
Causal Strength Induction From Time Series Data

Kevin W. Soo and Benjamin M. Rottman
University of Pittsburgh

One challenge when inferring the strength of cause-effect relations from time series data is that the cause
and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer
that a causal relation exists when it does not, or even infer that there is a positive causal relation when
the relation is negative, or vice versa. We propose that learners use a simple heuristic to control
for temporal trends—that they focus not on the states of the cause and effect at a given instant, but on
how the cause and effect change from one observation to the next, which we call transitions. Six
experiments were conducted to understand how people infer causal strength from time series data. We
found that participants indeed use transitions in addition to states, which helps them to reach more
accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli
are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of
transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants
primarily use the direction in which variables change rather than the magnitude of the change for
estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people
often use a simple yet effective heuristic for inferring causal strength from time series data.

Keywords: causal learning, covariation detection, time series, temporal trend

Inferring the causal influence one variable has on another in a
time series setting is a complex task. The fundamental problem,
detailed by Yule (1926), is that the two variables can undergo
temporal trends, otherwise known as “secular trends.” Temporal
trends can make it appear as if there is a positive or negative
relationship between two variables even when there is no direct
relation, such as the famous example that ice cream sales are
correlated with drownings (because of changes in weather). Tem-
poral trends can also make a negative causal relation appear
positive, or vice versa. For example, the U.S. economy and the
price of oil have generally increased over time (a positive corre-
lation), even though increases in the price of oil cause the economy
to contract on a smaller time scale. The main question of the
current research is whether and how laypeople are able to “control
for” temporal trends and reach accurate conclusions about the
strength of a cause-effect relation.

The ability to learn about the strength of a relation between two
probabilistic variables—covariation detection—is a fundamental
cognitive function, and underlies reasoning across many areas of
psychology. Covariation detection is a critical mechanism for
categorization (Kutzner & Fiedler, 2015; Vogel, Kutzner, Freytag,
& Fiedler, 2014) and stereotype formation (Le Pelley et al., 2010;

Sherman et al., 2009). The disruption of this ability—for example,
perceiving correlation when there is none (illusory correlation)—
has been found to play a role in a range of clinical disorders like
depression (Alloy & Abramson, 1979), phobias (Ohman &
Mineka, 2001), and schizophrenia (Balzan, Delfabbro, Galletly, &
Woodward, 2013; Díez-Alegría, Vázquez, & Hernández-Lloreda,
2008; Huq, Garety, & Hemsley, 1988).

Past research on covariation detection and causal strength in-
duction1 has primarily focused on settings in which the observa-
tions of the variables are temporally independent, and thus there
are no temporal trends. For example, the cover stories could
involve 20 hypothetical patients, and participants are tasked with
assessing whether patients who take a medication are more or less
likely to have a headache relative to patients who do not take the
medication. Less research has focused on covariation detection or
causal strength induction from time series data—when variables
are observed over time and can exhibit temporal trends. We
believe these cases involving time series data are especially com-
pelling; they are often the sorts of examples used to convey the
point that correlation does not imply causation due to “spurious
correlations” (e.g., the notorious ice cream and drownings exam-
ple; see Vigen, 2015, for many more examples). Indeed, correla-
tions due to temporal trends were the cases that Yule (1926) was
concerned about.

1 We use covariation detection to refer to the task of inferring the
strength between two variables, neither of which is proposed or assumed a
priori to be the cause of the other. We use causal strength induction to refer
to the task of inferring the strength of one variable that is presumed to be
a cause on another variable that is presumed to be an effect. Our studies
focus on causal strength induction, though these two tasks are highly
similar in many respects.
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To give a concrete example of the subject of this research,
Figure 1A plots two variables over time. X is stipulated to be a
potential cause of Y. Overall, the two variables are positively
correlated because they both increase over time. How does one
infer the strength of the potential causal influence of X on Y? One
aspect of the data reveals a clue: From one observation to the next,
when X increases, Y usually decreases, and when X decreases, Y
usually increases. This can be seen clearly in Figure 1B, which
plots the difference scores at each time point for both variables—
the amount they changed from the last time point. We argue that
these local patterns provide a way to normatively estimate the
causal effect of X on Y, and that people in fact use these local
patterns for inferring causal strength, in addition to the global
correlation.

The outline of the introduction is as follows. First, we discuss
previous research on causal strength learning in atemporal settings.
Following this, we discuss work on causal learning in time series
settings. Finally, we propose a simple heuristic that people may
use to control for temporal trends when inferring causal strength in
time series settings. In essence, the heuristic we propose is that
instead of calculating the correlation between the cause and effect,
that people (roughly) calculate the correlation between the change
in the cause and the change in the effect from one observation to
the next. We also discuss one factor that may moderate the use of
this heuristic, and we propose two different versions of this heu-
ristic.

Causal Learning in Atemporal,
Cross-Sectional Settings

Although causal strength induction has been studied heavily,
most existing theories do not apply to the question addressed in the
current research because they typically involve scenarios that are
atemporal. The cover stories often resemble randomized controlled
experiments, for example, estimating the efficacy of a medication
by comparing the percent of patients who experience a symptom
across two groups of patients, one of which received a medication
and the other of which did not. We refer to this as the cross-
sectional paradigm, analogous to cross-sectional research designs,

to convey that the data are from a single cross-section of time, not
from a time series.

The bulk of research on causal strength induction has involved
a cross-sectional paradigm with a binary cause and a binary effect.
In such experiments, the normative theories for judging causal
strength involve a mental calculation somewhat similar to a chi-
square test of association (Buehner, Cheng, & Clifford, 2003;
Cheng, 1997; Cheng & Novick, 1992; Griffiths & Tenenbaum,
2005; for reviews, see Hattori & Oaksford, 2007; Holyoak &
Cheng, 2011; Perales & Shanks, 2007). A less common paradigm
involves a binary cause and a continuous effect, in which case the
t test has been proposed as the normative model (Obrecht, Chap-
man, & Gelman, 2007; Saito, 2015).

There has been considerably less research on causal strength
induction in cross-sectional settings when the cause and effect both
fall on a continuous or multilevel scale, as they do in our experi-
ments. The obvious contender for a normative model is Pearson’s
correlation coefficient r, which has long been used both as a
normative and descriptive model of covariation detection (Beach
& Scopp, 1966; Crocker, 1981; Erlick, 1966; Erlick & Mills, 1967;
Lane, Anderson, & Kellam, 1985). However, one potential con-
cern with using r as a normative model for causal strength is that
it is symmetric; it does not distinguish between X or Y being the
cause versus effect. In causal learning paradigms with binary
causes and effects, people treat the cause and effect differently
when inferring causal strength, and symmetric measures like chi-
square have never gained traction as models of causal strength
(Cheng, 1997; Griffiths & Tenenbaum, 2005). However, because
so far no other model of causal strength has been proposed when
there is a continuous cause and a continuous effect, we treat r as
a reasonable default normative model.

The more pressing concern with using r as a normative model is
that r is appropriate when the data are independent, such as in
cross-sectional settings, but not in time series settings in which
variables can exhibit temporal trends. This problem can be con-
ceptualized as time being a confound of both X and Y (see Figure
2), in which case the appropriate statistical approach would be to
control for time, for example, by computing a regression of Y �

Figure 1. (A) Example time series data of a cause (X) and effect (Y). The raw scores of X and Y are displayed.
(B) The difference scores, �X and �Y. There are 19 difference scores for the 20 raw scores. Note the different
vertical axes.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

486 SOO AND ROTTMAN



X � t. (Calculating partial variance explained by X in the prior
regression equation is also equivalent to calculating the “partial”
correlation of X and Y; the partial correlation is the correlation
between the residuals of X and the residuals of Y after partialing
out t.) Our research investigates if and how learners account for
time in these sorts of situations. The following section reviews
previous research on causal learning in time series settings in order
to build intuitions for the model we propose.

Causal Learning in Time Series Settings

There have been four efforts we consider most relevant for
understanding causal learning in time series settings.

Causal Learning in Time Series Settings With Delay

The first set of research focused on how people learn about
causal relationships from temporal streams of data in which one
variable (the cause) occurs before another variable (the effect).
One important finding is that people use temporal precedence—
which variable occurs first—for determining which variable is the
cause and which is the effect (Burns & McCormack, 2009; Lag-
nado & Sloman, 2004, 2006; McCormack, Frosch, Patrick, &
Lagnado, 2015). Another related finding involves paradigms in
which the goal is to infer causal strength, but there is a delay
between the cause and the effect (Buehner & May, 2003, 2009;
Greville & Buehner, 2010; Lagnado & Speekenbrink, 2010;
Shanks, Pearson, & Dickinson, 1989). If learners do not have
strong beliefs about the delay, a delay can lead to weaker causal
strength judgments. However, if learners have strong expectations
for the delay and the length of delay is consistent, they can parse
the event stream so that the cause at one time point is associated
with the effect at a subsequent time point. Parsing the data allows
them, in theory, to apply the same models developed for cross-
sectional scenarios to the parsed data (Buehner, 2005; Greville,
Cassar, Johansen, & Buehner, 2013; Hagmayer & Waldmann,
2002).

Causal Learning With Nonstationary Time Series Data

The most critical feature of time series data in the current
experiments is that the data can exhibit nonstationary trends (e.g.,
Figure 1A). For time series variables on a continuous scale, a
nonstationary trend means that the average value of a variable

changes over time; this average value can be calculated with a
moving average within some window of time. Binary time series
variables can also exhibit trends, for example, when a variable
tends to remain in the same state for multiple observations in a row
rather than switching states randomly, which is typically called
positive autocorrelation, though could also be considered a type of
nonstationarity.2 The following three sets of research have focused
on causal learning in nonstationary or autocorrelated time series
environments.

One set of research examined whether people can learn the
direction of a causal relation (which variable is the cause and
which is the effect) from time series data when there is no delay
between the cause and the effect. Suppose that X is the cause and
Y is the effect. In a time series setting, when X increases or
decreases from one observation to the next, Y would also be
expected to increase or decrease. However, sometimes Y might
change due to the influence of unobserved factors. When Y
changes due to the influence of an unobserved factor, if X is
positively autocorrelated, X will tend to remain fairly stable or
follow the preexisting trend. This means that if one variable (Y)
changes but another (X) does not, the variable that changed on its
own (Y) is more likely to be the effect. Both adults and children
notice this asymmetry in how X and Y change and use it to infer
that X causes Y (Rottman & Keil, 2012; Rottman, Kominsky, &
Keil, 2014; Soo & Rottman, 2014). The important theoretical
innovation here was to uncover that people utilize the changes or
what we call the transitions in the variables for causal inference.

Two other studies have examined how people infer causal
strength, rather than structure, in time series settings. White’s
(2015) participants were asked to judge the influence of a chemical
injected into a patient’s bloodstream on the concentration of blood
cells. The patient’s blood cells were tracked hourly over 24 hr and
the injection occurred during one particular hour, so the data
comprised an “interrupted time series” design. The blood cell
concentration tended to increase across the 24 hr, though the
features of the trend (e.g., the apex, when the increase started
relative to the injection) were varied. One factor that determined
participants’ judgments of the strength of the injected chemical
was the difference in the blood cell count after versus before the
injection, similar to how statisticians calculate difference scores
for prepost study designs. However, another finding suggested that
the participants had difficulty fully accounting for important as-
pects of the time series data. In White’s (2015) Experiment 1A,
participants judged the injection as causing an increase in the
blood cell count even if the blood cell count had already started
increasing before the injection. Those judgments can be interpreted
as participants failing to control for nonstationarity in the time
series.

Rottman (2016) investigated another causal strength learning
task. Participants had to learn which of two medications produced
a bigger decrease in pain. In this cover story, participants chose to
try either Medication 1 or Medication 2 each day (trial) for 14
simulated days. At the end of each day a pain score was revealed.

2 Technically, nonstationarity in the generative process of a time series
causes it to be autocorrelated across multiple time lags, though a variable
could be autocorrelated without being non-stationary (Shumway & Stoffer,
2011).

Figure 2. A causal graph depicting a potential relationship between X
and Y when there is a temporal trend (t) influencing both over time. X
negatively influences Y, but both X and Y increase over time.
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Critically, the baseline amount of pain was nonstationary—it fluc-
tuated in unpredictable waves—which meant that comparing Med-
ication 1 for Days 1–7 versus Medication 2 for Days 8–14 could
produce a poor comparison if the baseline amount of pain tended
to increase or decrease across the 14 days. Rottman (2016) found
that participants used at least two strategies for estimating the
difference in the effectiveness of the two medicines. The first
strategy was to simply take the means of the pain scores when
Medicine 1 was tried minus the means of the pain scores when
Medicine 2 was tried, similar to a t test. The second strategy
involved first computing the change in the pain from one day to the
next, and then comparing the average change in the pain score on
days when Medicine 1 was tried versus days when Medicine 2 was
tried.

In sum, the studies cited in this section suggest that in time
series settings, people make use of how the cause and effect
change from one observation to the next. The current research
further tests how people infer causal strength in time series settings
and makes a number of contributions beyond the work of Rottman
(2016). First, in that study, participants were in control of the
cause, meaning the process of judging causal strength was con-
founded with the process of choosing which cause to test on each
trial. The current experiments were designed specifically to study
the causal strength judgment process on its own. Second, whereas
Rottman (2016) studied cases with a binary cause and a continuous
effect, the current experiments studied how participants learn
about the causal relations between a continuous cause and a
continuous effect, which has typically been neglected in the causal
learning literature. Third, the experiments presented here study the
compelling situation in which controlling for a temporal trend
would lead to the opposite conclusion as not controlling for the
trend (e.g., Figure 1).

A Process for Estimating Causal Strength
From Transitions

In the following sections, we propose and offer justifications for
a process that learners may use to control for temporal trends in
time series data, discuss a possible moderator of this process, and
present two alternative versions of this process.

Normative, Perceptual, and Cognitive Justifications

Statistics. In time series analysis, a standard procedure for
accounting for nonstationarity is to compute a difference score on
the variables with trends before conducting other analyses. Taking
a difference accounts for linear trends, and taking a difference of
differences accounts for quadratic trends. One benefit of account-
ing for temporal trends by taking difference scores rather than
regressing out time is that no parameters need to be estimated
(Shumway & Stoffer, 2011). We propose that when judging causal
strength from time series data, that people, roughly, compute a
correlation between the difference scores for X (�X) and the
difference scores for Y (�Y). We call this model r�Continuous;
the label “continuous” will be explained below as we discuss the
different ways transitions can be encoded.

In Appendix A, we provide two proofs of the usefulness of
r�Continuous. First, in Part 1, we prove that r�Continuous uncovers the
true causal influence of X on Y when there is a temporal confound

(as in Figure 1); it partials out a linear temporal trend. Second, in
Part 2, we prove that in stationary environments (no temporal
trend) with large samples, r�Continuous equals the correlation be-
tween the raw states of X and Y, which we call rStates. Further-
more, we ran a simulation to measure the precision of r�Continuous

compared to rStates. We randomly generated stationary data sets in
which r2 � .50, and calculated the standard deviations of rStates

and r�Continuous. Though the standard deviation for r�Continuous was
a bit higher for small data sets, it converged to the standard
deviation of rStates for large data sets. This implies that r�Continuous

is a fairly good approximation of the true causal strength in both
stationary and nonstationary environments. In contrast, rStates is
only useful in stationary environments because in nonstationary
environments it can grossly misestimate the causal strength.

Psychology. Aside from the normative justification that peo-
ple should focus on changes or transitions instead of states when
inferring causal strength in time series settings, there is evidence
that people do focus on changes in stimuli. Evidence from percep-
tion and psychophysics suggests that people are poor at accurately
judging absolute levels of perceptual stimuli (e.g., size, weight,
pain, etc.; see Brown, Marley, Donkin, & Heathcote, 2008;
Donkin, Rae, Heathcote, & Brown, 2015). One reason is percep-
tual adaptation to a stimulus (Helson, 1948, 1964; Restle & Merr,
1968; Sarris, 1967); after someone adapts to the level of a stimu-
lus, the stimulus loses focus, and regains focus when the stimulus
changes. Another reason is the susceptibility of people’s internal
scales for representing quantities to context effects; observing one
stimulus can influence the perceived magnitude of another (Fred-
erick & Mochon, 2012; Krantz & Campbell, 1961). Likewise,
when a stimulus changes, the new level of the stimulus can be
perceived within the context of the prior stimulus, focusing atten-
tion on the amount of change rather than the absolute level of the
stimulus. Consequently, it may be the norm to make perceptual
judgments based on changes in levels rather than absolute levels
(Thurstone, 1927a, 1927b).

Comparative encoding is not limited to low-level perceptual
phenomena. Stewart, Brown, and Chater (2005) demonstrated that
changes in a stimulus from one presentation to the next influence
categorization decisions. Stewart, Chater, and Brown (2006) have
proposed that people use comparisons in memory when making
decisions of value, in temporal discounting, and in other economic
decisions. Furthermore, theories of associative learning have been
developed that learn by associating the onsets and offsets (transi-
tions) of the conditioned and unconditioned stimuli instead of their
presence versus absence (Klopf, 1988).

In sum, there are a number of statistical and psychological
reasons for attending to changes, and one of the goals of this
research is to assess whether, when, and how people do so.

A Moderator of Learning From Transitions

Unlike nonhuman animals, people have the unique ability to
represent quantities symbolically, allowing precise reasoning with
quantities (Feigenson, Dehaene, & Spelke, 2004). This enables
people to distinguish not just between two and three, but also
between 82 and 83. How does a numerical versus perceptual
presentation of variables affect the causal learning process?

One the one hand, it is likely that an effect of transitions will be
smaller when variables are presented numerically rather than per-

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

488 SOO AND ROTTMAN



ceptually. Unlike perceptual stimuli, numbers allow learners to
identify the absolute levels of variables, making judgments less
susceptible to context effects. Such a finding would be interesting
because focusing less on transitions would result in worse perfor-
mance in a causal learning task with temporal trends, even though
numerical symbols are typically viewed as facilitating learning and
reasoning in ways that are impossible without numbers.

On the other hand, a numerical presentation format could insti-
gate a more explicit form of reasoning than a perceptual presen-
tation, and learners who are aware of obvious increasing or de-
creasing trends in time series data may account for these trends by
focusing on transitions rather than states. In an extreme case,
learners who intentionally control for trends may focus on transi-
tions and ignore states even more than in the perceptual condition.

In Experiment 2, we test whether a symbolic (numerical) versus
perceptual (visual) stimuli format moderates the use of transitions.

How are Transitions Encoded?

The model proposed thus far for how causal strength is com-
puted is r�Continuous, a correlation between the changes in X and
the changes in Y. A weakness of this model is that r (and linear
regression models more generally, e.g., Brehmer, 1994) is a
computational-level theory that fails to explain how the learner
processes information in a tractable way (Marr, 1982). For this
reason, we considered one simplified alternative of how people
may use transitions for inferring causal strength.

We propose that people may simplify continuous variables by
mentally discretizing them into a binary representation, making it
easier to summarize the values of X and Y for computing causal
strength (Marsh & Ahn, 2009). Discretizing is perhaps a dubious
proposal for a model based on states, because discretization would
require choosing an arbitrary cutoff such as 50 on the 0–100 scale.
However, if participants focus on transitions rather than states, the
transitions have natural cutoffs based on whether the variable
increased (coded as �1), decreased (�1), or stayed the same (0)
from the previous time point, which we refer to as binary differ-
ence scores. (Although technically this coding scheme has three
values, �1, 0, and �1, when there are 100 possible states, it is very
unlikely for a variable to stay at exactly the same state from one
trial to the next, so essentially the coding is only �1 or �1, which
is why we use the term binary).

Computing (roughly) a correlation between the binary differ-
ence scores of X and Y, r�Binary, only requires keeping track of
four tallies, raising the possibility of discretization as a plausi-
ble heuristic that people may rely on to simplify causal learning
in longitudinal scenarios. This proposal is similar to a theory by
Stewart et al. (2006) that people only use ordinal comparisons
(greater than, less than, or equal to) for many economic judg-
ments.

As will be discussed in the designs of Experiments 4 and 5,
r�Continuous and r�Binary are often fairly strongly correlated, mak-
ing them difficult to separate empirically. However, this correla-
tion means that just as r�Continuous controls for temporal trends, so
too does r�Binary. Furthermore, in Appendix A (Part 2), just as
r�Continuous approximates rStates in stationary environments, so too
does r�Binary. Specifically, through simulations we show that al-
though r�Binary is not linearly related to rStates like r�Continuous is,
it is monotonically related to rStates. The precision of r�Binary as an

estimator of rStates is also worse than r�Continuous, but not all that
bad, and improves with larger sample sizes. In sum, r�Binary

accomplishes many of the same functions as r�Continuous but is
simpler to compute, raising the possibility that people might use it
as a heuristic, potentially in both stationary and nonstationary
environments.

Experiments 4 and 5 were designed to test whether people use
the magnitudes of changes (r�Continuous) or just the directions of
the changes (r�Binary) for inferring causal strength.

Summary of Experiments

Experiments 1A and 1B tested the basic phenomenon of
whether people use transitions for inferring causal strength. Ex-
periment 2 tested whether the effect of transitions is moderated by
using symbolic (numerical) versus perceptual (visual) stimuli.
Experiment 3 ruled out a possible alternative explanation for the
effects in Experiments 1 and 2, that participants inferred causal
strength from a limited memory of observations (i.e., primacy/
recency effects), rather than the transitions. Experiments 4 and 5
tested whether people encode transitions as magnitudes or dis-
cretely (as increases vs. decreases). All the reported experiments
were approved by the University of Pittsburgh Human Research
Protection Office.

Experiments 1A and 1B: Learning From States
Versus Transitions

Figure 3 summarizes the way we tested whether people use
transitions for inferring causal strength in time series settings in
Experiments 1 and 2. Figure 3 shows the same 20 data points
rearranged in three different orders: negative transitions, random,
and positive transitions. Because all three data sets in Figure 3
have the same 20 observations of X and Y, taking the correlation
of the states of X and Y results in a correlation of rStates � .70 for
all three. Figure 3A shows the 20 data points in time series
presentations with time on the abscissa, and the value of the cause
and effect (X and Y) as the two lines on the ordinate. Figure 3B
shows a scatterplot of the 20 data points with X on the abscissa and
Y on the ordinate. This presentation makes it easy to see that these
are the same 20 data points presented in different orders. The order
of the observations is displayed with numbers and lines connecting
the sequential data points.

The negative transitions panels in Figure 3 represent data that
could arise when X and Y both increase over time due to an
unobserved temporal confound but there is a negative causal
influence of X on Y; it is the same data from Figure 1. This
negative influence can be seen by examining how X and Y
change from one observation to the next. In the time series
presentation (Figure 3A), when X increases, Y decreases, and
vice versa. This effect can also be seen in the corresponding
scatterplot (Figure 3B): The lines connecting one observation to
the next go from the top left to bottom right, and vice versa
(negative transitions). Even though the correlation between X
and Y is rStates � .70, r�Continuous � �.97.

In contrast, in the positive transitions panels in Figure 3, the
order of the observations were rearranged such that whenever X
increases, Y also increases, and when X decreases, Y decreases.
Both the rStates � .70 and r�Continuous � .98 metrics agree that
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there is a positive relation. In the random transitions panels in
Figure 3, the same 20 observations were randomly ordered. In this
condition, rStates � .70 and r�Continuous � .73.

Experiments 1A and 1B tested whether people use transitions
(difference scores) to control for temporal trends in time series
data by comparing their judgments of causal strength in data sets
like those in Figure 3, in which the states were held constant but
the transitions were varied. If people only use the states (raw
scores) for making judgments, then they would give similar causal
strength judgments for all three data sets. If they use transitions,
then they would give the highest judgments for the positive tran-
sitions condition, the lowest judgments for the negative transitions
condition, and the random condition would be in the middle,
though closer to the positive transitions condition.

The 20 observations in each dataset were presented sequentially
in a standard trial-by-trial learning format. In Experiment 1A, the
new scores for X and Y were displayed simultaneously on each
trial. In Experiment 1B, there was a short delay between the
display of the new score for X and the new score for Y on each
trial. The reason for introducing the delay in Experiment 1B is that
in many real-world situations there is some degree of a delay
between the change in a cause and the change in an effect. We
wanted to demonstrate that the proposed theory of learning from
transitions can also be implemented in the context of a time series
with delays.3

Method

Participants. For each experiment, 50 unique participants
were recruited using Amazon Mechanical Turk (MTurk) and paid
$0.60. The experiment lasted approximately 5 min. One additional
participant completed Experiment 1B but did not claim payment.
We included data from this participant.

Design and stimuli. The design and stimuli used in both
experiments were identical. Participants inferred causal strength
from data sets consisting of 20 observations of X and Y, in which
X and Y could take on values ranging from 0 to 100. We manip-
ulated the correlation between the states of X and Y as well as the
transitions in a 2 (positive vs. negative rStates) � 3 (negative vs.
random vs. positive transitions) within-subjects design.

Twenty data sets with rStates � .70 (e.g., Figure 3) were gener-
ated for the positive rStates condition using the corgen function
from the R package ecodist. Many of the data sets were slightly
modified in order to produce the desired patterns of transitions
described below; however, the rStates value was always very close

3 Though it would be theoretically possible to implement this strategy
with long delays, for example, if the change of X at time t causes a change
in Y at time t � 3, we expect that longer delays will become harder to parse
in trial-by-trial paradigms. The point of Experiment 1B is simply that
learning from transitions is theoretically possible even when there are
delays.

Figure 3. Sample dataset of a cause, X, and effect, Y, rearranged in three different orders. (A) Time series
presentation of the data showing X and Y over time. (B) Scatterplots of the dataset with numbers indicating the
order of observations. For all three orders, rStates � .70 but r�Continuous takes on different values depending on
the order of the observations.
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to .70. Next, copies of each dataset were made by flipping the
values of X around the midpoint of the scale (X � 50), creating
data sets with rStates � -.70 for the negative rStates condition.

The observations from each of the generated data sets were
reordered to produce three conditions (as in Figure 3). In the
negative transitions condition, the trials were reordered by hand
such that increases in X were always accompanied by decreases in
Y, and vice versa. This process was accomplished roughly in the
following way. Each dataset was plotted in scatterplot form (Fig-
ure 3B), and a diagonal line with a negative slope was drawn in the
lower left-hand quadrant. The line was moved toward the right,
and the order in which the observations intersected with the line,
roughly, determined the order in the dataset. For this reason, all the
transitions had a fairly similar, negative slope in the negative
transitions condition.

In the positive transitions condition, the trials were reordered by
hand such that increases in X were always accompanied by in-
creases in Y. This was accomplished in a similar way as the
negative transitions condition, except that the line that was drawn
had a positive slope and was moved toward the left. This meant
that all the transitions in the positive transitions condition had a
fairly similar, positive slope.

In the random transitions condition, the order of the 20 obser-
vations was randomized by computer once; the same randomized
order was viewed by every participant the dataset was presented to.
This randomization resulted in a mix of positive and negative
transitions; however, due to the states, most of the transitions in the
negative rStates condition were negative, and most of the transitions
in the positive rStates condition were positive. The correlation of
difference scores (r�Continuous) was used as a measure of how
positive or negative the transitions were (see Table 1).

Another way to think about the temporal trends present in the
data sets is through the autocorrelation of X and Y. When the states
and transitions are in conflict (e.g., the condition with rStates � .70
and negative transitions in Figure 3), X and Y both increase over
time. This increase means that there is strong positive first-order
autocorrelation (see Table 2). In the random transitions conditions,
the autocorrelations are slightly negative. (We confirmed through
simulation that the sampling distribution of the autocorrelation
function of 20 randomly generated observations is in fact slightly
negative.) In contrast, for most of the other conditions, there are no
considerable increasing or decreasing trends, so the autocorrelation
is roughly near zero on average. When the states and transitions are
in agreement (e.g., the condition with rStates � .70 and positive
transitions in Figure 3), the X variable actually has a fairly strong
negative autocorrelation—this negative autocorrelation arises from
the requirement to have X and Y change in the same direction. To

be clear, even though the autocorrelations of the variables change
across the conditions, this is not a confound—it is inherent to the
fact that the conditions have different temporal trends. Strong
temporal trends inherently have strong autocorrelation.

In Figure 3B, for the negative and positive transitions condi-
tions, the observations start in the bottom and move to the top of
the scatterplot; this is especially true for conditions in which the
states and transitions conflict. We had intended to randomly pres-
ent the data in either this order (1–20), or in the reverse order
(20–1). However, due to a programming error, all participants saw
the forward direction. We do not think that this is a critical issue
because, if the order mattered at all, it is most plausible that the
strong increasing trends in the negative transitions and positive
states condition could lead participants to judge that there is a
positive causal relation, which works against our hypothesis that
they will judge a negative relation due to the negative transitions.
This issue was fixed for subsequent experiments.

Each participant viewed one randomly chosen dataset (out of
20) within each of the six conditions, and the order of the condi-
tions was randomized.

Procedure. Participants were told they would evaluate how
the dosage of a drug (X) affected the size of a microorganism (Y)
over 20 observations (“days”). Each condition was presented as a
different drug-microorganism pair. On each day, a new dosage of
the drug was administered to the microorganism and the size of the
microorganism was observed under a microscope. The microor-
ganism was represented using a circle, and there was also a triangle
representing the needle used to inject the drug (see Figure 4). The
dosage of the drug (X) was mapped onto the opacities of the
microorganism and the needle. Darker shades represented higher
doses of the drug; when X � 0, the stimuli were white (0%
opacity), and when X � 100, the stimuli were black (100%
opacity). The size of the microorganism (Y) was mapped to the
diameter of the circle. The minimum diameter was set to be 30
pixels (approximately 0.79 cm, although this could vary slightly
depending on participants’ browser dimensions) and the maximum
diameter was set to be 210 pixels (approximately 5.56 cm). Values
of Y linearly determined the circle’s diameter within that range
(e.g., if Y � 50, the diameter was halfway between the minimum
and maximum).

After each observation, there was a one second delay before a
button appeared. When participants clicked the button, the next
observation was shown. In Experiment 1A, the dosage of the drug

Table 1
Means (Standard Deviations) of r�Continuous for Stimuli in
Experiments 1 and 2

Transitions

M (SD) of r�Continuous

rStates � .70 rStates � �.70

Positive .97 (.01) .96 (.02)
Random .73 (.07) �.73 (.07)
Negative �.96 (.02) �.97 (.01)

Table 2
Means (Standard Deviations) of Autocorrelations for Stimuli in
the rStates � .70 Conditions in Experiments 1 and 2

Transitions

M (SD) of autocorrelation when
rStates � .70

X Y

Positive �.61 (.09) �.004 (.27)
Random �.15 (.13) �.12 (.26)
Negative .70 (.03) .71 (.04)

Note. Autocorrelations are at a time lag of one trial. When rStates � �.70,
the autocorrelations for the negative and positive transitions conditions are
swapped; the autocorrelation is dependent on whether the states and
transitions have the same polarity.
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(X) and size (Y) of the microorganism changed simultaneously
when the button was clicked. In Experiment 1B, after the button
was clicked, the opacity of the needle changed, followed by a
250-ms delay after which the opacity of the microorganism
changed, followed by a 750-ms delay after which the size of the
microorganism changed; this sequence represented the causal se-
quence of the events in the cover story.

After 20 observations, participants judged the causal strength,
on a scale from 8 (high levels of the drug strongly cause the
microorganism to increase in size) to �8 (high levels of the drug
strongly cause the microorganism to decrease in size). A rating of
zero indicated no causal relationship.

Results

Effects of states and transitions. We tested whether partici-
pants used states and or transitions for estimating causal strength
by testing whether rStates and or r�Continuous were significant pre-
dictors using regression. The values of r�Continuous corresponded to
the particular dataset that a participant viewed. All the data sets in
the positive and negative transitions conditions had r�Continuous

values of almost exactly .97 or �.96; however, there was more
variance in the random condition (see Table 1).

We performed two sets of regressions. The first set of regres-
sions tested the bivariate fits between each model and participants’
judgments. The second set were multivariate regressions testing
the influence of each model controlling for the other. The regres-
sions had a by-participant random intercept for repeated measures,
and by-participant random slopes for each predictor present in the
given model to capture the possibility that some participants’
judgments might be better predicted by rStates or r�Continuous.

The results of the regressions are reported in Table 3. In both
Experiments 1A and 1B, and in both the bivariate and multivariate
analyses, both rStates and r�Continuous significantly predicted par-
ticipants’ causal strength judgments. Table 3 also reports r2 for the
bivariate analyses and partial-R2 for multivariate analyses (in ad-
dition, we report effects sizes for all analyses in d). Transitions
(r�Continuous) always accounted for more variance in participants’
causal strength judgments than states (rStates).

The mean causal strength judgments for each condition in both
Experiments 1A and 1B are displayed in Figure 5. Across both

Figure 4. Presentation of stimuli in the visual format used in Experiments 1 and 4. Two observations are
displayed to show how a transition might appear.

Table 3
Model Fits for rStates and r�Continuous in Regressions of Experiments 1A, 1B, and 2

Model Experiment

Predictor

rStates r�Continuous

B (SE) p r2 d B (SE) p r2 d

Bivariate 1A 2.28 (.41) 	.001 .10 .67 2.80 (.42) 	.001 .24 1.12
1B 2.53 (.41) 	.001 .11 .70 3.68 (.34) 	.001 .38 1.57
2 (visual) 3.16 (.34) 	.001 .21 1.03 3.19 (.31) 	.001 .35 1.47
2 (numerical) 2.78 (.37) 	.001 .21 1.03 1.56 (.27) 	.001 .11 .70

Multivariate: rStates � r�Continuous 1A 1.39 (.33) 	.001 .04 .41 2.49 (.42) 	.001 .19 .97
1B 1.32 (.32) 	.001 .04 .41 3.39 (.33) 	.001 .33 1.40
2 (visual) 2.19 (.37) 	.001 .15 .84 2.71 (.35) 	.001 .30 1.31
2 (numerical) 2.42 (.37) 	.001 .16 .87 1.03 (.26) 	.001 .05 .46

Note. In multivariate models, r2 represents partial-R2.
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experiments, the effect of states can be seen in the higher judg-
ments for the rStates � .70 than �.70 conditions, and the effect of
transitions can be seen in the increasing judgments from the
negative to positive transitions conditions.

In Experiment 1A, the average of participants’ judgments was
above zero in the condition with negative rStates but positive
transitions, t(49) � 4.11, p 	 .001; the effect of transitions
“overrode” the effect of states. This same pattern was found in
Experiment 1B; t(50) � 6.97, p 	 .001. In conditions with positive
rStates but negative transitions, the average of participants’ judg-
ments was not significantly different from zero (p � .69 in
Experiment 1A and p � .08 in Experiment 1B); the negative
transitions “neutralized” the effect of the positive states.

Participant-level use of strategies. Although there was an
overall effect of transitions in both experiments, we wanted to test
if there were individual differences—perhaps only a minority of
participants made judgments influenced by transitions while others
focused on states. Across both experiments, we computed each
participant’s transition score. For each participant, we computed
their mean judgment for the two conditions with positive tran-
sitions and for the two conditions with negative transitions (omit-
ting their judgments in the two conditions with random transi-
tions). The transition score was the difference between these two
means. If participants distinguished between positive versus neg-
ative transitions as predicted, their transition scores would be
positive (higher judgments in conditions with positive transitions).
We also computed each participant’s state score: We computed
their mean judgment for the two conditions with positive states and
the two conditions with negative states (omitting their judgments
from the two conditions with random transitions). The state score
was the difference between these two means. Participants who
distinguished between positive versus negative states would have
positive state scores.

The top row of Figure 6 plots the distribution of each partici-
pant’s transition and state scores for Experiments 1A and 1B.
Points in the upper half of each plot represent participants who
exhibited a positive effect of transitions (transition scores 
0).
Participants in the right half of each plot represent participants who
exhibited a positive effect of states (state scores 
0). The number

of participants falling in each quadrant is displayed in each panel
of Figure 6.

Across both experiments, most participants (38 of 50 in Exper-
iment 1A and 45 of 51 participants in Experiment 1B) exhibited a
positive effect of transitions. A binomial test indicated that these
proportions were significantly greater than chance (p’s 	 .001).
The effect of states was also positive in most participants: 38 of 50
in Experiment 1A (p 	 .001) and 37 of 51 in Experiment 1B (p �
.002). In Experiment 1A, there was no significant correlation
between participants’ transition and state scores, r � .18, p � .22.
In Experiment 1B, there was a marginal correlation, r � .29, p �
.04. In sum, the effect of transitions was not confined to a small

Figure 5. Condition means for Experiments 1A and 1B. Error bars represent standard errors.

Figure 6. Transition and state scores for participants in Experiments 1A,
1B, and 2.
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proportion of participants but was found in a majority. Further-
more, most participants exhibited both effects, and if anything,
there is a positive rather than negative correlation between using
the two strategies.

Discussion

Experiments 1A and 1B demonstrated that participants used
transitions more than states for inferring causal strength from time
series data with a continuous cause and continuous effect. Focus-
ing on transitions helped participants uncover the true causal
strength in this nonstationary time series setting. Though not tested
directly because they are from separate experiments, the effect of
transitions, if anything, was greater in Experiment 1B than 1A. It
is possible that the delay highlighted the time series nature of the
task and led to more use of transitions.

Experiment 2: Symbolic Versus Perceptual
Stimuli Formats

In Experiment 2, we tested whether the use of transitions for
inferring causal strength is moderated by the perceptual nature of
the stimuli. We hypothesized that naturalistic perceptual presenta-
tions such as a visual format may lead to a greater focus on
changes than a symbolic numerical format for the reasons de-
scribed in the introduction.

Method

Participants. One-hundred and two participants were re-
cruited using Amazon MTurk and Paid $0.60. The experiment
lasted about 5 min.

Design. The same design and data sets as Experiment 1A was
used, except that an additional between-subjects factor was added so
that half the participants viewed the data presented in a visual format,
while half the participants viewed the data in a numerical format.

Stimuli. The stimuli was largely similar to the prior experi-
ments, except for the presentation formats (see Figure 7). In the
numerical condition, the stimuli were presented as numbers on a
scale 0–100. In the visual format, both the cause and effect were
displayed using vertical sliders (see Figure 7A).4 The sliders had a
height of 280 pixels (approximately 7.41 cm).

Additionally, the order of trials was counterbalanced to move
either forward or in reverse. For example, some participants saw
the order 1–20 in Figure 3, and others saw the order 20–1. This
was determined randomly for each scenario a participant saw.

Results

Effects of states and transitions. There were no differences
in participants’ judgments between data sets that were presented in
a forward versus reversed order, so we analyzed all data sets
together. Means for all conditions are presented in Figure 8. We
first ran the same sets of analyses as in Experiment 1, separately
for the two conditions (see Table 3). In the bivariate analysis, both
rStates and r�Continuous significantly predicted participants’ causal
strength judgments. The variance explained was larger for
r�Continuous in the visual condition, and larger for rStates in the
numerical condition. The effect of rStates remains the same across
conditions, but the effect of r�Continuous is much stronger in the

visual than numerical condition. The same pattern held up for the
multivariate analysis; both predictors were significant in both
conditions, and the variance explained by the two predictors
showed the same switch. The larger effect of transitions in the
visual condition can be seen in Figure 8 in the steeper slopes of the
lines from the negative to positive condition in the visual com-
pared with numerical condition.

To formally test whether there was an interaction between the
two predictors and the presentation format, we ran a regression
with five predictors: rStates, r�Continuous, presentation format, the
interaction between rStates and presentation format, and the inter-
action between r�Continuous and presentation format. Due to re-
peated measures, there was a by-participant random intercept and
a random slope for rStates and r�Continuous (the within-subjects
predictors). In this regression, there was a significant overall effect
of rStates (B � 2.19, SE � 0.36, p 	 .001, partial-R2 � .15, d �
0.84) and a significant overall effect of r�Continuous (B � 2.71,
SE � 0.30, p 	 .001, partial-R2 � .17, d � 0.91). There was no
significant interaction between rStates and presentation format (B �
0.22, SE � 0.53, p � .67, partial-R2 � .001, d � 0.06). Most
importantly for this study, there was a significant interaction
between r�Continuous and presentation format (B � �1.68, SE �
0.44, p � .001, partial-R2 � .04, d � 0.41); the negative coeffi-
cient means that the effect of transitions was larger in the visual
condition.

Participant-level use of strategies. Figure 6 (bottom row)
displays participants’ transition and state scores, calculated the
same way as in Experiment 1. Similar to Experiments 1A and 1B,
the effect of transitions was not confined to a small proportion of
participants. In each condition, the proportion of participants ex-
hibiting a positive effect of transitions was above chance: 46 of 54
in the visual condition (p 	 .001), and 34 of 48 in the numerical
condition (p � .006). A chi-square test of independence found
these proportions did not differ across the two conditions (p �
.13). A positive effect of states was also exhibited by a majority of
participants: 42 of 54 in the visual condition, and 41 of 48 in the
numerical condition (p’s 	 .001). These proportions did not differ
across the two conditions (p � .46). There was a correlation
between participants’ state and transition scores in the visual
condition, r � �.46, p 	 .001 but not the numerical condition, r �
.01, p � .96. The correlation between participants’ state and
transition scores in the visual condition suggest that participants
exhibited either a strong effect of transitions or states, but not both
simultaneously.

Discussion

In sum, participants used transitions for estimating causal strength
more in the visual than in the numerical condition. This meant that
their judgments were more accurate when the stimuli were presented
visually rather than numerically. We use the word accurate because in
the negative (positive) transitions condition, the true causal strength is
negative (positive) once the temporal confound is accounted for, and

4 We used linear sliders instead of the opacity and circle in Experiment
1, out of concern that these might not be viewed linearly; opacity might not
be perceived linearly, and the circle’s size could be interpreted in terms of
either diameter or area. We thank two reviewers for pointing out these
potential issues.
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participants’ judgments more closely tracked the difference between
negative versus positive transitions in the visual condition.

This finding is somewhat paradoxical: humans are able to represent
numbers precisely, an ability that enables finer discrimination be-
tween quantities and complex computations, but this ability appears to
interfere with causal learning in time series contexts. In contrast,
humans appear to be fairly well adapted to infer causality correctly in
time series contexts from naturalistic stimuli. Collectively, the find-
ings from Experiments 1A, 1B, and 2 demonstrate a robust effect of
transitions (even across two different visual presentation formats and
a numerical format). Although the effect of transitions can be mod-
erated by perceptual factors, the effect was present in all conditions.

Experiment 3: Ruling out Primacy and Recency
Effects as an Explanation for the Effect of Transitions

A potential alternative explanation for the results of the prior
experiments is that participants’ causal inferences are influenced
by primacy or recency effects (Collins & Shanks, 2002; Dennis &
Ahn, 2001; Fernbach & Sloman, 2009; Glautier, 2008).5 A pri-
macy effect means that participants’ judgments are based primarily
on the first few trials. This could happen if participants quickly
form beliefs about causal strength and then discount or ignore later
evidence, or interpret it in a way that is consistent with their initial
beliefs. A recency effect means that participants’ judgments are
based primarily on the last few trials. Recency effects can happen
due to limited memory, or reflect a rational attempt to update an
estimate for the most recent context in a nonstationary setting.

In Experiments 1 and 2, both recency and primacy effects were
confounded with r�Continuous. For example, consider the data in Figure
3. Even though rStates � .70 for the entire dataset, in the negative
transitions condition, rStates � �.84 for the first three observations,
and rStates � �.67 for the last three observations. (For any window of
three observations, rStates is very negative, but with larger windows,
becomes more positive.) In the random transitions condition, rStates is
usually positive for small windows, and in the positive transitions
condition, rStates is always positive for small windows.

Experiment 3 was conducted to rule out the possibility that
primacy or recency effects might explain the findings we attributed
to transitions. To do this, we created stimuli in which the primacy
and recency effects conflicted (e.g., rStates was positive for the first
few trials and negative for the last few, or vice versa). r�Continuous

was either consistent with a primacy effect or a recency effect, but
never both. This allowed us to test how participants’ judgments
aligned with r�Continuous or with primacy/recency effects.

Method

Participants. One-hundred participants were recruited from
Amazon MTurk and paid $1.50. This experiment lasted between 5
and 10 min. One additional participant completed the experiment
but did not claim payment. We included data from this participant.

Design and stimuli. The study used a 2 (positive vs. negative
transitions) � 2 (positive vs. negative recency) within-subjects

5 We thank an anonymous reviewer for suggesting this explanation.

Figure 7. (A) Presentation of stimuli in the visual format used in Experiments 2 and 3. (B) Presentation of
stimuli in the numerical format used in Experiment 2. Two observations are displayed to show how a transition
might appear.
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design. The recency factor was negatively related to primacy—
positive recency conditions had negative primacy, and vice versa.
This design was accomplished in the following way. We created
data sets with 17 observations in which the states were held
constant, but varied whether either a recency or primacy effect of
the states was consistent with the transitions. Figure 9 shows an
example of one of the data sets.

These data sets have a number of unique features. First, the
transitions within each dataset were always positive or always
negative (with one exception explained later). In Figure 9, the
transitions are negative. Second, the data sets were symmetric,
which meant that rStates for all 17 observations was zero. One
variable underwent a positive or negative trend (X increased in
Figure 9), and the other variable (Y in Figure 9) underwent a
positive trend followed by a negative trend, or vice versa. Due to
this second feature, the chosen order of observations (either from
1–17 or 17–1) ensured that rStates was negative in the first half and
positive in the second half (as in Figure 9), or vice versa. The order
of observations in Figure 9 also ensured that rStates calculated with
a recency effect was always � zero and rStates calculated with a
primacy effect was always � zero. We allowed for the possibility
that a recency effect could be calculated by taking the rStates value
of the last n observations. For example, rStates could be calculated
for observations 16–17, or 15–17, . . . , or 2–17. In Figure 9, all the
rStates values calculated with a recency effect are positive with two
exceptions; for observations 16–17, the rStates value cannot be
calculated because they have the same X value, and for observa-
tions 15–17, rStates � 0. We found these exceptions to be necessary
to achieve all the stimuli features we needed. The same was done
for a primacy effect, which could be calculated by taking the rStates

value of the first n observations (e.g., 1–2, or 1–3, . . . , or 1–16).
In Figure 9, all the rStates values calculated with a primacy effect
are negative.

From the basic dataset in Figure 9, we made 16 versions by
combining three ways of manipulating the data. First, we reversed
the order of the 17 observations; doing so to Figure 9 meant that
all transitions were still negative, but a recency effect would be
negative and a primacy effect would be positive. Second, we
flipped the X observations around the midpoint; doing so to the

data in Figure 9 meant that the transitions were positive instead of
negative. Lastly, we also swapped the values of X and Y, which
meant that for half the data sets X had a linear trend and Y had both
increasing and decreasing trends, whereas for the other half Y had
a linear trend and X had both increasing and decreasing trends.

These 16 data sets are summarized in Table 4; the 2 � 2 design
can be seen by focusing on the transitions and recency columns. In
data sets with positive (negative) transitions, r�Continuous � .81
(�.81). Table 4 shows the possible ranges of rStates calculated with

Figure 8. Condition means for Experiment 2. Error bars represent standard errors.

Figure 9. A sample dataset in Experiment 3. The numbers represent the
order of the 17 observations. All the transitions are negative, except the last
one which is neutral because X does not change. All calculations of a
recency effect have rStates � 0, whereas all calculations of a primacy effect
have rStates 	 0. If the order of the trials is reversed, then all transitions
would still be negative, but a recency (primacy) effect would be negative
(positive).
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a primacy and recency effect; all calculations of primacy and
recency effects for all ranges of the observations have opposing
signs. For all data sets, the first order autocorrelation of the
variable with a linear trend was .78, and the autocorrelation of the
variable that had both increasing and decreasing trends was .35.

Procedure. The procedure was identical to the visual condi-
tion in Experiment 2, except that participants experienced eight
scenarios. For each participant, two data sets were randomly
selected from each of the four groups in Table 4. The data sets
were experienced in a random order.

Results

Transitions versus primacy/recency effects. Figure 10A dis-
plays the mean causal strength judgments by transitions and recency
effects in the data sets. To test if judgments were influenced by
transitions or by primacy/recency effects, we ran a regression with
two predictors: transitions (either positive or negative) and recency
effects in a data (either positive or negative). As a reminder, whenever

the recency effects were positive, primacy effects were negative, and
vice versa. The regression also included the interaction between these
two predictors and a by-participant random intercept and random
slopes for the predictors (due to repeated measures).

All three predictors, the slope for transitions, for recency, and
the interaction, were entered into the model simultaneously. There
was a significant effect of transitions; the positive transition con-
dition had higher causal strength judgments than the negative
transition condition (B � 4.51, SE � 0.48, p 	 .001, partial-R2 �
.33, d � 1.40). There was no main effect difference between
stimuli with positive versus negative recency effects (p � .55,
partial-R2 � .002, d � 0.09). There was a small but significant
interaction (B � 1.08, SE � 0.43, p � .013, partial-R2 � .006, d �
0.16); the positive recency effect stimuli were judged to have a
stronger causal strength in the positive transitions condition (B �
0.90, SE � 0.35, p � .011, partial-R2 � .01, d � 0.20) but not the
negative transitions condition (p � .54).

Participant-level analysis. Figure 10B displays each partici-
pant’s transition score, calculated the same way as in the prior exper-
iments. However, instead of a state score for each participant, we
display each participant’s recency score. We computed their mean
judgment for conditions with positive recency effects and conditions
with negative recency effects. The recency score was the difference
between these two means. Participants who displayed recency effects
would have positive recency scores. Conversely, participants who
displayed primacy effects would have negative recency scores.

The majority of participants (86 of 101) displayed a positive effect
of transitions (p 	 .001). The number of participants showing recency
effects (51 of 101) was not greater than chance (p � 1). The majority
of participants displayed small primacy/recency effects, but five par-
ticipants displayed extreme recency effects with recency scores 
5.
There was a marginal negative relationship between participants’
transition and recency scores, r � �.19, p � .06. Figure 10B suggests
this relationship was due to a few participants displaying strong
recency effects but no effect of transitions.

Discussion

The goal of Experiment 3 was to rule out primacy and recency
effects of rStates as potential explanations for the results in Experi-

Table 4
Stimuli Characteristics for Conditions in Experiment 3

Group Dataset Transitions

Trend Range of rStates calculated with

X Y Primacy Recency

I 1 Negative � � � [0, .58] [�1, �.20]
2 � � �
3 � � �
4 � � �

II 5 Negative � � � [�1, �.20] [0, .58]
6 � � �
7 � � �
8 � � �

III 9 Positive � � � [�.58, 0] [.20, 1]
10 � � �
11 � � �
12 � � �

IV 13 Positive � � � [.20, 1] [�.58, 0]
14 � � �
15 � � �
16 � � �

Figure 10. (A) Condition means for Experiment 3. Error bars represent standard errors. (B) Transition and
recency scores for participants in Experiment 3.
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ments 1 and 2. In Experiment 3, there was a large main effect of
transitions but no main effect of primacy/recency. There was a mar-
ginal interaction between transitions and primacy/recency effects of
rStates, which was confined to conditions with positive transitions.
Furthermore, the participant-level analysis suggested that this effect
was confined to a small number of participants. In sum, primacy/
recency effects of rStates cannot account for the large effect of transi-
tions. Of course, it is possible that there are primacy or recency effects
in regards to participants’ use of r�Continuous, though that is not
something we study in the current research.

Experiments 4 and 5: Learning From the Magnitude
or Direction of Transitions

In Experiments 4 and 5, we investigated whether transitions are
encoded as magnitudes (�Continuous) or discrete values (�Binary).
As previously discussed, when a stimulus changes, the change can
either be encoded on a continuous scale in terms of the amount of
change, or on a binary scale of increase versus decrease. Encoding
the change using a binary scale and inferring causal strength using
a process similar to r�Binary may serve as an easy-to-use heuristic
that approximates r�Continuous (see Appendix A, Part 2).

In Experiments 1 to 3, r�Continuous and r�Binary were confounded,
so it was impossible to distinguish them. Both models predicted very
negative estimates of causal strength for the negative transitions
conditions and very positive estimates for the positive transitions
conditions. For Experiments 4 and 5, we used two different strategies
to generate data sets in which r�Continuous and r�Binary diverged, to
estimate the unique effects of each model on participants’ causal
strength judgments above and beyond rStates. Unlike Experiments 1 to
3, none of the variables had linear temporal trends. From a normative
perspective, this means that it is less necessary to account for time, so
it is possible that the effects of transitions will be smaller. However,
we found it necessary to move away from linear temporal trends in
order to distinguish r�Continuous and r�Binary.

In Experiment 4, this was accomplished using data sets from a
type of Simpson’s Paradox, resulting in stimuli with a low corre-
lation between r�Binary and r�Continuous, while holding rStates con-
stant. The downside of this approach was that the data sets were
somewhat unusual; however, the upside was that the three predic-
tors could be differentiated well. In Experiment 5, we randomly
generated data sets with a fixed value of rStates. Though r�Continuous

and r�Binary were positively correlated, their unique effects could
be disentangled with regression.

To anticipate the results, both Experiments 4 and 5 found that
participants used a strategy like r�Binary for inferring causal
strength, but there was no evidence that they used r�Continuous once
rStates was controlled for.

Experiment 4

Method

Participants. Fifty participants were recruited using Amazon
MTurk and paid $1.50. The experiment spanned 12 scenarios and
lasted about 10 min–12 min.

Stimuli generation. We created data sets that held rStates

constant, but varied r�Binary and r�Continuous. This was challenging
because r�Binary and r�Continuous are typically highly correlated.

Each dataset had 12 observations—two observations of each of
the following six states of (X, Y): (0, 20), (20, 0), (40, 60), (60,
40), (80, 100), and (100, 80). In creating these stimuli, we were
careful to ensure that it was easy to perceptually distinguish all
values on the X (opacity) and Y (size) dimensions. Using these 12
observations meant that for all stimuli, rStates � .83. The observa-
tions formed three clusters (I–III, see Figure 11A) with low,
medium, or high values for X and Y. Transitions between two
observations within a cluster (e.g., [0, 20] to [20, 0]) necessarily
involved a negative transition (X increasing and Y decreasing, or
vice versa). Transitions between clusters (e.g., [0, 20] to [60, 40])
necessarily involved a positive transition. This can be viewed as a
type of Simpson’s paradox; such data sets might occur if the cause
and effect are negatively related once a third variable (the clusters)
is held constant.

Within each dataset it was possible for r�Continuous and r�Binary

to diverge considerably depending on the observation order and
the resulting transitions. Increasing the ratio of within to between-
cluster transitions decreased both r�Continuous and r�Binary. How-
ever, for a given ratio of within to between-cluster transitions,
r�Continuous was also influenced by the between-cluster transition
path. Transition paths with smaller jumps between clusters pro-
duced lower r�Continuous values. For example, in Dataset 1 of
Figure 11, the between-cluster transitions are between adjacent
clusters (Cluster I and II, or Cluster II and III), resulting in
r�Continuous � .19. In contrast, transition paths with large jumps
between clusters produced higher r�Continuous values. For example,
in Dataset 2 of Figure 11, there are three transitions between
Clusters I and III, resulting in r�Continuous � .65.

Ten-thousand data sets were generated by randomly ordering
the 12 observations, with the constraint that the same observation
could not occur consecutively. The r�Continuous and r�Binary values
for these 10,000 data sets are plotted in Figure 12A as black
circles. For each of these data sets, we created versions for which
rStates � �.83 by flipping the values of X around the midpoint of
50. This procedure also flipped the r�Continuous and r�Binary values
of that dataset, which are plotted in Figure 12A as gray triangles.

To discriminate between r�Continuous and r�Binary, we selected
data sets from regions on the periphery of the distributions of
original and flipped data sets, giving us 2,760 data sets in total. In
Figure 12A, the original regions are marked with solid squares,
and the corresponding flipped regions are marked with dashed
squares. The numerical labels of the regions correspond roughly to
the r�Binary value of the data sets in the region. The high-low label
(“H” vs. “L”) refers to whether the r�Continuous value is high or low
within a given numerical region. Data sets in Region 1 correspond
to data sets in Region 7 and so on, with swapped high-low labels.
For example, data sets in Region 1H with rStates � .83 have
corresponding reversed data sets with rStates � �.83 in Region 7L.

The data sets that were not selected tended to have many more
between-cluster transitions overall. Only those with sufficient local
within-cluster transitions in the opposite direction of the larger
between-cluster transitions gave rise to Simpson’s Paradox, yield-
ing diverging values for r�Continuous and r�Binary.

Each participant was presented with 12 data sets during the exper-
iment—one from each of the original regions or their corresponding
flipped regions. For a particular region, participants were randomly
shown either the rStates � .83 dataset or the rStates � �.83 version
(either from Region 1L or Region 7H, Region 2L or Region 8H, etc.).
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Stimuli properties. The average autocorrelations of X and Y
in all data sets differed across regions (see Table 5). In the rStates �
.83 data sets, the autocorrelations were lower for higher region
numbers (higher r�Continuous and r�Binary) due to the increased
number of larger between-cluster transitions. For the same reason,
the autocorrelations were also lower for the “H” regions (with
higher r�Continuous) than for “L” regions. We view these differ-
ences in the autocorrelations not as a confound, but as another way
to understand the differences between regions, which are useful for
disentangling r�Binary from r�Continuous.

The correlations between rStates, r�Continuous, and r�Binary in
the stimuli viewed by participants are shown in Table 6. The
“Raw” row provides the correlations of the three predictors
coming from all 24 regions in Figure 12A, which included data

sets in which rStates � .83 and �.83. The correlation between
rStates and r�Continuous was relatively high because r�Continuous is
a good estimator of rStates. Crucially for the purposes of this
experiment, the correlation between r�Continuous and r�Binary

was close to zero. The correlation between rStates and r�Binary

was actually negative, and can be seen in Figure 12A: Out of
the 24 regions, the region with the highest r�Binary value is in
the rStates � �.83 condition (Region 7), and the region with the
lowest r�Binary value is in the rStates � .83 condition (Region 1).
One implication of the negative correlation between rStates and
r�Binary was that the bivariate correlation between the r�Binary

values and participants’ causal strength judgments was likely to
be weak or even negative since rStates has a positive influence
on causal strength judgments.

Figure 11. Two sample data sets from Experiment 4. Each scenario consisted of 12 observations (each data
point was observed twice). (A) Scatterplots of the data sets. Numbers reflect the order of the observations. (B)
Time series presentation of the data sets.
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Because rStates and r�Continuous were fairly highly correlated, we
analyzed the data in two ways. The first way used the raw scores
of the three predictors. The second way involved recoding the
rStates � �.83 stimuli back into the positive domain (described in
detail below). This meant that we treated all data as if rStates � .83,
which allowed us to estimate the effects of r�Continuous and r�Binary

without having to statistically control for rStates. The correlation
between the r�Continuous and r�Binary predictors among all data sets
with rStates � .83 was .61 (see Table 6). We used regression to
separately estimate the effects of these two correlated predictors.
There are no correlations with rStates in the “Reverse” coding rows
in Table 6 because once the data were recoded, rStates was fixed.

Procedure. The stimuli were presented using the visual for-
mat of Figure 4; the dosage of the drug (X) was mapped onto the

opacity of the microorganism and the needle, and the size of the
microorganism (Y) was mapped onto the diameter of the circle.
The procedure was the same as in Experiment 1A, except that
participants experienced 12 scenarios.

Results

Figure 12B plots the means of participants’ causal strength judg-
ments for scenarios from each of the 24 regions in Figure 12A. In the
rStates � .83 condition, higher region numbers contained stimuli with
higher r�Binary values, and were associated with higher causal strength
judgments (upward trending lines). However, the plot does not reveal
a consistent tendency for participants to provide higher causal strength
judgments for the r�Continuous high versus low regions.

Figure 12. (A) r�Binary and r�Continuous values for 10,000 data sets with rStates � .83 and their reversed
counterparts with rStates � �.83 generated for Experiment 4. Stimuli were sampled from the marked regions. (B)
Mean causal strength judgments for stimuli from each region. Error bars reflect standard errors. See the online
article for the color version of this figure.

Table 5
Means (Standard Deviations) of Autocorrelations for Stimuli by Region in Experiment 4

Region rStates � .83 1H 2H 3H 4H 5H 6H
rStates � �.83 7L 8L 9L 10L 11L 12L

M (SD) of auto-correlation X .58 (.01) .31 (.07) .12 (.09) .11 (.10) �.16 (.13) �.14 (.19)

Y .53 (.03) .31 (.07) .13 (.10) .09 (.08) �.14 (.19) �.34 (.10)

Region rStates � .83 1L 2L 3L 4L 5L 6L

rStates � �.83 7H 8H 9H 10H 11H 12H

M (SD) of auto-correlation X .70 (.07) .67 (.09) .59 (.06) .57 (.09) .43 (.05) .41 (.05)

Y .76 (.07) .67 (.09) .59 (.06) .59 (.09) .47 (.06) .42 (.05)
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In the rStates � �.83 condition, higher region numbers contained
stimuli with lower r�Binary values. Though the trend was not as clear
as in the rStates � .83 condition, the average causal strength judgment
seemed to decrease slightly with higher region numbers, which was
the expected effect if r�Binary had a positive effect on causal strength
judgments. If anything, the effect of r�Continuous appeared to go in the
opposite direction: In Regions 7 and 10 higher r�Continuous values had
lower average causal strength judgments.

In the following sections, we analyze these patterns formally with
inferential statistics in two different ways. In the first set of analyses,
we statistically controlled for rStates, and in the second set of analyses
we held rStates constant by reverse-coding the rStates � �.83 stimuli.

Raw-coding analysis. The rStates, r�Continuous, and r�Binary

model predictions for each dataset were used as predictors of
causal strength judgments in a series of regression models. The
first set of models were bivariate regressions between each pre-
dictor and participants’ judgments. The second set of models
estimated the effect of r�Continuous controlling for rStates, and the
effect of r�Binary controlling for rStates. The third set of multivariate
regressions included all three predictors. The regressions had a
by-participant random intercept for repeated measures, and by-
participant random slopes for each predictor present in the given
regression to capture the possibility that some participants’ judg-
ments might be better predicted by a particular model. The results
are reported in Table 7. A bivariate analysis found that all three
predictors were significant. However, the coefficient for r�Binary

was negative. This effect was anticipated in the analysis of the
stimuli properties; it is due to the fact that the rStates values are
negatively correlated with the r�Binary values in the stimuli.

In the second set of regressions that controlled for rStates, r�Binary

was highly significant, and r�Continuous was marginally significant. In
the full multivariate regression with all three predictors, r�Binary was
highly significant, and r�Continuous was not significant.

The effect of r�Binary on causal strength judgments can be seen
in Figure 13, a scatterplot of r�Binary values for individual data sets
and the associated causal strength judgments. The dashed black
line is the negative bivariate regression. The two solid lines are the
regression lines for r�Binary within the two groups of rStates, which
indicate positive effects of r�Binary.

Reverse-coding analysis. An alternative way to control for
rStates is to recode stimuli in the rStates � �.83 condition back into
the positive domain by flipping the X values around the midpoint.
Within each dataset, transitions that were positive (negative) are
flipped to become negative (positive), so the model predictions for
r�Continuous and r�Binary are also reversed. In Figure 12A, this

amounts to transposing stimuli from Regions 7–12 to their re-
versed counterparts in Regions 1–6.

Because all three predictors were reverse-coded in the
rStates � �.83 condition, we also reversed the causal strength judg-
ments (as if all judgments were made for stimuli with rStates � .83).
Reverse-coding the data meant that all stimuli had rStates � .83, so
there was no need to control for rStates statistically. This was beneficial
because in the raw-coding analysis, rStates and r�Continuous were
strongly positively correlated.

We used the same regression models as the raw-coding analysis,
except that we dropped the rStates predictor and its random slope. The
results for this analysis are presented in Table 8. In bivariate regres-
sions, both r�Continuous and r�Binary were significantly positively cor-
related with the causal strength judgments. In the multivariate analysis
including both r�Continuous and r�Binary, only r�Binary was significant.

Discussion

The findings suggest that when judging causal strength, partic-
ipants made greater use of the direction of change in the variables
than the magnitude of change (i.e., they were sensitive to r�Binary

but not r�Continuous), controlling for rStates.
There are three drawbacks to the design of Experiment 4. The

first is that using the circle for the effect allows the possibility that
participants could focus on the diameter or area; however, ancil-
lary analyses show that the results are consistent in either case.6

The second is that the data sets involve a somewhat unusual case
of Simpson’s paradox. The third is that the bivariate effect of

6 We reanalyzed all the data using the area of the circle instead of diameter to
calculate the three predictors; the pattern of results remained unchanged. In all but
two cases, the p-values that were significant remained significant, and p-values that
were not significant remained nonsignificant. The coefficient estimates and effect
sizes were also similar. In the raw-coding analysis, the effect of r�Continuous

controlling for rStates changed from marginally significant (p � .045 in Table 7) to
nonsignificant (B �.85, SE � .49, p � .08, partial-R2 � .006, d � .16). In the
reverse-coding analysis, the bivariate regression of r�Continuous changed from
marginally significant (p � .03 in Table 8) to nonsignificant (B �.85, SE � .46,
p � .07, r2 � .006, d � .16). In sum, the main take-home message of Experiment
4, that rStates and r�Binary but not r�Continuous explain additional variance in partic-
ipants’ judgments, is consistent regardless of whether participants focus on the area
or diameter of the circle. We did not do this reanalysis in Experiments 1A, 1B, 2,
and 3. In those experiments, the positive versus negative rStates conditions would
remain positive and negative, regardless of whether they are calculated with area
or diameter. Furthermore, in those experiments, we do not distinguish between
r�Continuous and r�Binary, and the positive vs. negative transitions conditions would
remain positive or negative regardless of whether they are calculated with area or
diameter, so there was no need to redo the analysis.

Table 6
Correlations Between Predictors in Stimuli Viewed by Participants in Experiments 4 and 5

Experiment Stimuli coding Range of rStates

Correlations between predictors

rStates � r�Continuous rStates � r�Binary r�Continuous � r�Binary

4 Raw .83 or �.83 .80 �.49 �.08
Reverse .83 — — .61

5 Raw .50 or �.50 .94 .79 .85
Reverse .50 — — .52

Note. Raw-coding means that rStates values were both positive and negative. Reverse-coding means that the
values on the X-axis were flipped around the midpoint, so all rStates values were positive.
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r�Binary on the causal strength judgments was negative in the
raw-coding analysis. This negative bivariate relation is explained
by the negative correlation between the rStates and r�Binary values
of the stimuli, but it would be ideal to have a positive bivariate
effect of r�Binary to increase the confidence of the influence of
r�Binary on participants’ causal strength judgments. In the final
experiment, we sought to replicate the findings here using data sets
created with a more typical generative process.

Experiment 5

Method

Participants. One-hundred participants were recruited using
Amazon MTurk and paid $1.50. The experiment consisted of 16
scenarios and lasted about 10 min–12 min in total. An additional
10 participants dropped out before completing all scenarios in the
experiment (contributing an additional 35 scenarios); we included
their partial data in the analysis.

Design and stimuli. We generated 2,000 data sets with the
following parameters, using the mvrnorm function from the R
package MASS. Each dataset had 10 observations; we used a
smaller number of observations than in previous studies because
simulations showed that more observations resulted in a stronger
correlation between r�Continuous and r�Binary. X and Y were ran-
domly sampled from Gaussian distributions with means of 50 and
standard deviations of 25, and a correlation such that rStates was
exactly .50. Only data sets with X and Y values within the range
of 1–100 were used in the study. For each dataset, we created a
reversed version with rStates � �.50 by flipping the values of X
around the midpoint. We then calculated the r�Continuous and
r�Binary values of the data sets, displayed in Figure 14. Each
participant was presented with 16 data sets, randomly sampled
from both the rStates � .50 and �.50 versions.

Because X and Y were randomly sampled, the autocorrelations
were close to zero. The average autocorrelations within both the
rStates � .50 and �.50 versions of data sets were slightly negativeT
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Figure 13. Participants’ causal strength judgments by r�Binary values in
Experiment 4. There is a negative bivariate relationship (dashed black
line). However, controlling for the rStates value, there is a positive relation-
ship (solid black or gray lines for each rStates group).
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(M � �.12, SD � 0.30 for both X and Y). (This is a general
feature of autocorrelation, not something unique to our data; we
confirmed through simulation that the sampling distribution of the
autocorrelation function of a limited number of randomly gener-
ated observations is in fact slightly negative).

The correlations between rStates, r�Continuous, and r�Binary among
all data sets viewed by participants including both the rStates � .50
and �.50 versions are presented in Table 6. The correlations
between predictors were higher than in Experiment 4. However,
after using the reverse-coding procedure, eliminating the need to
control for rStates, the correlation between r�Continuous and r�Binary

was reduced to .52, low enough for the effects to be disentangled.
Procedure. The procedure was largely similar to the prior

experiments, except that the concentration of the drug (X) was
displayed with a vertical slider, similar to Experiments 2 and 3.
The size of the microorganism (Y) was mapped to the diameter of
a circle, similar to Experiments 1 and 4 (see Figure 15). The shade
and color of the circle remained constant throughout each scenario.

Results

The results were analyzed in the same way as Experiment 4.
Raw-coding analysis. The results of the raw-coding analyses

are presented in Table 7. In the bivariate regressions, all three
predictors significantly predicted causal strength judgments. In the

second set of regressions that controlled for rStates, r�Continuous, and
r�Binary were still significant predictors. In the multivariate anal-
ysis with all three predictors, r�Binary was significant, but
r�Continuous was not.

Reverse-coding analysis. We followed the same reverse-
coding procedure from Experiment 4. In the reverse-coding anal-
ysis, rStates was held constant, so only r�Continuous and r�Binary

were included as predictors. The results are reported in Table 8. In
the bivariate regressions, both r�Continuous and r�Binary were sig-
nificant predictors. In the multivariate analysis, r�Binary was sig-
nificant, but r�Continuous was not.

The results of both the raw and reverse-coding analyses were
robust regardless of whether the predictors used the diameter or
area of the circle; all significant effects were still significant, and
all nonsignificant effects were still nonsignificant.

Discussion

The results of Experiment 5 were consistent with findings from
Experiment 4; r�Binary, but not r�Continuous, was a significant
predictor of causal strength judgments over and above the other
predictors. In sum, over and above the raw states, participants’
causal strength judgments are sensitive mainly to whether vari-
ables increase or decrease in a particular transition and not the
magnitude of change.

General Discussion

The current research investigated how people learn causal rela-
tions in time series settings with multilevel variables. In time series
settings, it is critical to control for temporal trends in the data, and
one way to do this is to utilize the difference scores in how
variables change over time, which we call transitions, rather than
the states of the variables at a given instant. Overall, we found that
in longitudinal scenarios, in addition to using the overall correla-
tion between the cause and effect, people also used the transitions
of how the cause and effect changed from one time point to the
next for inferring the strength of the causal relationship.

In Experiments 1A and 1B, we presented participants with data
sets in which a cause (X) and an effect (Y) exhibited increasing or
decreasing temporal trends. We manipulated the order of observa-
tions to create all positive or all negative transitions (varying
r�Continuous), while holding the correlations between the states of X
and Y (rStates) constant. The transitions accounted for roughly two
to three times more variance in participants’ causal strength judg-

Table 8
Results for Regressions in Experiments 4 and 5 (Reverse-Coded Data)

Model Experiment

Predictor

r�Continuous r�Binary

B (SE) p r2 d B (SE) p r2 d

Bivariate 4 1.00 (.47) .03 .007 .17 2.41 (.48) 	.001 .04 .41
5 2.18 (.53) 	.001 .01 .20 2.05 (.34) 	.001 .03 .35

Multivariate: r�Continuous � r�Binary 4 �.76 (.57) .19 .002 .09 2.87 (.59) 	.001 .03 .35
5 .75 (.54) .17 .001 .06 1.84 (.36) 	.001 .02 .29

Note. In models with multiple predictors, r2 represents partial-r2.

Figure 14. r�Continuous and r�Binary values for 2,000 data sets generated
for Experiment 5 and their flipped counterparts. Stimuli viewed by partic-
ipants were sampled from all data sets shown here.
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ments than the states. This effect, if anything, was magnified by
the presence of a delay between the cause and the effect.

In Experiment 2, participants relied more on the transitions
when stimuli were presented visually than numerically. The nu-
merical condition was the only condition in which the effect size
for states was larger than the effect size for transitions. Using
transitions helped participants uncover the true causal relation,
which raises the following paradox: The ability to precisely rep-
resent numbers as symbols enables the performing of complex
mathematical operations, but this ability appears to interfere with
accurate causal learning in time series contexts.

Experiment 3 ruled out the possibility that instead of relying on
transitions, participants were merely sensitive to a primacy or
recency effect due to a limited memory of experienced events.
There was no main effect of recency, and while we found a small
interaction between transitions and recency, there was a large main
effect of transitions that cannot be explained by primacy or re-
cency.

In Experiments 4 and 5, we found that in addition to utilizing the
states, when participants used transitions they focused simply on
whether the cause and effect increased or decreased, not the
magnitude of increase or decrease, which could be viewed as a
simplifying heuristic for estimating causal strength. It was chal-
lenging to discriminate between these two strategies, r�Continuous

and r�Binary, because the most straightforward methods for gener-
ating random data results in r�Continuous and r�Binary being highly
correlated, and because r�Continuous is also very highly correlated
with rStates. A number of different techniques were employed to
overcome this problem of multicollinearity including (a) holding
rStates constant in the design of the study rather than controlling for

it statistically, (b) using a Simpson’s paradox technique to generate
the data sets, and (c) reducing the numbers of observations within
a dataset. Both experiments found the same results, that after
controlling for the other two predictors, rStates and r�Binary were
significant, but r�Continuous was not.

Though the effect sizes of r�Binary were smaller in the multi-
variate analyses in Experiments 4 and 5 compared with in Exper-
iments 1 and 2, this was expected given that the goal of Experi-
ments 4 and 5 was to distinguish r�Continuous and r�Binary, which
are typically highly correlated. This meant that the most extreme
cases used in Experiments 1 and 2, for which r�Continuous and
r�Binary converged, could not be used for Experiments 4 and 5. In
contrast, in Experiments 4 and 5, there were no linear trends in the
data. (When there are linear trends, using difference scores is
normatively justified.) Still, the partial variance explained by
r�Binary was in the range of .02 to .04. Converted into Cohen’s d,
this is equivalent to a range of .29 to .41, “small” to “medium”
effect sizes by convention. In the multivariate analyses in Exper-
iments 1 and 2, the effect sizes for r�Continuous (which is essentially
equivalent to r�Binary) convert to d of .59 to 1.4, which are
“medium” to “large” effects.

Using Difference Scores Versus Regression to Control
for Temporal Trends

We have proposed a heuristic for causal learning with time
series; people attend to transitions to account for temporal trends,
akin to taking difference scores to account for nonstationarity in
time series data. An alternative way to account for temporal trends
in time series data is with a regression model predicting the effect

Figure 15. Presentation of stimuli in Experiment 5. Two observations are displayed to show how a transition
would appear. See the online article for the color version of this figure.
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from the observed cause that includes time as a covariate. This
approach could be considered an ideal observer model in which
the learner “knows” about the presence of temporal trends.

In the simple case of increasing or decreasing linear trends in the
data (as in Experiments 1 and 2), an ideal observer model that
knows to account for linear trends will reach very similar conclu-
sions to the simplifying heuristics of learning from transitions.
Indeed, both of these approaches are viable options for dealing
with nonstationary time series (Shumway & Stoffer, 2011). In
Appendix A (Part 1), we show how models using first-order
difference scores control for linear trends. The fact that partici-
pants are more likely to infer a positive causal relation in the
positive transitions condition than the negative transitions condi-
tion provides evidence that people are able to control for temporal
trends to some extent.

However, there are two reasons to believe that participants were
using difference scores and were not using an analysis akin to
regression controlling for time. First, in Experiment 3, the cause
and effect undergo more complex trends; one of the variables
undergoes a positive trend in the first half of the data followed by
a negative trend. In order to accurately control for the temporal
trends without using difference scores, participants would have to
control for a nonlinear temporal trend that they do not know about
in advance. However, an ideal observer model could theoretically
involve more complex functions than the linear model discussed
above. Such models could account for cases in which the relation-
ships between time and the variables are nonlinear. Future exper-
iments using data with nonlinear temporal trends will be required
to discriminate between this class of ideal observer models and our
proposed heuristic.

Second, in Experiments 4 and 5, the trials were randomly
ordered such that there were no temporal trends on average, yet we
still see an effect of transitions in these experiments. In this case,
a standard ideal observer would not include time as a covariate.
Perhaps a Gaussian process model that is sensitive to short trends
in time (despite no overall trends on average) could also explain
this effect.

In sum, while additional work is needed to rule out the possi-
bility that participants are using a more sophisticated strategy,
some of our findings suggest that participants are using a simple
heuristic of focusing on transitions to account for temporal trends.

Do Learners Use States or Transitions as a
Default Tendency?

An important question to be answered is whether people use
transitions for inferring causal strength both in situations in which
transitions are statistically useful (e.g., nonstationary time series
environments), and also in situations in which using transitions are
not necessary from a statistical perspective (e.g., cross-sectional
environments). Phrased another way, do learners switch between
using transitions versus states for different kinds of environments?

From a normative perspective, Appendix A (Part 1) demon-
strates how taking the correlation between the difference scores of
X and Y effectively removes the confounding effect of temporal
trends in nonstationary environments, allowing the true causal
relation to be uncovered. A follow-up question is whether using
difference scores instead of raw scores results in worse perfor-
mance in a stationary (independent and identically distributed; iid)

environment. In Appendix A (Part 2), we demonstrate that in a
stationary environment, taking a correlation of difference scores
(r�Continuous) does not dramatically affect the precision or bias of
the correlation, and r�Binary also tracks rStates monotonically. Col-
lectively, this means that using transitions works pretty well in
both stationary and nonstationary environments, whereas using
states works well in stationary environments but can produce high
degrees of error in nonstationary environments. We do not pre-
sume that a learner must choose between these strategies, and
indeed we have evidence that they use both in both environments.
However, if a learner were forced to choose one strategy for all
environments, this analysis suggests that using transitions would
be a better choice.

Experiment 5 is especially relevant to answering this question,
because in Experiment 5 the data sets were generated randomly
with an iid process, and the data sets were sampled randomly from
the entire set that was generated. In Experiment 5, the effect of
r�Binary was significant, which suggests that even in iid settings for
which transitions are not statistically necessary to reach accurate
judgments, that people still do use transitions in addition to states.
A similar conclusion was reached in another study in which
participants learned causal strength from binary stimuli (Soo &
Rottman, 2015). Collectively, these findings raise the possibility
that participants may have been using transitions as well as states
in previous studies on causal learning that involved a trial-by-trial
presentation of randomly ordered data.

Toward a Process-Level Account of Learning Causal
Strength From Transitions

So far, our account of the use of transitions has been situated
mainly at the computational level of Marr’s (1982) hierarchy. The
goal for r�Continuous and r�Binary relative to rStates is to solve the
problem that temporal confounds can distort the apparent relation
between a cause and an effect. In Experiments 4 and 5, we
introduced the r�Binary model. Though this model is also most
appropriately conceived at the computational level, simplifying the
data into a binary representation raises the possibility that learners
could apply simpler rule-based models like �P (Jenkins & Ward,
1965), Power PC (Cheng, 1997), or others (e.g., Hattori & Oaks-
ford, 2007) for calculating causal strength from a 2 � 2 contin-
gency table.

It is also possible to elaborate an algorithmic or process-level
version of r�Continuous and r�Binary. In many situations, the
Rescorla-Wagner learning algorithm (RW; Miller, Barnet, & Gra-
hame, 1995; Rescorla & Wagner, 1972; Wagner & Rescorla, 1972)
and the generalized Delta Rule (Rumelhart, Hinton, & Williams,
1986) compute conditional contrasts similar to regression. We
built a modified version of RW that instead of taking the raw
states, takes the difference scores of the cause and the effect as
input, and ran simulations for stimuli from Experiments 1, 2, and
3 (see Appendix B for our method). RW did not learn the correct
polarity of causal strength based on the raw states. However, our
modified RW did learn the correct polarity based on the difference
scores, with predictions approximating participants’ judgments. In
sum, RW provides one way to implement the strategies described
here using a computationally tractable learning process.
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Philosophical Perspectives on States
Versus Transitions

There are important philosophical issues relevant to causal
learning from time series data concerning the metaphysics of the
cause, the effect, and relation between the two. Although this topic
is very broad, we highlight three specific questions that are rele-
vant to the present research. First, what are the cause and effect
(otherwise known as the relata)? Many philosophers view causes
and effects as events (Schaffer, 2016). However, this is not a
universal position. For example, Lewis (1973) focuses primarily
on events, though allows for the possibility of other sorts of causes
and effects, which sometimes include properties or facts (see also
Mellor, 1995, 2004). Second, if causation is among events, what
constitutes an event? With regards to the current research, the most
relevant distinction is whether an event must involve a change
(called a dynamic event) or not (a static event; see Casati & Varzi,
2015). Though some philosophers argue that events must involve
changes, we do not believe that this is a common position. For
example, Lewis (1973) gives an example of a barometer reading
depending on the pressure. In this case, there is a clear cause–
effect relationship (between air pressure and the barometer), but
the events are simply the states of the air pressure and the barom-
eter reading at a given time. A third question is how to understand
negative events (the absence of an event), and whether negative
events can participate in a causal relation (Casati & Varzi, 2015;
Wolff, Barbey, & Hausknecht, 2010)? This is especially problem-
atic if events are viewed to require a change, because then any
nonchange cannot be a cause. For example, imagine a table sup-
porting a plate. A strict position that events must comprise
changes, and that causal relata must be events, would require
arguing that there is no causal relation between the table and the
plate. To avoid this sort of problem, we believe most philosophers
(and statisticians) hold fairly broad views of “events” and what
sorts of events can participate in causal relations.7 However, there
also seems to be a view that changes are an especially important
class of events.

Certain philosophers also take a stance that a causal claim is
essentially a claim about change over time when tracking an entity
longitudinally. For example, Woodward (2003) argues that when
we say that “X causes Y,” what we really mean is that if we were
able to change the value of X over time, the value of Y would
change. Woodward (2003) argues that this is what we mean when
making a causal claim even if the causal claim is based on
cross-sectional data (e.g., from a randomized-controlled study) that
does not allow for a change (difference) score analysis.

Open Questions

There are a number of open questions and future directions.
First, in the present article, we focused on the case of elemental
causal induction for which the goal was to learn about causal
strength when there was a single cause and a single effect. How-
ever, in the real world typically multiple causes combine or inter-
act to produce an effect (Novick & Cheng, 2004; Spellman, 1996;
Waldmann & Holyoak, 1992). In current work, we are investigat-
ing how people learn about multiple causes of a single effect in a
time series setting (Derringer & Rottman, 2016).

Second, what remaining factors influence whether a learner
controls for temporal trends? In Experiment 2, we found that
participants were more likely to control for temporal trends when
the stimuli were presented visually rather than numerically. How-
ever, even in the visual condition, participants still did not give
extremely high (or low) judgments in the positive (negative)
transitions conditions, and participants still used states to some
extent. It is possible that participants’ explicit beliefs about back-
ground causes such as time may moderate the extent to which
learners control for temporal trends by using transitions. For ex-
ample, Gureckis and Love (2009) demonstrated that when people
are shown a cue representing an underlying state in the environ-
ment, they are better at learning the payoffs of two options. If
people are cued in to a variable that predicts temporal trends,
learners may use transitions even more as they seek to control for
the nonstationarity.

A third question is whether the process of causal induction
studied here for multilevel variables can be generalized to cases
where people learn about a binary cause and a binary effect. The
majority of research on causal learning has focused on binary
variables, and our focus on continuous variables was a deliberate
choice—we wanted to study temporal trends that could increase or
decrease across many values (e.g., Figure 1). Binary variables can
exhibit autocorrelation—a variable can be “off” for multiple ob-
servations before being “on” for multiple observations—but they
cannot exhibit the same dramatic nonstationary increasing or de-
creasing trends like in Figure 1A. We are currently studying
whether there are similar effects of transitions even for binary
variables (Soo & Rottman, 2015).

A fourth question is how memory constraints influence people’s
reliance on transitions and reliance on r�Binary. One benefit of
discretizing difference scores (r�Binary) from an algorithmic per-
spective is that it reduces the memory demands of learning relative
to states or continuous difference scores. Although our experi-
ments used trial-by-trial paradigms with only 10–20 observations,
it is possible that if the memory load were further reduced by using
even shorter time series, or by decreasing the range of possible
levels for the cause and effect, that there would be a shift toward
using states.

Lastly, in the introduction we cited a variety of research on the
importance of covariation detection for many areas of cognition
including categorization, stereotype formation, as well as its role in
a variety of clinical disorders including depression, phobias, and
schizophrenia. That research differs from the current studies in that
it has primarily focused on covariation detection rather than causal
strength induction—the difference being that for causal strength
induction one variable is a putative cause and the other a putative
effect. Further, most of that work has focused on atemporal cases
(but see Sakamoto, Jones, & Love, 2008, for an example of
category learning involving temporal trends). Given the similarity
between the tasks involved in causal strength induction, covaria-
tion detection, and category learning, an important future direction
is investigating whether people use processes similar to the one
proposed here for causal strength induction when performing other
tasks.

7 A personal communication with James Woodward supports our assess-
ment. We also thank him for the table-plate example.
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Conclusion

Six experiments provided evidence that people use the transi-
tions of how a cause and effect change over time to infer whether
the cause has a positive or negative influence on the effect from
time series data. Most research on causal strength learning has
focused on situations in which the order of the trials is random,
whereas here we focused on time series contexts, which add an
additional layer of complexity for inferring causal strength. These
experiments provide an optimistic view of human causal learning
in longitudinal contexts in that participants were able to uncover
the strengths of causal relationships despite temporal trends that
can obscure the true causal relation.

Context of the Research

The current studies are part of a larger research program aiming
to understand causal learning in nonstationary environments. The
core idea for this project arose a number of years ago while the
second author was studying how people learn about tolerance and
sensitization effects (Rottman & Ahn, 2009). For example, caf-
feine initially has a very strong effect on attention, but with
repeated usage has diminishing effects. The similarity between that
research and the current research is that both involve causal
learning about variables that are continuous or at least multilevel
rather than binary, and in both, the simple correlation (rStates)
provides little insight into understanding the causal mechanism
whereas the changes do provide insight. The broader hypothesis is
that people are often able to learn how to control moderately
dynamically complex causal systems, and the empirical question is
how people are able to do so, and in particular, if there are
relatively simple heuristics that can adaptively guide behavior. We
are currently extending this research to understand if and how
similar principles of attending to changes also play a role when
learning about binary variables (Soo & Rottman, 2015), as well as
to understand how well different reinforcement-learning models
perform in these nonstationary settings. More broadly, we hope to
understand how people utilize different learning processes in dif-
ferent environments, and how adaptively people can switch be-
tween them in different environments.
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Appendix A

Estimating Causal Strength From Difference Scores

Part 1: How r�Continuous Uncovers the True Causal
Strength With Large Samples in Nonstationary

Environments With a Temporal Confound

This section provides a more thorough justification for how the
difference score analysis proposed in the main text accurately
uncovers the true correlation between a cause X and an effect Y
that both increase over time through an unobserved temporal
confound. In Figure A1, the generative process from Figure 2 in
the main text is elaborated to show the error terms for the two
observed variables.

The following two equations represent the data generating pro-
cess. t is a vector representing time in integers. xt and yt are the
variable vectors observed by the learner. εxt and εyt are vectors of
random variables that represent the unique variance in xt and yt,
respectively.

xt � t � εxt, where εxt � N(0, s2)

yt � t � rxt � (1 � r2)1⁄2εyt, where εyt � N(0, s2)

By substitution,

yt � (1 � r)t � rεxt � (1 � r2)1⁄2εyt

r is a constant between �1 and �1 representing the causal
strength as a correlation coefficient of εxt on yt after accounting for
t. The weights involving r on εxt and εyt for yt guarantee that r is
the correlation between εxt and yt after accounting for t in large
samples. This can be demonstrated by showing that the term εxt

accounts for r2 percent of the variance of y after removing the
variance from t:

(rεxt � (1 � r2)1⁄2εyt).

This is proved in the following two lines:

Var(rεxt) � r2Var(εxt) � r2s2

Var(rεxt � (1 � r2)1⁄2εyt) � r2Var(εxt) � (1 � r2)Var(εyt)

� r2s2 � (1 � r2)s2

� s2

The main problem is that, because εxt is unobserved, r cannot be
directly calculated. The main point of this section is to show that
the causal strength r can be uncovered in large samples by taking
a correlation of the difference scores of xt and yt, which are
observable. We show this by demonstrating that the variance
contained in the difference scores of xt, is r2 percent of the variance
in the difference scores of yt.

Var(Diff(xt))
�Var(Diff(t � εxt))
�Var(Diff(t)) � Var(Diff(εxt))

Because t is a vector that increases linearly with time [0, 1, 2, 3
. . .], the difference scores of t are [1, 1, 1 . . .], which means that
Var(Diff(t)) � 0, so

Var(Diff(xt)) � Var(Diff(εxt))

Through the properties already explained above, it can be shown
that

Var(Diff(yt))

�Var(Diff((1 � r)t � rεxt � (1 � r2)1⁄2εyt)

�Var(Diff((1 � r)t)) � Var(Diff(rεxt)) � Var(Diff(1 � r2)1⁄2εyt)

�0 � r2Var(Diff(εxt)) � (1 � r2)Var(Diff(εyt))

Finally, because Var(εxt) � Var(εyt), this last line shows that
Diff(εxt) contributes r2 percent of the variance to Diff(yt). And
because Var(Diff(xt)) � Var(Diff(εxt)), Diff(xt) contributes r2 per-
cent of the variance to Diff(yt).

Part 2: How rStates � r� With Large Samples in
Stationary Environments (No Temporal Confound)

This section proves that in large samples, when x and y are
independent and identically distributed (iid), cor(x, y) � cor-
(diff(x), diff(y)). Using the terminology from the paper, this means
that rStates � r�Continuous. Using the same logic from Part 1, we set
up yt such that r is the correlation between xt and yt, so xt accounts
for r2 percent of the variance in yt.

xt � N(0, s2)

yt � rxt � (1 � r2)1⁄2εt, where εt � N(0, s2)

Var(Diff(yt))

�Var(Diff(rxt � (1 � r2)1⁄2εt)

�Var(Diff(rxt)) � Var(Diff((1 � r2)1⁄2εt))

�r2Var(Diff(xt)) � (1 � r2)Var(Diff(εt))

(Appendices continue)

Figure A1. Generative Process From Figure 2 Including Error Terms.
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Finally, because Var(xt) � Var(εt), the last line in the equation
above shows that Diff(xt) accounts for r2 percent of the variance in
Diff(yt).

We also ran two simulations to estimate the means (bias) and
standard deviations (precision) of the estimate of cor(x, y) versus
cor(diff(x), diff(y)), or rStates versus r�Continuous. We also compared
these with r�Binary. The first simulation, summarized in Table A1,
computed the mean value of rStates, r�Continuous, and r�Binary for
10,000 simulated data sets with a sample size of 1,000 observations
each. Seven versions were run with different degrees of correlation
between X and Y, from 0 to 1, with a step size of one sixth. The data
generation process used the same process explained in Part 1. The
overall conclusion is that with a large number of observations, rStates

and r�Continuous are virtually identical. The mean value for r�Binary is
slightly lower, but follows the same increasing trend.

The second simulation measured the precision of rStates,
r�Continuous, and r�Binary as estimates of the correlation r. For
sample sizes between 10 and 1,000, we created 10,000 data sets
with randomly generated noise using the same data generating
process as in Part 1 with r � .7071 (i.e., r2 � .50). According
to this process, r does not exactly equal .7071, but r approaches
.7071 for large data sets.

The standard deviations of the estimators are reported in Table A2.
The standard deviations follow the pattern rStates 	 r�Continuous 	
r�Binary. r�Continuous is only slightly worse than rStates implying that
taking a difference score per se does not dramatically decrease the
precision. r�Binary does have considerably worse precision with small
sample sizes. This is not surprising given that it discards useful data.
In summary, both r�Continuous and r�Binary approximate rStates, though
the approximation is not perfect.

Appendix B

Implementation of the Rescorla-Wagner Learning Algorithm

In this section, we describe the implementation of the Rescorla-
Wagner learning algorithm (RW; Miller et al., 1995; Rescorla &
Wagner, 1972; Wagner & Rescorla, 1972) to model predictions for
stimuli in Experiments 1, 2, and 3. RW takes as input values of the
cause and effect and updates the strength of the cause based on
how well its presence predicts the effect. The change in strength
for the cause (�w) after each trial is computed as follows:
�wt�1 � �·�yt � wtxt�·xt

� is a learning rate parameter, which we set to .10. xt and yt

represent the current state of the cause and effect. wtxt is the
prediction of yt. It is standard practice to include an ever-present

background cue, so wtxt is the dot product (sum of the products) of
the weights of the two cues (the background cue and the cause) and
the states of the two cues. The term in the parentheses is the error;
the difference between yt and the prediction of yt. The rightmost
term of xt scales the amount the weight gets updated by the
magnitude of the cause, which is standard practice when the cues
are continuous rather than binary (Stone, 1986).

We ran simulations for stimuli using transformed scores of X
and Y divided by 100. We did this because when we used the
0–100 scale, the value for w “exploded” and alternated between
extremely large positive and negative values.

(Appendices continue)

Table A1
Simulation Results Showing Means of Estimators of r in a Stationarity Environment (Sample Size �
1,000) With Different Levels of r

r 0 1/6 1/3 1/2 2/3 5/6 1

rStates 0 .166 .333 .500 .666 .833 1
r�Continuous 0 .166 .333 .500 .666 .833 1
r�Binary 0 .106 .216 .333 .464 .627 1

Table A2
Simulation Results Showing Standard Deviations of Estimators of r in a Stationary Environment (r2 � .5)
With Different Sample Sizes

Sample size 10 20 50 100 200 500 1,000

rStates .20 .12 .07 .05 .04 .02 .02
r�Continuous .24 .15 .09 .06 .04 .03 .02
r�Binary .31 .21 .13 .09 .06 .04 .03
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RW Simulations of Stimuli From Experiments 1–3

Figure B1 plots RW’s simulated final w values for each of the
20 data sets from Experiment 1 and 2. In Experiment 1, the
order of the trials was presented in only the forward order, but
in Experiment 2 it was presented in both the forward and
reverse orders. This simulation shows that RW clearly discrim-
inates between the stimuli in which rStates is positive versus
negative, but does not reliably discriminate between the posi-
tive, negative, and random transitions conditions. The positive
transitions condition has higher w values than the negative and
random transitions conditions in the forward order; this could
be due to the fact that RW is sensitive to a recency effect.
However, RW predicts lower causal strengths in the positive
transition condition when the stimuli order is reversed. In
contrast, our participants did not show a difference between the
forward versus reversed orderings. RW also fails to capture
differences between the negative versus random transition con-
ditions. In sum, RW fails to capture the main trends in the data,
especially in the reverse condition.

Figure B2 shows the simulations of RW for the 16 data sets in
Experiment 3. RW fails to discriminate between the positive
versus negative transition conditions.

Modified Version of RW With Transitions (RW�)

We created a modified version of RW, named RW�, which runs
RW based on the difference scores (also divided by 100). Figure
B3 shows the simulation of RW� for Experiments 1 and 2; RW�
captures the trends in the data in Figures 5 and 8 much better than
RW. The predictions of RW� are very similar to the predictions of
r�Continuous and r�Binary.

Figure B4 shows the predictions of RW� for Experiment 3. The
predictions very closely line up with participants’ inferences (Fig-
ure 10A) as well as with r�Continuous and r�Binary.

In sum, while RW is unable to account for our participants’
judgments, RW� captures their judgments quite well. These sim-
ulations show that RW� is a computationally tractable way of
learning from transitions.

Figure B1. RW Predictions of Causal Strength (w) for Stimuli Used in Experiments 1 and 2.

(Appendices continue)
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Figure B2. RW Predictions of Causal Strength (w) for Stimuli Used in
Experiment 3.

Figure B3. RW� Predictions of Causal Strength (w) for Stimuli Used in Experiments 1 and 2.

Figure B4. RW� Predictions of Causal Strength (w) for Stimuli Used in
Experiment 3.
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