (Table 1), these datasets
imply minimal if any causal influence of X on Y.
The trials in each dataset were presented forwards or in reverse (i.e.

from 1 to 20 or 20-1) randomly for each scenario. For example, in the
negative-transitions positive-correlation condition in Fig. 1, both vari-
ables increase over time. Reversing the order means that both variables
decrease over time, but the stimuli still consisted of negative transitions
and positive correlation.

2.4.2. Manipulation of presentation format
In the trial-by-trial condition, states of the cause and effect were

mapped to gauges (Fig. 2A), similar to Experiments 2 and 3 from Soo

Table 1
Mean and (SD) of Correlation and Causation Stimuli Properties.

Condition
(causation)

Degree of causation Condition (correlation)

Positive correlation
rXY= .70 (0.01)

Negative correlation
rXY = -.70 (0.01)

rΔXΔY Regression rΔXΔY Regression

Negative transitions Strongly negative −.93 (0.03) −.79 (0.18) −.96 (0.02) −.75 (0.13)
Random Order Depends on correlation .72 (0.08) .70 (0.03) −.72 (0.08) −.70 (0.03)
Positive transitions Strongly positive .96 (0.02) .75 (0.13) .93 (0.03) .79 (0.18)
Monotonic trend in X Close to zero −.02 (0.19) .04 (0.87)* .02 (0.19) −.04 (0.87)*
Monotonic trend in Y Close to zero .13 (0.29) .01 (0.03) −.13 (0.29) −.01 (0.03)

Note. For Regression, the reported numbers are the standardized regression weights for X on Y after controlling for time. *The high standard deviation for these two
cases is due to the fact that when there is a monotonic trend in X, X and t are highly correlated. The multicollinearity can cause very large positive or negative
standardized beta weights even though the effects are not significant. Six of the 20 datasets had very large standardized regression weights.

2 We recruited 150 but a few participants completed the experiment without
claiming payment.

3 The monotonic trend in Y condition looks very similar to the monotonic
trend in X condition in Fig. 1 but is not depicted for brevity.
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and Rottman (2018)b). Participants clicked a button to reveal the ob-
servation for the next “day”, at which point the two gauges would slide
up or down to display the data for the next observation. Participants
waited at least two seconds before advancing to the next trial.
The static graph condition (Fig. 2C) presented the data in a line

graph. The graph was kept on the screen for 40 s, at which point the
graph disappeared and participants made their causal judgment.
The dynamic graph condition (Fig. 2B), was identical to the static

graph condition, except that the observations were revealed sequen-
tially from left to right. Fig. 2B shows what a participant might see on
trial seven. Participants clicked a button to reveal each new observa-
tion, and waited at least two seconds before clicking again.

2.4.3. Attention verification task
The trial-by-trial and dynamic graph conditions required partici-

pants to watch the screen and click to advance to the next observation.
In contrast, it was possible that participants in the static graph condi-
tion to look away from the screen during the 40 s because they do not
need to click to advance. To prevent this, we included an attention
verification task in all three conditions. In the trial-by-trial and dynamic
graph conditions, somewhere between trials 15–18, a five-letter word
appeared for three seconds. Participants had to report the word prior to
making their causal judgment. In the static graph condition, the word
occurred between 25–35 seconds after the start of the scenario.

3. Results

Stimuli, data, and analysis scripts are available at https://osf.io/
gyvdw/.
Participants correctly recalled the word at high rates in the trial-by-

trial (97%), dynamic graph (96%), and static graph (94%) conditions.
Thus, we did not exclude any of the data in our analyses.
The means of participants’ causal judgments are displayed in Fig. 3.

The conditions have been positioned along the x-axis according to the
average level of causation (Table 1). Perfect performance – judging
causal strength entirely based on rΔXΔY – would appear as a diagonal
line. In Fig. 3, we collapsed the two monotonic trend conditions within
the positive correlation condition and the two within the negative
correlation condition because they are highly similar in causation.
In the analyses, we used the actual degree of correlation and cau-

sation (measured with rXY and rΔXΔY, respectively) for each individual
dataset as predictors. Effect sizes are presented with RNSJ

2 for random-
effects models (Jaeger, Edwards, Das, & Sen, 2017) and are also con-
verted into Cohen’s d.
We first ran an overall regression predicting participants’ causal

judgments from each dataset’s correlation and causation values,
the presentation format, and the interactions, with by-participant
random slopes for correlation and causation and their interaction for
repeated measures. Most important for our predictions, there was a
significant interaction between causation and presentation format, F(2,

Fig. 2. Stimuli shown to participants in different presentation formats. In (A) and (B), observations are revealed sequentially after participants clicked “Next day’s
observation”. In (C), participants view the entire graph for 40 s.

Fig. 3. Means of participants’ causal strength judgments by condition. Error bars represent standard errors.
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300.95)= 11.02, p< .0014, and there were also other two and three-
way interactions.
Because of the two and three-way interactions, for clarity and

concision we skip next to reporting regressions for each of the three
formats (Table 2). Each regression included by-subject random inter-
cepts and slopes for correlation, causation, and their interaction. The
effect of correlation is significant in all three conditions, but smallest in
the dynamic graph condition. As expected, the effect of causation is
significant in all three conditions, but smallest in the static graph
condition, which implies that participants performed worst in this
condition. In addition, there was an interaction between correlation
and causation in in the dynamic and static graph conditions, but not in
the trial-by-trial condition.
Finally, we statistically compared the three presentation formats.

First, the influence of correlation was weaker in the dynamic graph
format compared to both the trial-by-trial (b= -0.86 [0.22, 1.50], p=
.01, RNSJ

2 = .01, d = 0.16), and static graph formats (b = -1.42 [0.65,
2.18], p < .001, RNSJ

2 = .01, d= 0.22). There was no difference in the
influence of correlation between the trial-by-trial and static graph for-
mats (p =.13).
Second, the primary hypothesis was that presentation format would

moderate the influence of causation. As predicted, participants’ judg-
ments in the static graph format were less accurate (less sensitive to
causation) than in the trial-by-trial format (b = -1.45 [-2.15, -0.76],
p < .001, RNSJ

2 = .02, d = 0.28) and the dynamic graph format (b =
-1.67 [-2.49, -0.84], p < .001, RNSJ

2 = .02, d = 0.29). There was no
difference between the trial-by-trial and dynamic graph formats (p
=.57).
Third, we tested whether presentation format moderates the inter-

action between correlation and causation. On inspection of Fig. 3, in the
trial-by-trial condition, the lines representing the effect of causation in
the negative and positive correlation conditions are parallel meaning
that the influence of causation is the same whether there is a positive
correlation or a negative correlation. However, in the static and dy-
namic graph conditions, the influence of causation is weaker (flatter) in
the negative correlation condition. In fact, the interaction between
correlation and causation was weaker in the trial-by-trial compared to
the dynamic graph format (b = -0.74 [-1.38, -0.10], p= .025,
RNSJ

2 = .002, d = 0.09), and the static graph format (b = -1.03 [-1.71,
-0.35], p= .003, RNSJ

2 = .005, d = 0.14). There was no difference
between the dynamic and static graph formats (p = .45).
This finding appears to be largely driven by the positive-transition

negative-correlation condition, especially in the static graph format. In
this condition, participants actually inferred a negative causal re-
lationship even though all the transitions were positive. The positive-
transition negative-correlation condition was lower in the static graph
than the dynamic graph condition, t(201)= 5.44, p< .001, d = .76,
and the trial-by-trial condition, t(199)= 4.72, p< .001, d = .67, and

there was no difference between the dynamic graph and trial-by-trial
conditions, p= .31.
We suspect that the reason why the judgments were so inaccurately

low in the positive-transition negative-correlation static graph condi-
tion was that the trends in the variables go in opposite directions so the
two lines overlap only briefly (see Fig. 1). This brief overlap makes it
hard to notice that the cause and the effect change in the same direction
from one trial to the next (positive transitions). Instead, the over-
whelming impression of the graph is that the variables trend in opposite
directions.
This is an interesting finding because it is not that people are always

bad when correlation and causation conflict in static graphs. When the
trends move in the same direction (e.g., in the positive-correlation but
negative-transition condition), it is fairly easy to notice how the cause
and effect move in opposite directions, and indeed on average partici-
pants inferred a slightly negative causal relation.

4. General discussion

Given how much time-series data is collected not only for policy
decisions (e.g., the economy or business) but also for personal decisions
(e.g., health tracking smartphone apps), it is critical to understand if
people are able to draw accurate causal inferences, and how to help
them do so. Prior research has investigated how to improve interpret-
ability of time series graphs (Javed, McDonnel, & Elmqvist, 2010;
Wang, Han, Zhu, Deussen, & Chen, 2018), though has not focused on
how people infer causal relations from time series graphs.
We found that people are fairly accurate at inferring causal relations,

which is welcome news. However, we found one situation in which people
have considerably difficulty – when one variable exhibits an increasing
trend, the other a decreasing trend, and there is a positive causal relation.
This is likely because the lines barely overlap, making the relations be-
tween short-scale transitions in the two lines hard to notice. When the
time-series graph was dynamically revealed, participants performed quite
well even in the problematic case. This dynamic presentation could be
easily used in electronic media (e.g., television, internet).

4.1. Caveats

In this paper we have used strong language about how people should
infer causal strength in time series data despite the fact that making
inferences from time series data is notoriously fraught. Here we briefly
discuss some nuances and caveats to these claims. First, this paper is not
about inferring the causal structure or direction of causality; it is only
about inferring the strength of the relation between two observed vari-
ables. Standard time series data analysis requires controlling for temporal
trends when assessing the relation between two variables, lest the cor-
relation due to the temporal trends overrides the direct causal relations.
The point of the paper is to uncover which formats of presentation aid
people in controlling for the temporal trends.
Second, there are a number of ways in which the inference task for

real world data can be more complicated than in the current task. If the
causal relation between X and Y has a delay, then the learner must “shift”
the data to calculate the relation within the right window of time. People

Table 2
Regressions of subjects’ causal strength ratings for the three presentation format conditions.

Presentation format Correlation (rXY) Causation (rΔXΔY) Interaction (rXY * rΔXΔY) Whole Model

b RNSJ
2 d b RNSJ

2 d b RNSJ
2 d RNSJ

2

Trial-by-trial 1.96*** .13 0.78 2.72*** .26 1.18 0.30 .002 0.09 .40
Dynamic graph 1.10*** .03 0.35 2.94*** .20 1.01 1.02*** .02 0.25 .27
Static graph 2.54*** .13 0.79 1.27*** .04 0.43 1.32*** .02 0.31 .22

Note. ***p< .001 level. Confidence intervals are reported at the 95% level.

4 This key finding was significant in both the first F(2, 148.37) = 10.23,
p< .001 and second batches of participants, F(2, 148.62) = 4.78, p = .010.
Thus, we decided analyze both batches together. We do not report effect sizes
for this analysis because we do not know of any effect size measures for random
effect models that handle factors. For the entire model, RNSJ

2 =.24.
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generally know to perform this shift (Buehner & May, 2002; Hagmayer &
Waldmann, 2002), though it is an open question as to whether shifting
may make it harder to notice short-term changes in X and Y. We contend
that these issues are orthogonal; if a learner believes that there is a delay,
then they should account for the delay in addition to controlling for the
temporal trends. (It is trivial to add a shift into the rΔXΔY strategy; just
calculate the correlation between the change in X at one point of time
and the change in Y at a later point in time.)
It is also possible that X could cause Y, and Y could cause X, or both,

or there could be a third variable that causes both of them. Again, the
goal for this paper was not to study how people infer causal structure,
and we believe that accurately assessing the strength of the relation in
any of these situations requires controlling for temporal trends in ad-
dition to accounting any delay(s) in the relation(s).
In summary, although inferring the strength of the relation is likely

to be harder in real world datasets than in the current datasets, the
current results suggest that in many situations people do have the ca-
pacity to control for temporal trends, and dynamic presentations can
help them do so.
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