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Abstract 

Humans often rely on past experiences stored in long-term 
memory to predict the outcome of an event. In traditional lab-
based experiments (e.g., causal learning, probability learning, 
etc.), these observations are compressed into a successive 
series of learning trials. The rapid nature of this paradigm 
means that completing the task relies on working memory. In 
contrast, real-world events are typically spread out over longer 
periods of time, and therefore long-term memory must be used. 
We conducted a 24 day smartphone study to assess how well 
people can learn causal relationships in extended timeframes. 
Surprisingly, we found few differences in causal learning when 
subjects observed events in a traditional rapid series of 24 trials 
as opposed to one trial per day for 24 days. Specifically, 
subjects were able to detect causality for generative and 
preventive datasets and also exhibited illusory correlations in 
both the short-term and long-term designs. We discuss 
theoretical implications of this work. 

Keywords: causal learning; probability learning; illusory 
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Introduction 
Every day we use our experiences to make inferences. For 
example, is your new medication improving an ailment or 
causing a negative side-effect? Does meditating have a 
positive impact on your mental health? If we can accurately 
predict the outcomes of our experiences and actions, we can 
use this information to behave adaptively in the world. 

Trial-by-trial learning paradigms, in which cue-outcome 
pairs are presented to subjects sequentially, are used 
extensively to study learning across many different fields 
including causal learning, probability learning, fear learning, 
stereotype formation, associative learning with non-human 
animals, and others. The trial-by-trial paradigm is supposed 
to simulate an important aspect of the world: most of our 
experiences occur sequentially over time, rather than in a 
summarized form. Typically the ‘inter-trial-interval’, the 
time between trials, is a couple seconds. However, we 
contend that there are few real-world learning situations that 
involve experiencing repeated cue-outcome pairs separated 
by seconds, perhaps with a few exceptions (e.g., flipping 
through records rather than first-hand experiences).  

The goal of the current study is to compare trial-by-trial 
learning in the normal rapid format vs. trial-by-trial learning 
in which the trials are spaced out once per day. Day-by-day 
learning simulates many natural processes (e.g., does a 
medicine have an influence on a health outcome, does 
exercising have an influence on sleep, etc.). Importantly, 
whereas working memory is believed to support learning in 
short timeframes, long-term memory must take over when 
learning occurs over many days. In the current study we 

investigated how effectively people are able to learn cue-
outcome relations across multiple days. 

Trial-by-Trial Causal Learning 
Prior research has evaluated how people detect causation 
from data shown over a successive series of trials. In a typical 
experiment, participants observe data in which the putative 
cause and the outcome are either present or absent. This 
information can be organized into a 2x2 table where each cell 
A-D represents the number of times that the cause/outcome 
combination occurs for a particular dataset (see Figure 1). 
Most often, participants are shown the data rapidly, for 
example two or three seconds per trial. After observing the 
entire dataset, subjects judge the degree to which the cause 
influences the outcome. 

 
 

Figure 1: A 2x2 table depicting the four possible types of 
data in a traditional binary design. 

 
One normative model of causation is the DP rule, a measure 

of contingency that suggests an optimal way to infer 
causation is by comparing the probability of the outcome in 
the presence of the cause and the probability of the outcome 
in the absence of the cause: DP = A/(A+B) – C/(C+D). When 
DP is positive, the causal relationship is generative. When DP 
is negative, the causal relationship is preventive. 

Although prior research suggests that people are able to 
discriminate generative vs. preventive causation (Shaklee & 
Mims, 1982), individuals sometimes exhibit biases in causal 
reasoning. One such bias, “illusory correlation” or “illusory 
causation”, occurs when people inaccurately infer causation 
when no causal relationship exists. 

An “A-cell bias” is when individuals believe that a causal 
relation exists merely because of a high number of A-cell 
trials (e.g., Kao & Wasserman, 1993). In the A-cell bias 
condition in Table 1, even though there is zero relation 
between the cue and outcome (the outcome occurs with a 
chance of .625 regardless of whether the cue is present or 
absent, so DP = 0), people tend to infer that they are positively 
correlated. An “outcome density bias” is when people 
incorrectly assign causation to a dataset in which the overall 
probability of the outcome is high (Table 1), even though the 



probability of the outcome is the same (.75) whether the cause 
is present or absent, so DP = 0 (e.g., Jenkins & Ward, 1965).  

 
Table 1: Cell Frequencies for the 4 Datasets 

 
Dataset A B C D DP 
Generative 9 3 3 9 0.5 
Preventive 3 9 9 3 -0.5 
Outcome-Density 9 3 9 3 0 
A-cell 10 6 5 3 0 

Causal Learning and Memory 
Many causal learning experiments use rapidly successive 
trial-by-trial paradigms. In the real world, however, you 
would not experience each data point in rapid succession. 
This raises a number of challenges for long term memory. For 
example, imagine learning whether going to yoga improves 
your mood; some days you do yoga and other days you do 
not. After a few weeks, would you be able to remember the 
days you did or did not do yoga? Could you remember your 
mood on those days? How might your memories for these 
events impact your ability to detect causation? Would you be 
more susceptible to biases such as illusory correlations? 
Currently, there is no research on how well people can learn 
causal relations over long timespans.  

One basis for making hypotheses about causal learning in 
long timeframes is research on short timeframes that has 
increased working memory (WM) demands. Studies have 
found stronger illusory correlations in a rapid trial-by-trial 
paradigm (higher WM demands) than in a “summary” 
paradigm (lower WM demands) in which all the trials are 
presented simultaneously (Kao & Wasserman, 1993). Adding 
a distractor task on top of the trial-by-trial paradigm leads to 
less accurate judgments (Shaklee & Mims, 1982), and older 
adults with lower WM have less accurate causal learning 
(Mutter & Pliske, 1996). If causal learning is worse when 
WM is taxed, we expected learning to get even worse when 
long-term memory must be used to assess causation. Still, 
people are often able to navigate the world successfully, 
suggesting a reasonable causal-learning ability when relying 
on long-term memories to make inferences. This raises the 
question: how well can we learn causal relations across many 
days?   

Summary of Current Study 
In the current study, we investigated the implications of 

learning a cause-effect relationship quickly from a rapid 
sequence of trials vs. learning the same relationship over an 
extended period of time – one trial per day for 24 days. We 
investigated how subjects learned about four causal relations 
using different datasets: generative, preventative, ‘outcome-
density’, and ‘A-cell’ (Table 1). 

The motivation for studying the generative and preventive 
datasets was  to determine whether or not participants were 
capable of detecting a causal relationship or if learning is 
hampered when the experiences occur spread out in time. 
Because memories might be noisier in the long-term 
condition, we predicted that participants’ judgments might be 
closer to zero, implying a weaker causal relationship.  

For the A-cell and outcome density datasets, we wanted to 
assess the effect of long-term memory on illusory 
correlations. Prior research mainly found exaggerated 
illusory correlations with increased WM demand, so one 
hypothesis was that illusory correlations would be 
exaggerated in the long-term condition. Another hypothesis 
was that, if memories of the experiences are weaker in the 
long timeframe condition, then the judgments might actually 
be closer to zero – more accurate.  

Methods 

Participants 
There were 476 participants. The main requirements were 
owning a smartphone and intending to complete the entire 
study; however, we mainly targeted college students to have 
a similar sample to most other causal learning studies and 
since they frequently use smartphones.  Participants were 
paid $30 if they successfully completed the entire study. 

Our goal was to have around 400 participants, 100 for each 
of the 4 datasets in the long timeframe condition. The large 
number was used because the four datasets need to be 
analyzed separately, and to have power to detect small 
effects. The final data analyses included 409 participants after 
dropping 13 participants who admitted to writing down data 
during the study, 1 who was not trying during the task, 39 due 
to a programming error, and 14 who skipped too many days 
of the long timeframe task.  

Datasets 
Participants learned about five datasets: four short-timeframe 
(generative, preventative, A-cell, and outcome density) and 
one long-timeframe (one of the four from the short-timeframe 



condition). This design allowed for a within-subjects 
comparison of one of the four datasets across the long vs. 
short conditions (see Table 2 for an example). By having 
subjects learn all four datasets in the short timeframe 
condition, it also reduces the likelihood that subjects were 
aware that one of the short timeframe datasets was the same 
as the long timeframe dataset. Each dataset consisted of 24 
trials ordered randomly. The two illusory correlation datasets 
were previously used by Kao and Wasserman (1993). 

Procedure 
Participants completed the entire study on their own 
smartphones by logging into our website created with our 
PsychCloud.org framework. The procedure for the short-term 
and long-term tasks were identical, except that subjects 
observed one trial per day in the long timeframe condition, 
and they did trials back-to-back in the short timeframe 
condition. On Day 1 of the study, participants completed two 
short-term tasks and began Day 1 of the long-term task.  

On Days 2 – 24, participants received automated text-
message reminders at 10am, 3pm, and 8pm to complete their 
daily trial for the long-term task and stopped receiving 
reminders if they had already participated that day. They 
returned to the lab on Day 25 to complete the remaining 
short-term tasks and receive payment. The order of the short-
term tasks was randomized so that participants completed the 
short version of the long-term task either on Day 1 or on Day 
25 - before or after the long-term task. 

 
Within a Trial Each task consisted of 24 trials in which 
participants were told whether or not the putative cause was 
present or absent. A number of procedures were taken to 
facilitate encoding, including asking subjects to verify the 
state of the cause and effect (rather than just observe them), 
and to spend extra time to look each image. Each trial 
proceeded as described in the following example, which uses 
the ‘Facebook’ cover story – other cover stories are explained 
below. In the Facebook cover story, subjects were asked to 
judge whether using Facebook during their lunch break 
improves or worsens or has no influence on their mood, based 
on the hypothetical dataset.  

At the beginning of each trial, subjects were shown a 
contextual image. These images allowed us to ask a number 
of episodic memory questions that are not analyzed in this 
report. In the Facebook cover story, they saw an image from 
the inside of a restaurant and were told “This is the scene from 
your lunch break.” After three seconds, an icon and text were 
superimposed over the contextual image to show the presence 
or absence of the cause (e.g., whether they used or did not use 
Facebook during their lunch break). They pressed a radio 
button to confirm the state of the cause and could not move 
on until selecting the correct button (e.g., Facebook vs. No 
Facebook). Next, they pressed a radio button to predict the 
effect as present or absent (e.g., Very Sad Mood vs. Normal 
Mood). They received text feedback for whether their 
prediction was correct or incorrect and an icon representing 
the effect was superimposed on the image. After clicking the 

correct radio button to verify the state of the effect, subjects 
were instructed to “Take a couple of seconds to imagine this 
scene”, which was displayed for an additional four seconds. 

At the end of a trial in the short timeframe condition, 
subjects were permitted to move on to the next trial. In the 
long timeframe condition, subjects were told that their task 
was over and to come back to the website the following day. 
Once a trial was over, the website did not allow subjects to 
see the data for that trial or prior trials, not even by clicking 
the back button on their web browser. 

 
Figure 2. Screenshot of the end of a trial. 

 
After Trial 24 (either immediately afterwards for the short 

timeframe condition, or on Day 25 in the long timeframe 
condition), participants judged the strength of the causal 
relationship. First, they answered whether the cause 
(Facebook) “improves or worsens or has no influence” on the 
effect (mood). If participants said the cause had no influence, 
they were assigned a causal judgment of 0. If they responded 
“improve” or “worsen”, they answered “How strongly does 
[the cause] [improve/worsen] [the effect]?” on a scale of 1 
(very weak) to 10 (very strong), which produced a scale from 
-10 to +10. In this report we only discuss the judgments after 
Trial 24, though subjects also made similar judgments before 
Trial 9 and before Trial 17. 

In addition to the causal strength judgments, participants 
also made a number of other judgments, for example, 
memories of the number of experienced cells of types A, B, 
C, and D (before Trials 5, 13, 21, and after Trial 24), as well 
as a number of judgments about the memories for the 
contextual images after Trial 24. These measures will not be 
analyzed in the current report due to space. 
 
Cover Stories Since subjects learned about five cause-effect 
relations, we created the following five authentic ‘contexts’, 
randomly assigned to the five tasks so that each was viewed 
as a separate learning task: the relation between using 
Facebook during lunch in a restaurant and mood, eating a 



healthy dinner in a friend’s house and having an upset 
stomach, using notecards to study in a library and grades on 
a daily quiz, biking to work on city streets and productivity 
at work, and bringing your dog on a walk in a park and stress.  
The five stories were chosen so that it would be plausible for 
the cause to either improve or worsen the outcome; the 
influence of prior beliefs will be analyzed in other reports. 

Because this study is the first to use a long timeframe 
paradigm, is unlikely to be replicated, and is focused on 
external validity, we conducted two manipulations of the 
cover stories. Specifically, we manipulated the “authenticity” 
and “valence” of the cover stories. If subjects in the long 
timeframe condition exhibited very poor learning, we wanted 
to rule out some potential explanations and to know how to 
best design future studies. Although we will explain the 
manipulations here, they are not of primary importance and 
will not be analyzed in this report. 

First, though it is typical in causal learning studies to use 
entirely novel and abstract cover stories to minimize the 
influence of prior beliefs, we worried that abstract stimuli 
could be hard to remember in a long timeframe condition.1 
For this reason, we manipulated the ‘authenticity’ of the 
cover stories. The ‘authentic’ cover stories were the five 
stories mentioned previously. In the ‘novel’ cover stories, we 
used the same effects but replaced the causes with a 
hypothetical vitamin that a subject took on some days but not 
others (e.g., does the vitamin have an influence on mood, 
upset stomach, etc.). The matched short-term and long-term 
datasets were assigned to different contexts but were matched 
on authenticity. Of the four short timeframe conditions, two 
were assigned to ‘novel’ vitamin cover stories and two were 
assigned to authentic cover stories (Table 2). 

Second, we manipulated the ‘valence’ of the effect; 
whether the presence of the effect is good or bad.2 The 
absence of the effect was always described as normal (e.g., 
normal mood, normal grade on a quiz, etc.). The presence of 
the effect was described as either very good or very bad (e.g., 
very happy or very sad; very good grade or very bad grade, 
etc.). For participants in the negative valence condition, we 
reverse coded their causal strength judgments, so positive 
causal strength means “improved” for the positive valence 
condition and “worsened” for the negative valence condition. 
The matched short-term and long-term datasets were 
assigned the same valence. Of the four short-term conditions, 
two had positive and two had negative valence (see Table 2). 
Authenticity and valence are not analyzed due to space. 

                                                        
1 For example, we suspect that in short learning tasks using novel 
stimuli, subjects might use other cues such as the position of stimuli 
on the screen rather than the semantic meanings of the cues. Such 
alternative methods of learning might be less salient in the long 
timeframe condition. Instead, we thought that semantically 
meaningful cause-effect relations might be easier to remember and 
also have higher external validity. 
2 Most studies on causal learning use cues that are either present or 
absent. Presence/absence of the cause and the effect is theoretically 
important in some theories of causal learning (e.g., Cheng, 1997). 
Further, the definition of the cells as A-D only makes sense with 

Participation Before starting the experiment, participants 
were told that if they missed more than three days in the long 
timeframe task, the study would be terminated and that they 
would not be paid. 462 (97%) participants successfully 
completed the study. On any given day, 83% of subjects 
participated before the 3pm reminder, 96% before the 8pm 
reminder, and 99% by midnight. If a subject missed one, two, 
or three days, the subsequent days were automatically pushed 
back the appropriate number of days.  

The causal strength judgments and other measures for the 
long timeframe task occurred during the second in-lab testing 
session. We worked hard to have subjects come back to the 
lab for the second in-lab testing session on Day 25, one day 
after the last trial in the long timeframe condition. Of the 409 
subjects in the final analyses, 83% returned to the lab on Day 
25. If they skipped one day of the long timeframe task, 
sometimes this session occurred on the same day as their 24th 
trial (13%). If the session had to be moved, sometimes it 
occurred two (3%) or three (1%) days after the last trial. 
Overall, the protocol was followed with high fidelity. 

Results 

Causal Strength Judgments 
In this paper, we only analyzed data from the matched short-
term and long-term conditions. We analyzed the generative 
(N = 98), preventive (N = 102), A-cell (N = 105), and outcome 
density (N = 104) conditions separately.  

Average causal strength judgments are presented in Figure 
3. Significance values above each column indicate whether 
the value was significantly different from zero. The 
significance value above the horizontal lines indicates 
whether the judgments in the short and long-term conditions 
were significantly different from each other. We calculated 
Bayes Factors (BF) for each t-test, where a BF > 1 is support 
for the alternative hypothesis and a BF < 1 is support for the 
null. Often BFs > 10 (or < 1/10) are considered “strong” 
evidence for the alternative (or null), BFs > 30 or < 1/30 are 
considered “very strong” and BFs >100 or < 1/100 are 
considered “extreme” (e.g., Lee & Wagenmakers, 2013). 
 
Generative and Preventive Conditions First, we wanted to 
assess whether participants were capable of detecting 
causation in the generative and preventive conditions. For 
the generative dataset, causal judgments were significantly 
different from zero in both the short-term condition, t(97) = 

cues that are present/absent (not “high”/“low” or “2”/“1”, etc.; see 
Figure 1). In order to stick close to prior studies and to be able to 
study the A-cell bias, we used present/absent cues. However, one 
consequence of using presence/absence is that most outcomes have 
an implicit valence of being good or bad. For example, many prior 
studies have used outcomes like the presence/absence of a headache 
(bad) or of a flower blooming (good). We did not want to arbitrarily 
use outcomes of one particular valence, or to confound valence with 
cover story. Furthermore, valence can influence the strength of 
illusory correlations (Mullen & Johnson, 1990). For all these 
reasons, we counterbalanced the valence of the cover story. 



11.27, p < .001, d = 1.14, BF = 2.13 * 1016, and the long-
term condition, t(97) = 11.53, p < .001, d = 1.17, BF = 7.37 
* 1016. For the preventive dataset, judgments were less than 
zero in both the short-term, t(101) =   -9.03, p < .001, d = -
0.89, BF = 5.72 * 1011, and long-term condition, t(101) = -
7.13, p < .001, d = -0.71, BF = 6.05 * 107.  

We predicted that for both the generative and preventive 
datasets, causal judgments would be closer to zero in the 
long-term condition because participants’ memories would 
be noisier. However, paired t-tests revealed no significant 
differences between judgments in the short-term and long-
term conditions for either the generative, t(97) = -0.37, p = 
.707, d = -0.04, BF = 0.12, or preventive datasets, t(101) = -
0.33, p = .741, d = 0.03, BF = 0.12. Thus, participants were 
just as capable of detecting causation in the short and long 
timeframe conditions. 
 
Illusory Correlation Conditions In the outcome-density 
and A-cell datasets, an optimal causal judgment would be 
zero. In line with our predictions, we found significant 
illusory correlations for both datasets. For the A-cell dataset, 
causal judgments were significantly greater than zero in 
both the short-term, t(104) = 7.13, p < .001, d = 0.70, BF = 
6.75 * 107, and long-term, t(104) = 6.11, p < .001, d = 0.60, 
BF = 6.36 * 105, conditions. We found similar results for the 
outcome-density dataset; judgments were also positive and 
significantly different from zero in the short-term, t(103) = 
2.73, p = .008, d = 0.27, BF = 3.60, and long-term, t(103) = 
4.23, p < .001, d = 0.41, BF = 341.33, conditions. 

We hypothesized that the illusory correlations could be 
either exacerbated or diminished in the long timeframe 
condition. However, there were no differences between 
causal judgments in the short and long-term conditions for 
the A-cell dataset, t(105) = -0.67, p = .500, d = 0.07, BF = 
0.13. Illusory correlations appeared slightly stronger in the 
long-term condition for the outcome-density bias dataset, but 
this trend only approached significance, t(104) = -1.87, p = 
.065, BF = 0.45, with a small effect size of d = 0.18. These 
results suggest that illusory correlations in traditional trial-
by-trial experiments are similar to what we observe in a long 
timeframe task. 

 

Predictive Strength 
Another way to measure learning, aside from causal strength 
judgments, is through subjects’ predictions of whether the 
outcome was present or absent each day. To ensure that 
participants had observed enough experiences to make 
predictions, we analyzed the predictions from Trials 13 – 24.  

We transformed participants’ predictions into a measure of 
causal strength by subtracting the probability that they 
predicted that the outcome would be present given the 
absence of the cause from the probability that the outcome 
would be present given the presence of the cause. This 
measure of “predictive strength” is conceptually similar to 
ΔP. These results are displayed in Figure 4. 
 
Generative and Preventive We found very similar results 
using subjects’ predictions to assess learning as from their 
causal strength judgments. In the generative condition, 
predictive strength was significantly greater than zero for 
both the short-term, t(97) = 11.58,  p < .001, d = 1.17, BF =  
9.01 * 1016, and long-term conditions, t(97) = 12.47, p < .001, 
d = 1.26, BF = 6.32 * 1018. In the preventive condition, 
predictive strength was significantly less than zero in both the 
short-term, t(101) = -11.87, p < .001, d = -1.18, BF = 6.77 * 
1017, and long-term conditions, t(101) = -9.38, p < .001, d = -
0.93, BF = 3.12 * 1012. We found no difference in predictive 
strength between the short-term and long-term conditions for 
either the generative, t(97) = -0.36, p = .718, d = -0.04, BF = 
0.12, or preventive, t(101) = -0.49, p = .623, d = -0.05, BF = 
0.12, datasets. In sum, participants learned to accurately 
predict the effect, to the same extent, in both conditions. 

 
Illusory Correlation Conditions In the A-cell bias 
condition, we found a similar pattern of results to the strength 
judgments. Subjects did infer an illusory correlation; they 
were more likely to predict the effect as present when the 
cause was present in both the short-term, t(104) = 3.66, p < 
.001, d = 0.36, BF = 51.08, and long-term condition, t(104) = 
3.66, p < .001, d = 0.36, BF = 50.64. Furthermore, we found 
no difference between predictions in the short-term vs. long-
term conditions, t(104) = -0.66, p = .512, d = 0.06, BF = 0.13. 



In the outcome-density condition, the predictions were 
significantly negative in the short-term condition, t(103) = -
2.24, p = .028, d = -0.22, BF = 1.17. However, they were 
significantly positive in the long-term, t(103) = 2.13, p = 
.036, d = 0.21, BF = 0.94, and the difference was statistically 
significant, t(103) = -3.60, p < .001, d = -0.35, BF = 42.20.  

This difference was only marginally significant for the 
causal strength analyses, and the causal strength judgments 
for the short timeframe were significantly positive, not 
negative. Because this is the only difference between the two 
conditions, and it was only found for predictive strength (not 
the causal strength judgments) in the outcome density 
condition (not the other illusory correlation condition), we do 
not want to over-interpret it. 

Discussion 
We sought to evaluate the external validity of traditional trial-
by-trial causal learning experiments by comparing trial-by-
trial learning when presented rapidly vs. one trial per day for 
24 days. Presumably the former relies on working memory,  
whereas the latter requires long term memory. Our findings 
suggest that people are capable of learning generative and 
preventive causal relationships and also exhibit illusory 
correlations when learning causal relations over 24 days. 
Critically, we found few differences between the short-term 
and long-term tasks, and in fact most of the Bayes factors 
were roughly 8 to 1 in favor of the null. 

From a practical perspective, this research provides an 
optimistic perspective on the validity of the trial-by-trial 
paradigm as a simulation of causal learning that occurs in the 
real world across longer periods of time. Assessing the 
external validity of this paradigm is important given that it 
has been used in hundreds of published studies on causal 
learning, and many thousands of studies when including 
studies of probability learning and other related topics. 

From a theoretical perspective, we find it striking that there 
are so few differences in learning across the short and long 
timeframe condition. We intentionally used large samples to 
have the power to detect small effects. The robust learning in 
the long timeframe condition is surprising considering that 
participants completed the long-term trials outside of the lab 

and likely participated with many distractors and 
interruptions, comparable to everyday causal learning. Still, 
we hypothesized that the learning in the long timeframe 
condition would be plagued by considerably worse learning 
due to noisy memories. The fact that we found few 
differences raises a number of questions.  

One question has to do with how learning occurs (e.g., 
Bornstein et al., 2017). Are subjects recording individual 
episodic memories and using them for causal learning? Or are 
they merely encoding them as generic events of the four cell 
types? Or are they using a process more similar to 
reinforcement learning in which an estimate of the strength 
of the relation between the cause and outcome gets updated 
as new evidence is experienced? Some of these questions can 
be addressed with our contextual image memory questions. 

Another question is how well long-term memory can 
support other types of learning. It is possible that a single 
cause-effect relation is simple enough for long-term memory 
to robustly support learning, but that long-term memory 
might not be able to support more complex cause-effect 
relations (e.g., with multiple causes or long delays). We are 
actively studying such questions. 

This research also has potential implications for whether 
learning and memory processes are fundamentally the same 
for shorter vs. longer timeframes. In associative learning, 
there is a debate about “timescale independence or 
invariance” (Gallistel & Gibbon, 2000), in which learning 
phenomena tend to replicate if the sequence is stretched or 
compressed. In memory, there are debates about the 
similarities and differences in short vs. long-term memory 
(e.g., Cowan, 2008) and whether memories across short and 
long timespans can be modeled with the same forgetting 
curves (e.g., Wixted & Ebbesen, 1991). Perhaps researchers 
invested in these debates may be able to use these results. 

More generally, we believe that the current research 
provides an important step towards generalizing current 
learning paradigms to more real-world settings. The current 
findings are optimistic in terms of how well the paradigm 
generalizes; however, future research may also reveal areas 
in which standard learning paradigms generalize poorly.  
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