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Abstract	
This	chapter	provides	an	introduction	to	how	humans	learn	and	reason	about	multiple	
causal	relations	connected	together	in	a	causal	structure.	The	first	half	of	the	chapter	
focuses	on	how	people	learn	causal	structures.	The	main	topics	involve	learning	from	
observations	vs.	interventions,	learn	temporal	vs.	atemporal	causal	structures,	and	learning	
the	parameters	of	a	causal	structure	including	individual	cause-effect	strengths	and	how	
multiple	causes	combine	to	produce	an	effect.	The	second	half	of	the	chapter	focuses	on	
how	individuals	reason	about	the	causal	structure,	such	as	making	predictions	about	one	
variable	given	knowledge	about	other	variables,	once	the	structure	has	been	learned.	Some	
of	the	most	important	topics	involve	reasoning	about	observations	vs.	interventions,	how	
well	people	reason	compared	to	normative	models,	and	whether	causal	structure	beliefs	
bias	reasoning.	In	both	sections	I	highlight	open	empirical	and	theoretical	questions.		
	
Keywords:	Causal	Structure	Learning,	Causal	Reasoning,	Causal	Bayesian	Networks	
	
1	Introduction	
	 In	the	past	two	decades,	psychological	research	on	casual	learning	has	been	strongly	
influenced	by	a	normative	framework	developed	by	statisticians,	computer	scientists,	and	
philosophers	called	Causal	Bayesian	Networks	(CBN)	or	probabilistic	directed	acyclic	
graphical	models.	The	psychological	adoption	of	this	computational	approach	is	often	
called	the	CBN	framework	or	causal	models.	The	CBN	framework	provides	a	principled	way	
to	learn	and	reason	about	complex	causal	relations	among	multiple	variables.		

For	example,	Thrornley	(2013)	used	causal	learning	algorithms	to	extract	the	causal	
structure	in	Figure	1	from	medical	records.	Having	the	causal	structure	is	useful	for	experts	
such	as	epidemiologists	and	biologists	to	understand	the	disease	and	make	predictions	for	
groups	of	patients	(e.g.,	the	likelihood	of	having	cardiovascular	disease	among	70	year	old	
smokers).	It	is	also	useful	for	scientists	when	planning	future	research;	when	researching	
cardiovascular	disease	as	the	primary	outcome	it	is	critical	to	measure	and	account	for	
smoking	status	and	age;	it	is	not	important	to	measure	or	statistically	control	for	systolic	
blood	pressure.		
	
Figure	1:	Causal	Structure	of	Cardiovascular	Disease	(adapted	from	Thornley,	2013)	

	
	

Though	causal	structures	are	surely	useful	for	scientists,	the	causal	models	
approach	to	causal	reasoning	hypothesizes	that	lay	people	also	have	an	intuitive	
understanding	of	causal	structures	and	use	a	framework	similar	to	CBNs	to	learn	and	
reason	about	causal	relations.	Adopting	a	“man	as	intuitive	statistician”	or	“intuitive	
scientist”	approach	(Peterson	&	Beach,	1967),	we	can	also	contemplate	how	a	doctor	might	
develop	a	set	of	causal	beliefs	about	cardiovascular	disease	somewhat	akin	to	Figure	1.	Of	
course	the	doctor	likely	has	some	knowledge	of	specific	causal	links	from	medical	school	
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and	research	articles.	But	these	links	may	be	reinforced	or	contradicted	by	personal	
experience	such	as	noticing	which	patients	have	which	symptoms	and	diseases,	and	
tracking	how	patients’	symptoms	change	after	starting	a	treatment.	Developing	a	set	of	
causal	beliefs	such	as	in	Figure	1	would	allow	a	physician	to	make	prognoses	and	treatment	
plans	tailored	to	individual	patients.	
	 The	CBN	framework	supports	all	of	these	different	functions:	learning,	prediction,	
explanation,	and	intervention.	The	rest	of	this	chapter	will	explain	what	the	CBN	
framework	entails,	the	evidence	pertaining	to	how	people	learn	and	reason	about	causal	
networks,	and	how	closely	humans	appear	to	mimic	the	normative	CBN	framework.	
	 The	outline	of	this	chapter	is	as	follows.	I	first	explain	what	CBNs	are,	both	
normatively	and	as	a	model	of	human	learning	and	reasoning.	The	bulk	of	the	first	half	of	
this	chapter	is	devoted	to	evidence	about	how	people	learn	about	causal	networks	
including	the	structure,	strength,	and	integration	function.	I	then	discuss	evidence	
suggesting	that	instead	of	using	the	basic	CBN	framework,	people	may	be	using	something	
akin	to	a	generalized	version	of	the	CBN	framework	that	allows	for	reasoning	about	time.	
The	second	half	of	the	chapter	is	devoted	to	evidence	on	how	people	reason	about	their	
causal	beliefs.	At	the	end	of	the	chapter	I	raise	some	questions	for	future	research.	
1.1	What	Are	Causal	Bayesian	Networks?	
	 A	Causal	Bayes	Network	is	a	compact	visual	way	to	represent	the	causal	relations	
between	variables.	Each	variable	is	represented	as	a	node,	and	arrows	represent	causal	
relations	from	causes	to	effects.	The	absence	of	an	arrow	implies	the	absence	of	a	causal	
relation.		
	 Though	Causal	Bayesian	Networks	capture	the	causal	relations	among	variables,	
they	also	summarize	the	statistical	relations	between	the	variables.	The	CBN	framework	
explains	how	causal	relations	should	be	learned	from	statistical	relations.	For	example,	
given	a	dataset	with	a	number	of	variables,	the	CBN	framework	has	rules	for	figuring	out	
the	causal	structure(s)	that	are	most	likely	to	have	produced	the	data.	Conversely,	a	causal	
structure	can	be	read	such	that	if	the	causal	structure	is	believed	to	be	true,	it	implies	
certain	statistical	relations	between	the	variables;	that	some	sets	of	variables	will	be	
correlated	and	others	will	not	be	correlated.	In	order	to	understand	how	to	“read”	a	CBN,	it	
is	important	to	understand	these	relations	between	the	causal	arrows	and	the	statistical	
properties	they	imply.	

First,	it	is	critical	to	understand	some	basic	statistical	terminology.	“Unconditional	
dependence”	is	whether	two	variables	are	statistically	related	to	(or	“dependent	on”)	each	
other	(e.g.,	correlated)	without	controlling	for	any	other	variables.	If	they	are	correlated,	
they	are	said	to	be	dependent,	and	if	they	are	not	correlated,	they	are	said	to	be	
independent.	Conditional	dependence	is	whether	two	variables	are	statistically	related	to	
each	other	after	controlling	for	one	or	more	variables	(e.g.,	whether	there	is	a	significant	
relation	between	two	variables	after	controlling	for	a	third	variable	in	a	multiple	
regression).	Conditional	and	unconditional	dependence	and	independence	are	critical	for	
understanding	a	CBN,	so	it	is	important	to	be	fluent	with	these	terms	before	moving	on.	

There	are	two	properties,	the	Markov	property,	and	the	faithfulness	assumption,	
that	explain	the	relations	between	the	causal	arrows	in	a	CBN	and	the	statistical	
dependencies	between	the	variables	in	a	dataset	that	is	summarized	by	the	CBN	(also	see	
Rehder,	this	volume	a	and	b).	The	Markov	property	states	that	once	all	the	direct	causes	of	
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a	variable	X	are	controlled	for	or	held	constant,	X	is	statistically	independent	of	every	
variable	in	the	causal	network	that	is	not	a	direct	or	indirect	effect	of	X.		

For	example,	consider	Figure	2b.	The	Markov	assumption	states	that	X	will	be	
independent	of	all	variables	(e.g.,	Z)	that	are	not	direct	or	indirect	effects	of	X	(X	has	no	
effects	in	Figure	2b)	once	controlling	for	all	direct	causes	of	X		(Y	is	the	only	direct	cause	of	
X).	Similar	analyses	can	be	used	to	see	that	X	and	Z	are	also	independent	conditional	on	Y	in	
Figures	2a	and	2c.	

In	regards	to	Figure	2d,	the	Markov	Assumption	implies	that	X	and	Z	are	
unconditionally	independent	(not	correlated).	Neither	X	nor	Z	have	any	direct	causes,	so	X	
will	be	independent	of	all	variables	(such	as	Z),	that	are	not	a	direct	or	indirect	effect	of	X	
(e.g.,	Y).	The	Markov	property	is	symmetric;	if	X	is	independent	of	Z,	Z	is	independent	of	X	-	
they	are	uncorrelated.	
	 The	faithfulness	Assumption	states	that	the	only	independencies	between	variables	
in	a	causal	structure	must	be	those	implied	by	the	Markov	assumption	(Glymour,	2001;	
Spirtes,	Glymour,	&	Scheines,	1993).	Stated	another	way,	all	variables	in	the	structure	will	
be	dependent	(correlated),	except	when	the	Markov	property	states	that	they	would	not	be.	
This	means	that	if	we	collect	a	very	large	amount	of	data	from	the	structures	in	Figures	2a,	
2b,	or	2c,	X	and	Y,	and	Y	and	Z,	and	X	and	Z	would	all	be	unconditionally	dependent;	the	
only	independencies	between	the	variables	arise	due	to	the	Markov	assumption,	that	X	and	
Z	are	conditionally	independent	given	Y.	If	we	collected	a	large	amount	of	data	and	noticed	
that	X	and	Z	were	unconditionally	independent,	this	independency	in	the	data	would	not	be	
“faithful”	to	Figures	2a,	2b,	or	2c,	implying	that	the	data	do	not	come	from	one	of	these	
structures.	For	Figure	2d,	the	only	independency	implied	by	the	Markov	property	is	that	X	
and	Z	are	unconditionally	independent.	If	a	large	amount	of	data	were	collected	from	
structure	2d,	X	and	Y,	and	Z	and	Y	would	be	dependent	(according	to	the	faithfulness	
assumption).		
	
Figure	2:	Four	CBNs	

	
	

In	sum,	causal	models	provide	a	concise,	intuitive,	visual	language	for	reasoning	
about	complex	webs	of	causal	relations.	The	causal	network	diagram	intuitively	captures	
how	the	variables	are	causally	and	statistically	related	to	each	other.	But	causal	networks	
can	do	much	more	than	just	describe	the	qualitative	causal	and	statistical	relations;	they	
can	precisely	capture	the	quantitative	relations	between	the	variables.	

To	capture	the	quantitative	relations	among	variables,	causal	networks	need	to	be	
specified	with	a	conditional	probability	distribution	for	each	variable	in	the	network	given	
its	direct	causes.	A	conditional	probability	distribution	establishes	the	likelihood	that	a	
variable	such	as	Y	will	have	a	particular	value	given	that	another	variable	X,	Ys	cause,	has	a	
particular	value.	Additionally,	exogenous	variables,	variables	that	have	no	known	causes	in	
the	structure,	are	specified	by	a	probability	distribution	representing	the	likelihood	that	
the	exogenous	variable	assumes	a	particular	state.		

For	example,	the	CBN	in	Figure	2a	would	be	specified	by	a	probability	distribution	
for	X,	a	conditional	distribution	of	Y	given	X,	and	a	conditional	distribution	of	Z	given	Y.	If	X,	
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Y,	and	Z	are	binary	(0	or	1)	variables,	the	distribution	for	X	would	simply	be	the	probability	
that	x=1,	P(x=1).	The	conditional	probability	of	Y	given	X	would	be	the	probability	that	y=1	
given	that	x=1,	P(y=1|x=1),	and	the	probability	that	y=1	given	that	x=0,	P(y=1|x=0),	and	
likewise	for	the	conditional	probability	of	Z	given	Y.	(There	is	also	another	way	to	specify	
these	conditional	distributions	with	“causal	strength”	parameters,	which	will	be	discussed	
in	later	sections,	and	summarized	in	Section	3.6.	See	also	Cheng	&	Lu,	this	volume;	Griffiths,	
this	volume;	Rehder,	this	volume,	a	and	b,	for	more	details	about	parameterizing	a	
structure	with	causal	strengths.)	

	If	the	variables	are	normally-distributed	continuous	variables,	the	distribution	for	X	
would	be	captured	by	the	mean	and	standard	deviation	of	X.	Then,	the	conditional	
distribution	of	Y	would	be	captured	by	a	regression	coefficient	of	Y	given	X	(e.g.,	the	
probability	that	y=2.3	given	that	x=1.7),	as	well	as	a	parameter	to	capture	the	amount	of	
error	variance.	

The	CBN	in	Figure	2c	would	be	specified	by	a	distribution	for	Y,	and	conditional	
probability	distributions	for	X	given	Y	and	Z	given	Y.	The	CBN	in	Figure	2d	would	be	
specified	by	probability	distributions	for	X	and	Z,	and	a	conditional	probability	distribution	
for	Z	given	both	X	and	Y.	In	this	way,	a	large	causal	structure	is	broken	down	into	small	
units.		

Once	all	the	individual	probability	distributions	are	specified,	Bayesian	inference	
can	be	used	to	make	inferences	about	any	variable	in	the	network	given	any	set	of	other	
variables,	for	example,	the	probability	that	y=3.5	given	that	x=-0.7	and	z=1.1.	CBNs	also	
support	inferring	what	would	happen	if	one	could	intervene	and	set	a	node	to	a	particular	
value.	Being	able	to	predict	the	result	of	an	intervention	allows	an	agent	to	choose	the	
action	that	produces	the	most	desired	outcome.	

CBNs	have	been	tremendously	influential	across	a	wide	range	of	fields	including	
computer	science,	statistics,	engineering,	epidemiology,	management	sciences,	and	
philosophy	(Pearl,	2000;	Spirtes,	Glymour,	&	Scheines,	2000).	The	CBN	framework	is	
extremely	flexible	and	supports	many	different	sorts	of	tasks.	They	can	be	used	to	make	
precise	predictions	(including	confidence	intervals),	they	can	incorporate	background	
knowledge	or	uncertainty	(e.g.,	uncertainty	in	the	structure,	or	uncertainty	in	the	strengths	
of	the	causal	relations)	for	sensitivity	analysis.	They	can	be	extended	to	handle	processes	
that	occur	over	time.	And	since	CBNs	are	an	extension	of	probability	theory,	they	can	
incorporate	any	probability	distribution	(logistic,	multinomial,	Gaussian,	exponential).	In	
sum,	the	CBN	framework	is	an	extremely	flexible	way	to	represent	and	reason	about	
probabilistic	causal	relations.	
1.2	What	is	the	Causal	Bayesian	Network	Theory	of	Learning	and	Reasoning?	
	 Most	generally,	the	causal	model	theory	of	human	learning	and	reasoning	is	that	
humans	learn	and	reason	about	causal	relations	in	ways	that	are	similar	to	formal	CBNs.	
This	theory	is	part	of	a	broader	movement	in	psychology	of	using	probabilistic	Bayesian	
models	as	models	of	higher-level	cognition.1	
																																																								
1	Here	“model”	is	serving	two	purposes.	First	probabilistic	Bayesian	models	are	intended	to	
be	objective	models	of	how	the	world	works	(e.g.,	Figure	1	is	an	objective	model	of	
cardiovascular	disease).	The	second	sense	of	model,	as	used	by	the	psychologist,	is	that	the	
same	probabilistic	model	could	also	serve	as	a	model	of	human	reasoning	–	treating	Figure	
1	as	a	representation	of	how	a	doctor	thinks	about	cardiovascular	disease.		
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The	broader	movement	of	using	probabilistic	models	as	models	of	higher-level	
cognition	is	typically	viewed	at	Marr’s	computational	level	of	analysis	–	identifying	the	
problem	to	be	solved.	Indeed,	articles	appealing	to	causal	networks	have	fulfilled	the	
promise	of	a	computational-level	model	–	for	example,	they	have	reframed	the	problem	of	
human	causal	reasoning	by	clarifying	the	distinction	between	causal	strength	vs.	structure	
(Griffiths	&	Tenenbaum,	2005),	and	by	identifying	causal	structure	learning	as	a	goal	unto	
itself	(Alison	Gopnik	et	al.,	2004;	Steyvers,	Tenenbaum,	Wagenmakers,	&	Blum,	2003).		
	 Though	the	flexibility	of	the	CBN	framework	is	obviously	a	tremendous	advantage	
for	its	utility,	the	flexibility	makes	it	challenging	to	specify	a	constrained	descriptive	theory	
of	human	learning	and	reasoning.	The	theoretical	underpinning	of	the	CBN	framework	(e.g.,	
learning	algorithms,	inference	algorithms)	is	an	active	area	of	research	rather	than	a	static	
theory.	Additionally,	there	are	many	different	instantiations	of	how	to	apply	the	framework	
in	a	specific	instance	(e.g.,	alternative	learning	algorithms,	alternative	parameterizations	of	
a	model).		
	 Because	of	the	flexibility	and	multifaceted	nature	of	the	CBN	framework,	it	is	not	
particularly	useful	to	talk	about	the	CBN	framework	as	a	whole.	Instead,	in	the	current	
chapter	I	focus	on	the	fit	between	specific	aspects	of	the	framework	and	human	reasoning,	
within	a	specific	task.		
2	Learning	
2.1	Learning	Causal	Structure	
2.1.1	Learning	a	Causal	Structure	from	Observations	
	 One	of	the	most	dramatic	ways	that	the	CBN	framework	has	changed	the	field	of	
human	causal	reasoning	is	by	identifying	causal	structure	learning	as	a	primary	goal	for	
human	reasoning	(Steyvers	et	al.,	2003).	A	fundamental	principle	of	learning	causal	
structure	from	observation	is	that	it	is	often	not	possible	to	identify	the	exact	causal	
structure;	two	or	more	structures	may	explain	the	data	equally	well.	This	is	essentially	a	
more	sophisticated	version	of	“correlation	does	not	imply	causation.”		
	 Consider	the	9	observations	in		
Table	1,	which	summarizes	the	contingency	between	two	variables,	X	and	Y.	The	
correlation	between	these	two	variables	is	.79.	Just	knowing	that	X	and	Y	are	correlated	
cannot	tell	us	whether	X	causes	Y	[X→Y]	or	whether	Y	causes	X	[X←Y].	(Technically	it	is	also	
possible	that	a	third	factor	causes	both	X	and	Y,	but	I	ignore	this	option	for	simplicity	of	
explanation.)	One	simple	way	to	see	this	is	that	under	both	of	these	causal	structures	[X→Y]	
and	[X←Y],	we	would	expect	X	and	Y	to	be	correlated,	so	the	fact	that	they	are	correlated	
cannot	tell	us	anything	about	the	causal	structure.	A	more	sophisticated	way	to	understand	
how	it	is	impossible	to	determine	the	true	causal	structure	just	from	observing	the	data	in		
Table	1	is	to	see	how	parameters	can	be	created	for	both	causal	structures	that	fit	the	data	
equally	well.	This	means	that	the	structures	are	equally	likely	to	have	produced	the	data.	
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	 The	right	side	of		
Table	1	shows	parameters	for	the	respective	causal	structure	that	fit	the	data	perfectly.	For	
example,	for	[X→Y],	we	need	to	find	three	parameters	to	specify	the	structure.	The	base	
rate	of	X,	P(x=1),	can	be	obtained	by	calculating	the	percentage	of	times	that	X=1	regardless	
of	Y,	((3+1)/9).	P(y=1|x=1)	is	simply	the	percent	of	times	that	Y=1	given	that	X=1,	and	
P(y=1|x=0)	is	the	percent	of	times	that	Y=1	given	that	X=0.	Parameters	can	be	deduced	for	
X←Y	in	a	similar	fashion.	If	we	simulated	a	large	number	of	observations	that	we	would	
expect	to	see	from	each	causal	structure	with	the	parameters	specified	in		
Table	1,	we	would	find	that	both	structures	would	produce	data	with	proportions	that	
looks	similar	to	the	data	in		
Table	1.	Specifically,	we	would	observe	trials	in	which	both	variables	are	1	about	3	out	of	9	
times,	trials	in	which	both	variables	are	0	about	5/9	times,	and	trials	in	which	X=1	and	Y=0	
about	1	in	9	times	in	the	long	run.	Because	we	were	able	to	find	parameters	for	these	
structures	that	produce	data	very	similar	to	the	data	we	observed,	these	two	structures	are	
equally	likely	given	the	observed	data.	
	
Table	1:	Sample	Data	for	Two	Variables	
X	 Y	 Number	of		

Observations	
Parameters	that	fit	the	data	perfectly	

for	each	causal	structure	
X→Y	 X←Y	

1	 1	 3	 P(x=1)=4/9	
P(y=1|x=1)=3/4	
P(y=1|x=0)=0	

P(y=1)=3/9	
P(x=1|y=1)=1	
P(x=1|y=0)=1/6	

1	 0	 1	
0	 1	 0	
0	 0	 5	
	
The	same	logic	also	applies	with	more	variables.	Consider	the	data	in		
Table	2	with	three	variables.	If	you	ran	a	correlation	between	each	pair	of	variables	you	
would	find	that	X	and	Y	are	correlated	(r=.25),	Y	and	Z	are	correlated	(r=.65),	and	X	and	Z	
are	correlated	(r=.17)	but	are	independent	(r=0)	once	Y	is	controlled	for.	According	to	the	
Markov	and	Faithfulness	assumptions,	this	pattern	of	dependencies	and	conditional	
independencies	is	consistent	with	three	and	only	three	causal	structures;	X→Y→Z,	X←Y←Z,	
and	X←Y→Z.		

Table	2	shows	parameters	for	each	of	these	causal	structures	that	fit	the	data	
perfectly.	If	we	sampled	a	large	amount	of	data	from	any	of	the	three	structures	in	Table	2	
with	the	associated	parameters,	the	proportion	of	the	types	of	8	observations	of	X,	Y,	and	Z	
would	be	very	similar	to	the	proportions	of	the	number	of	observations	in	Table	2.	These	
three	causal	structures	are	said	to	form	a	Markov	class	because	they	are	all	equally	
consistent	with	(or	likely	to	produce)	the	set	of	conditional	and	unconditional	
dependencies	in	the	observed	data.	Thus,	it	is	impossible	to	know	which	of	these	three	
structures	produced	the	set	of	data	in	Table	2.	
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Table	2:	Sample	Data	for	Three	Variables	
X	 Y	 Z	 Number	of		

Observations	
Parameters	that	fit	the	data	perfectly		

for	each	causal	structure	
X→Y→Z	 X←Y←Z	 X←Y→Z	

1	 1	 1	 6	 P(x=1)=1/2	
P(y=1|x=1)=3/4	
P(y=1|x=0)=1/2	
P(z=1|y=1)=2/3	
P(z=1|y=0)=0	
	

P(z=1)=5/12	
P(y=1|z=1)=1	
P(y=1|z=0)=5/14	
P(x=1|y=1)=3/5	
P(x=1|y=0)=1/3	
	

P(y=1)=5/8	
P(x=1|y=1)=3/5	
P(x=1|y=0)=1/3	
P(z=1|y=1)=2/3	
P(z=1|y=0)=0	
	

1	 1	 0	 3	
1	 0	 1	 0	
1	 0	 0	 3	
0	 1	 1	 4	
0	 1	 0	 2	
0	 0	 1	 0	
0	 0	 0	 6	
	

Importantly,	non-Markov	equivalent	causal	structures	can	be	distinguished	from	
one	another	with	observations.	For	example,	common	effect	structures	such	as	X→Y←Z	are	
in	their	own	Markov	equivalence	class,	so	they	can	be	uniquely	identified.	According	to	the	
Markov	assumption	for	[X→Y←Z],	X	and	Y	are	dependent,	and	Z	and	Y	are	dependent,	but	X	
and	Z	are	independent.	There	are	no	other	three-variable	structures	with	this	particular	set	
of	conditional	and	unconditional	dependencies.	This	means	that	even	through	X→Y→Z,	
X←Y←Z,	and	X←Y→Z	are	all	equally	likely	to	produce	the	data	in	Table	2,	X→Y←Z	is	much	
less	likely.	Suppose	we	tried	to	find	parameters	for	X→Y←Z	to	fit	the	data	in	Table	2.	It	
would	be	possible	to	choose	parameters	such	that	Y	and	X	are	correlated	roughly	around	
r=.25,	and	that	Y	and	Z	are	correlated	roughly	around	r=.65,	matching	the	data	in	Table	2	
fairly	closely.	But	critically,	we	would	find	that	no	matter	what	parameters	we	chose,	X	and	
Z	would	always	be	uncorrelated,	and	thus,	it	would	be	very	unlikely	that	the	data	from	
Table	2	would	come	from	X→Y←Z.		

In	sum,	by	examining	the	dependencies	between	variables	it	is	possible	to	identify	
which	types	of	structures	are	more	or	less	likely	to	have	produced	the	observed	data.	
Structures	within	the	same	Markov	equivalence	class	always	have	the	exact	same	
likelihood	of	producing	a	particular	set	of	data,	which	means	that	they	cannot	be	
distinguished,	but	structures	from	different	Markov	equivalence	classes	have	different	
likelihoods	of	producing	a	particular	set	of	data.	

Steyvers	et	al.,	(2003)	conducted	a	set	of	experiments	to	test	whether	people	
understand	Markov	equivalence	classes	and	could	learn	the	structure	from	purely	
observational	data.	First,	they	found	that	given	a	particular	set	of	data,	participants	were	
above	chance	at	detecting	the	correct	Markov	class.	Furthermore,	people	seem	to	be	fairly	
good	at	understanding	that	observations	cannot	distinguish	X→Y	from	X←Y.	And	people	
also	seem	to	understand	to	some	extent	that	common	effect	structures	X→Y←Z	belong	to	
their	own	Markov	equivalence	class.		
	 However,	Steyvers	et	al.’s	participants	were	not	good	at	distinguishing	chain	and	
common	cause	structures	even	when	they	were	from	different	equivalence	classes	(e.g.,	
X→Y→Z	vs.	X→Z→Y).	Distinguishing	these	structures	was	made	more	difficult	in	the	
experiment	because	the	most	common	type	of	observation	for	all	these	structures	was	for	
the	three	variables	to	have	the	same	state.	Still,	the	participants	did	not	appear	to	use	the	
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trials	when	two	of	the	variables	share	a	state	different	from	a	third	to	discriminate	causal	
structures	(e.g.,	the	observation	X=Y≠Z	is	more	consistent	with	X→Y→Z	than	X→Z→Y).		
	 Given	that	Markov	equivalence	class	is	so	important	for	theories	of	causal	structure	
learning	from	observation,	it	is	surprising	that	there	is	not	more	work	on	how	well	lay	
people	understand	Markov	equivalence.	One	important	future	direction	would	be	give	
participants	a	set	of	learning	data	that	unambiguously	identifies	a	particular	Markov-
equivalent	class,	and	test	the	percent	of	participants	who	1)	identify	the	correct	class,	2)	
identify	all	the	structures	in	the	Markov	class,	and	3)	include	incorrect	structures	outside	
the	class.	Such	an	experiment	would	help	clarify	how	good	or	bad	people	are	at	learning	
causal	structure	from	observations.	Additionally,	Steyvers	et	al.	used	categorical	variables	
with	a	large	number	of	categories	and	nearly	deterministic	causal	relations,	which	likely	
facilitated	accurate	learning	because	it	was	very	unlikely	for	two	variables	to	have	the	same	
value	unless	they	are	causally	related.	It	would	be	informative	to	examine	how	well	people	
understand	Markov	equivalence	classes	with	binary	or	Gaussian	variables,	which	will	likely	
be	harder.	Another	question	raised	by	this	article	is	to	what	extent	heuristic	strategies	may	
be	able	to	explain	the	psychological	processes	involved	in	this	inference.	In	the	studies	by	
Steyvers	et	al.	there	are	some	simple	rules	that	can	distinguish	the	Markov	equivalence	
classes	fairly	successfully.	For	example,	upon	observing	a	trial	in	which	X=Y=Z,	X←Y→Z	is	
much	more	likely	than	X→Y←Z,	but	upon	observing	a	trial	in	which	X≠Y=Z,	the	likelihoods	
flip.	But	in	other	types	of	parameterizations	such	as	noisy	binary	data	or	Gaussian	data,	this	
discrimination	would	not	be	so	easy.		

Even	though	Markov	equivalence	is	a	core	feature	of	causal	structure	learning	from	
observations,	as	far	as	I	know	this	study	by	Steyvers	et	al.	is	the	only	study	to	test	how	well	
people	learn	causal	structures	purely	from	the	correlations	between	the	variables.	There	
are	a	number	of	other	studies	that	have	investigated	other	observational	cues	to	causality.	
For	example,	a	number	of	studies	have	found	that	if	X	occurs	followed	by	Y,	people	quickly	
and	robustly	use	this	temporal	order	or	delay	cue	to	infer	that	X	causes	Y	(Lagnado	&	
Sloman,	2006;	Mccormack,	Frosch,	Patrick,	&	Lagnado,	2015).	This	inference	occurs	despite	
that	fact	that	the	temporal	order	may	not	necessarily	represent	the	order	in	which	these	
variables	actually	occurred,	but	instead	it	might	reflect	the	order	in	which	they	become	
available	for	the	subject	to	observe	them.	Another	cue	that	people	use	to	infer	causal	
direction	are	beliefs	about	necessity	and	sufficiency.	If	a	learner	believes	that	all	causes	are	
sufficient	to	produce	their	effects,	that	whenever	a	cause	is	present,	its	effects	will	be	
present,	then	observing	that	X=1	and	Y=0	implies	that	X	is	not	a	cause	of	Y,	otherwise	Y	
would	be	1	(Mayrhofer	&	Waldmann,	2011).	In	sections	2.1.4	I	will	discuss	one	other	way	
that	people	learn	causal	direction	from	observation.	But	the	general	point	of	all	of	these	
studies	is	that	when	these	other	cues	to	causality	are	pitted	against	pure	correlations	
between	the	variables,	people	tend	to	use	these	other	cues	to	causality	(see	Lagnado,	
Waldmann,	Hagmayer,	&	Sloman,	2007	for	a	summary).	

In	sum,	though	there	is	some	evidence	that	people	do	understand	Markov	
equivalence	class	to	some	extent,	this	understanding	appears	limited.	Furthermore,	there	
are	not	many	studies	on	how	well	people	learn	causal	structures	in	a	bottom-up	fashion	
purely	from	correlational	data	when	covariation	is	the	only	cue	available.	In	contrast,	what	
is	clear	is	that	when	other	strategies	are	available,	people	tend	to	use	them	instead	of	
inferring	causal	structure	purely	from	the	dependencies	and	conditional	independencies.		
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2.1.2	Learning	Causal	Structure	from	Interventions:	Choosing	Interventions	
Another	a	core	principle	underlying	causal	structure	learning	is	that	interventions	

(manipulations)	have	the	capability	to	discriminate	causal	structures	that	would	not	be	
distinguishable	from	observation;	this	is	the	same	reason	why	experiments	are	more	useful	
than	observational	studies.	Going	back	to	the	example	in	Figure	1,	if	we	were	trying	to	
figure	out	the	causal	relations	between	diabetes	(D),	statin	use	(S),	and	systolic	blood	
pressure	(BP),	observational	data	would	only	be	able	to	narrow	the	possibilities	down	to	
three	structures:	D→S→BP,	D←S←BP,	and	D←S→BP.	However,	if	we	could	do	a	randomized	
experiment	such	that	half	the	patients	take	a	statin	and	the	other	half	do	not,	we	could	infer	
the	causal	structure.	If	D→S→BP	is	the	true	causal	structure,	then	the	patients	who	take	a	
statin	would	have	lower	BP	than	those	who	do	not,	but	there	would	not	be	any	difference	in	
D	across	the	two	groups.	In	contrast,	if	D←S←BP	is	the	true	causal	structure,	there	would	be	
a	difference	of	D	across	the	two	groups	but	there	would	not	be	a	difference	in	BP	across	the	
two	groups.	Finally,	if	D←S→BP	is	the	true	causal	structure,	there	would	be	a	difference	in	
both	D	and	BP	across	the	two	groups.	The	rest	of	this	section	will	explain	in	more	detail	
how	interventions	can	be	used	to	precisely	identify	a	causal	structure,	and	how	humans	use	
interventions.	

The	language	of	causal	structure	diagrams	has	a	simple	notation	to	represent	
interventions.	When	an	intervention	sets	the	state	of	a	variable,	all	other	variables	that	
would	otherwise	be	causes	of	the	manipulated	variable	are	no	longer	causes,	so	those	links	
get	removed.	For	example,	when	the	patients	in	our	example	are	randomly	assigned	to	take	
a	statin,	even	though	normally	having	diabetes	is	a	cause	of	taking	a	statin,	now	because	of	
the	random	assignment	diabetes	is	no	longer	a	cause	of	taking	a	statin.	

More	generally,	the	reason	why	interventions	can	make	causal	structures	that	are	in	
the	same	Markov	equivalence	class	distinguishable	is	that	the	intervention	changes	the	
causal	structure.	For	this	reason,	interventions	are	sometimes	called	“graph	surgery”	
(Pearl,	2000).	Figure	3a-c	shows	three	causal	structures	that	are	not	differentiable	from	
observation.	Figure	3d-f	and	g-i	show	the	same	three	causal	structures	under	either	an	
intervention	on	Y	or	an	intervention	on	X;	the	i	nodes	represent	the	intervention.	(The	
intervention	on	Y	is	analogous	to	the	previous	example	of	the	randomized	experiment	
about	taking	a	statin;	it	could	be	useful	to	compare	these	two	examples	for	generality.)		

Under	the	intervention	on	Y	all	three	causal	structures	now	have	different	
dependence	relations.	In	Graph	D,	Z	and	Y	would	still	be	correlated,	but	neither	would	be	
correlated	with	X.	In	Graph	E,	X	and	Y	would	be	correlated,	but	neither	would	be	correlated	
with	Z.	And	in	Graph	F,	all	three	variables	would	be	correlated,	but	X	and	Z	would	become	
uncorrelated	conditional	on	Y.	In	sum,	interventions	on	Y	change	the	causal	structure	such	
that	the	resulting	structures	no	longer	fall	within	the	same	Markov	equivalence	class,	so	
they	can	be	discriminated.	In	contrast,	an	intervention	on	X	can	discriminate	Graph	G	from	
H,	but	cannot	discriminate	Graph	H	from	I.	This	means	that	an	intervention	on	X	does	not	
provide	as	much	information	for	discriminating	these	three	causal	structures	as	does	an	
intervention	on	Y.		
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Figure	3:	Three	Causal	Structures	with	Different	Types	of	Interventions.	

	
	
	 Do	people	choose	interventions	that	maximize	“information	gain,”	the	ability	to	
discriminate	between	multiple	possible	structures?	Before	getting	to	the	evidence,	it	is	
useful	to	consider	an	alternative	strategy	for	choosing	interventions	to	learn	about	causal	
structure	aside	from	maximizing	information	gain;	selecting	interventions	that	have	the	
largest	influence	on	other	variables.	For	example,	consider	again	the	three	structures	in	the	
No	Interventions	row	in	Figure	3.	In	Graph	A,	X	influences	two	variables	directly	or	
indirectly,	and	in	Graphs	B	and	C	X	does	not	influence	either	other	variable,	for	a	total	
“centrality”	rating	of	2.	Z	has	the	same	centrality	rating	-	2.	Y,	in	contrast,	influences	Z	in	
Graph	A,	X	in	Graph	B,	and	X	and	Y	in	Graph	C,	for	a	total	centrality	rating	of	4.	In	sum,	
looking	across	all	three	possible	structures	Z	is	more	“central”	or	more	of	a	“root	cause.”	If	a	
learner	chooses	to	intervene	to	maximize	the	amount	of	changes	in	other	variables	they	
will	tend	to	intervene	on	Y	instead	of	X	or	Z.		

Sometimes,	as	in	the	example	in	Figure	3	the	Information	Gain	strategy	and	the	Root	
Cause	strategy	produce	the	same	interventions;	Y	is	the	most	central	variable	and	
interventions	on	Y	help	discriminate	the	three	structures	the	most.	However,	sometimes	
the	two	strategies	lead	to	different	interventions.	For	example,	when	trying	to	figure	out	
whether	[X→Z→Y]	or	[X→Y→Z]	is	the	true	structure,	X	has	the	highest	centrality	rating.	
However,	intervening	on	X	would	not	discriminate	the	structures	well	(low	information	
gain)	because	for	both	structures	it	would	tend	to	produce	data	in	which	X=Y=Z.	
Intervening	on	Y	or	Z	would	more	effectively	discriminate	the	structures.	For	example,	
intervening	on	Y	would	tend	to	produce	data	in	which	X=Z≠Y	for	[X→Z→Y]	but	would	tend	
to	produce	data	in	which	X≠Y=Z	for	[X→Y→Z],	effectively	discriminating	the	two	structures.	
The	Root	Cause	Strategy,	intervening	on	X,	can	be	viewed	as	a	type	of	positive	or	
confirmatory	testing	strategy	in	the	sense	that	it	confirms	the	hypothesis	that	X	has	some	
influence	on	Y	and	Z,	but	does	not	actually	help	discriminate	between	the	remaining	
hypotheses.	

Coenen	et	al.	(2015)	tested	whether	people	use	these	two	strategies	and	found	that	
most	people	use	a	mixture	of	both,	though	some	appear	to	use	mainly	one	or	the	other.	In	
another	experiment	Coenen	tested	whether	people	can	shift	towards	primarily	using	the	
information	gain	strategy	if	they	are	first	trained	on	scenarios	for	which	the	root	cause	
positive	testing	strategy	was	very	poor	at	discriminating	the	causal	structures.	Even	
without	feedback,	over	time	participants	switched	more	towards	using	information	gain.	
They	also	tended	to	use	the	root	cause	strategy	more	when	answering	faster.	In	sum,	root	
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cause	positive	testing	is	a	heuristic	that	sometimes	coincides	with	information	gain,	and	it	
appears	that	people	sometimes	can	overcome	the	heuristic	when	it	is	especially	unhelpful.	

Though	Steyvers	et	al.	(Steyvers	et	al.,	2003)	did	not	describe	it	in	the	same	way	as	
Coenen	et	al.	(2015),	they	actually	have	evidence	for	a	fairly	similar	phenomenon	to	the	
positive	test	strategy.	They	found	that	people	tended	to	intervene	on	root	causes	more	than	
would	be	expected	by	purely	using	information	gain.	In	their	study,	participants	first	saw	
10	observational	learning	trials,	and	then	chose	the	causal	structure	that	they	thought	was	
most	plausible,	for	example	[X→Y→Z].	Technically	since	the	data	was	observational,	they	
could	not	distinguish	models	within	the	same	Markov	equivalent	class	at	this	stage.	Next	
they	selected	one	intervention	on	either	X,	Y,	or	Z	and	would	get	10	more	trials	of	the	same	
intervention	repeatedly.	Steyvers	et	al.	found	that	their	participants	tended	to	select	root	
cause	variables	to	intervene	upon.	If	they	thought	that	the	chain	[X→Y→Z]	structure	was	
most	plausible,	they	most	frequently	intervened	on	X,	then	Y,	and	then	Z.	This	pattern	fits	
better	with	the	root	cause	heuristic	than	the	information	gain	strategy,	which	suggests	
intervening	on	Y.	

Because	this	finding	cannot	be	explained	by	information	gain	alone,	Steyvers	et	al.	
created	two	additional	models;	here	I	only	discuss	Rational	Test	Model	2.	This	model	
makes	two	additional	assumptions.	First,	it	assumes	that	participants	had	a	distorted	set	of	
hypotheses	about	the	possible	causal	structure.	Normatively	their	hypothesis	space	for	the	
possible	causal	structures	should	have	been	the	Markov	equivalent	class;	if	they	selected	
[X→Y→Z]	as	the	most	likely	structure	after	the	10	observational	trials,	they	should	have	
also	viewed	[X←Y←Z]	and	[X←Y→Z]	as	equally	plausible,	and	the	goal	should	have	been	to	
try	to	discriminate	among	these	three.	However,	this	model	assumes	that	instead	of	trying	
to	discriminate	between	the	three	Markov	equivalent	structures,	participants	were	trying	
to	discriminate	between	[X→Y→Z],	[X→Y;	Z],	[X;	Y→Z],	and	[X;	Y;	Z];	the	latter	three	are	the	
subset	of	the	chain	structures	that	include	the	same	causal	links	or	fewer	links.	I	call	this	
assumption	the	“alternate	hypothesis	space	assumption”	in	that	the	set	of	possible	
structures	(hypothesis	space)	is	being	changed.	

Under	this	new	hypothesis	space,	when	X	is	intervened	upon,	each	of	these	four	
structures	would	produce	different	patterns	of	data,	making	it	possible	to	determine	which	
of	these	four	structures	is	most	likely;	see	Table	3.	This	means	that	X	has	high	information	
gain.	In	contrast,	when	Y	or	Z	is	manipulated,	some	of	the	structures	produce	the	same	
patterns	of	data,	meaning	that	they	provide	less	information	gain.	

	
Table	3:	Most	Common	Pattern	of	Data	Produced	by	An	Intervention	On	A	Particular	Node	
for	a	Particular	Structure	

	
Alternate	Hypothesis	Space	

Assumption	

Alternate	Hypothesis	Space	Assumption	&		
Only	Attending	to	Variables	with	Same	State	

as	Manipulated	Variable	
Structure	Hypothesis	
Space	

Intervention	On:	 Intervention	On:	
X	 Y	 Z	 X	 Y	 Z	

X→Y→Z	 X=Y=Z	 X≠Y=Z	 X=Y≠Z	 X=Y=Z	 Y=Z	 Z	
X→Y	;	Z	 X=Y≠Z	 X≠Y≠Z	 X=Y≠Z	 X=Y	 Y	 Z	
X	;	Y→Z	 X≠Y=Z	 X≠Y=Z	 X≠Y≠Z	 X	 Y=Z	 Z	
X	;	Y	;	Z	 X≠Y≠Z	 X≠Y≠Z	 X≠Y≠Z	 X	 Y	 Z	
How	Informative	This	
Intervention	Is	 High	 Medium	 Medium	 High	 Medium	 Low	
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Steyvers	et	al.	introduce	another	assumption	as	well;	they	assume	that	people	only	

attend	to	variables	that	take	on	the	same	state	as	the	intervened-upon	variable	and	ignore	
any	variables	that	have	a	different	state	from	the	manipulated	variable.	The	combination	of	
the	two	assumptions	is	detailed	in	the	right	column	of	Table	3.	When	X	is	intervened	upon	
it	would	produce	three	different	patterns	of	data	for	the	four	causal	structures,	which	
means	that	it	has	fairly	high	information	gain;	it	can	distinguish	all	but	the	bottom	two	
structures	in	Table	3.	The	reason	why	an	intervention	on	X	can	no	longer	distinguish	
between	the	bottom	two	structures	is	because	of	the	assumption	that	the	other	two	
variables	that	do	not	equal	X,	Y	and	Z,	are	ignored.	

When	Y	is	intervened	upon,	it	can	narrow	down	the	space	of	4	structures	down	to	2,	
a	medium	amount	of	information	gain.	When	Z	is	intervened	upon	all	the	structures	
produce	the	same	pattern	of	data	so	an	intervention	on	Z	does	not	help	at	all	to	identify	the	
true	structure.	In	sum,	the	combination	of	these	two	hypotheses	now	makes	it	such	that	
intervening	on	X	is	more	informative	than	Y,	which	is	more	informative	than	inventing	on	Z.	
This	pattern	matches	the	frequency	of	participants’	interventions,	which	were	most	
frequently	on	X,	then	on	Y,	and	lastly	on	Z.	

There	are	two	key	points	made	by	this	analysis	of	the	similarities	between	the	
findings	of	Coenen	et	al.	and	Steyvers	et	al.	First,	even	though	they	approach	the	results	
from	different	perspectives	and	talk	about	the	results	in	different	ways,	they	both	found	
that	people	tended	to	intervene	on	root	causes.	Second,	even	though	Steyvers’	model	has	
rational	elements	to	it,	the	resulting	model	is	not	very	close	to	the	ideal	model,	for	which	Y	
is	the	most	informative	intervention.	Finally,	by	comparing	different	models	with	different	
assumptions	it	can	be	seen	how	the	two	assumptions	made	by	Steyvers	et	al.	effectively	
amount	to	the	positive	test	strategy	put	forth	by	Coenen	at	al.	Restated,	the	same	
behavioral	pattern	of	intervening	primarily	on	root	causes	could	be	explained	in	more	than	
one	way.	

Bramley	et	al.,	(2015)	also	studied	a	number	of	important	factors	related	to	learning	
from	interventions.	Overall,	they	found	that	humans	were	highly	effective	causal	learners,	
and	able	to	select	and	make	use	of	interventions	for	narrowing	down	the	number	of	
possible	structures.	One	particular	factor	he	introduced	was	the	possibility	of	intervening	
on	two	variables	simultaneously	rather	than	just	one.	Double	interventions	are	particularly	
helpful	to	distinguish	between	[X→Y→Z	and	X→Z]	vs.	[X→Y→Z].	With	a	single	intervention,	
these	two	structures	are	likely	to	produce	very	similar	outcomes.	For	example,	an	
intervention	on	X	is	likely	to	produce	data	in	which	X=Y=Z,	an	intervention	on	Y	is	likely	to	
produce	data	in	which	X≠Y=Z,	and	an	intervention	on	Z	is	likely	to	produce	data	in	which	
X=Y≠Z.	

	However,	consider	a	double	intervention	setting	X=1	and	Y=0.	Under	the	simple	
chain	[X→Y→Z],	Z	is	most	likely	to	be	0,	but	in	the	more	complex	structure	in	which	Z	is	
influenced	by	both	X	and	Y,	Z	has	a	higher	chance	of	being	1	because	X=1.	Bramley	et	al.	
found	that	distinguishing	between	these	two	types	of	structures	was	the	hardest	
discrimination	in	this	study	and	produced	the	most	errors.	61	of	the	subjects	rarely	used	
double	interventions,	whereas	49	were	more	likely	to	use	them,	suggesting	that	people	
may	not	use	double	interventions	frequently	enough	for	causal	learning.		

In	sum,	there	are	many	open	questions	about	how	people	choose	interventions.	
There	is	some	evidence	that	people	do	use	information	gain	when	selecting	interventions,	
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but	there	are	also	a	variety	of	heuristics	(only	use	single	interventions,	intervene	on	root	
causes)	and	or	simplifying	assumptions	(focus	on	a	limited	and	distorted	hypothesis	space,	
only	attend	to	variables	with	the	same	value	as	the	manipulated	variable).	Clearly	there	is	
more	work	to	be	done	to	have	a	fuller	and	more	robust	understanding	of	how	humans	
choose	interventions	to	learn	about	causal	structures.	
2.1.3	Learning	Causal	Structures	from	Interventions:	Interpreting	Interventions	and	
Updating	Beliefs	about	the	Structure	
	 The	prior	section	discussed	how	people	choose	interventions	to	learn	a	causal	
structure.	This	section	examines	how	people	interpret	the	outcome	after	making	an	
intervention.	Four	patterns	have	been	proposed	to	explain	how	people	interpret	the	
outcomes	of	interventions.	The	first	is	that	if	a	variable	X	is	manipulated	and	another	
variable	Z	assumes	the	same	state	of	X,	people	tend	to	infer	a	direct	link	from	X	to	Z.	Though	
this	heuristic	makes	sense	when	learning	the	relations	between	two	variables,	it	can	lead	to	
incorrect	inferences	in	cases	involving	three	or	more	variables	linked	together	in	a	chain	
structure	such	as	X→Y→Z	because	it	can	lead	people	to	infer	additional	links	not	in	the	
structure.	If	a	learner	intervenes	on	X	such	that	it	is	1,	and	subsequently	Y	and	Z	are	both	1,	
this	heuristic	implies	that	X→Y	and	X→Z.	Indeed,	people	often	infer	that	there	is	an	X→Z	link	
above	and	beyond	X→Y→Z,	even	in	cases	when	there	is	not	a	direct	link	from	X	to	Z	
(Bramley	et	al.,	2015;	Fernbach	&	Sloman,	2009;	Lagnado	&	Sloman,	2004;	Rottman	&	Keil,	
2012).	(In	reality,	the	correct	way	to	determine	whether	there	is	a	X→Z	above	and	beyond	
X→Y→Z	is	to	see	whether	the	probability	of	Z	is	correlated	with	the	state	of	X	within	trials	
in	which	Y	is	1	or	within	trials	in	which	Y	is	0,	or	to	use	double	interventions	as	explained	
previously.)	

This	heuristic	is	problematic	for	two	reasons.	At	a	theoretical	level,	it	suggests	that	
people	fail	to	pay	attention	to	the	fact	that	X	and	Z	are	independent	conditional	on	Y.	As	
already	discussed,	attending	to	statistical	independencies	is	critical	for	understanding	
Markov	equivalence	classes,	and	this	finding	suggests	that	people	do	not	fully	understand	
the	relations	between	statistical	independence	and	causal	Markov	equivalence	class.	At	a	
more	applied	level,	adding	this	additional	link	X→Z	could	lead	to	incorrect	inferences	(see	
section	3.2).	In	particular,	when	inferring	the	likelihood	that	Z	will	be	present	given	that	Y	
is	present,	people	tend	to	think	that	X	has	an	influence	on	Z	above	and	beyond	Y.	In	
reference	to	a	subset	of	Figure	1,	even	though	the	true	causal	structure	is	Ethnicity	→	
Smoking	→	Cardiovascular	Disease,	this	heuristic	could	lead	doctors	to	incorrectly	predict	
that	people	of	certain	ethnicities	are	more	likely	to	develop	cardiovascular	disease	even	
after	knowing	their	smoking	status,	even	though	ethnicity	has	no	influence	on	
cardiovascular	disease	above	and	beyond	smoking	(according	to	Thornley,	2013).	Such	a	
misperception	could	lead	people	of	those	ethnicities	to	feel	unnecessarily	worried	that	
their	ethnicity	will	cause	them	to	have	cardiovascular	disease.	
	 The	second	pattern	of	reasoning	was	already	discussed	in	the	previous	section.	
Steyvers	et	al.,	(2003)	proposed	that	when	a	person	intervenes	on	a	variable,	that	they	only	
attend	to	other	variables	that	assume	the	same	state	as	the	manipulated	variable.	The	
previous	section	explained	how	this	tendency	would	bias	reasoners	to	intervene	on	root	
causes	(Table	3).	But	this	tendency	would	also	decrease	the	effectiveness	of	learning	from	
interventions.	If	one	intervenes	on	Z	and	the	resulting	observation	is	X=Y≠Z,	the	fact	that	X	
and	Y	have	the	same	state	should	increase	the	likelihood	that	there	is	some	causal	relation	
between	X	and	Y;	however,	this	heuristic	implies	that	people	would	not	learn	anything	
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about	X	or	Y	because	people	only	attend	to	variables	with	the	same	state	as	the	intervened-
upon	variable	(Z).	In	sum,	this	simplification	means	that	people	do	not	extract	as	much	
information	from	interventions	as	they	could.	
	 The	third	and	fourth	habits	of	updating	causal	beliefs	after	interventions	come	from	
the	study	by	Bramley	et	al’s	study	(2015).	In	this	study	participants	made	a	series	of	
interventions	on	X,	Y	or	Z,	and	after	each	intervention	they	drew	the	causal	structure	that	
they	believed	to	be	the	most	plausible	structure	given	the	evidence	up	to	that	point.	They	
discovered	two	interrelated	habits.	First,	participants	updated	their	drawings	of	the	causal	
structure	slowly.	This	can	be	explained	as	a	conservative	tendency;	people	need	
considerable	evidence	before	adding	or	deleting	a	causal	relation	to	their	set	of	beliefs.	The	
second	pattern	is	that	when	drawing	the	causal	structures	participants	were	influenced	by	
the	most	recent	intervention	and	appeared	to	forget	many	of	the	outcomes	of	prior	
interventions.	The	combination	of	these	two	habits,	conservatism	and	forgetting	can	be	
explained	with	an	analogy	to	balancing	a	checkbook.	After	each	transaction	one	updates	the	
current	balance	by	adding	the	most	recent	transaction	to	the	prior	balance,	but	one	does	
not	re-calculate	the	balance	from	all	past	experiences	after	each	transaction.	Keeping	the	
running	balance	is	a	way	to	simplify	the	calculation.	Likewise,	storing	a	representation	of	
the	causal	structure	as	a	summary	of	the	past	experience	allows	the	learner	to	get	by	
without	remembering	all	the	past	experiences;	the	learner	just	has	to	update	the	prior	
causal	structure	representation.	In	a	related	vein,	Fernbach	and	Sloman	(2009)	found	that	
people	have	a	recency	bias	–	they	are	most	influenced	by	the	most	recent	data,	which	is	
similar	to	forgetfulness.	Understanding	the	interplay	between	all	of	these	habits	will	
provide	insights	into	how	people	learn	causal	structures	from	interventions	in	ways	that	
are	cognitively	tractable.			
2.1.4	Learning	Temporal	Causal	Structures	
	 So	far	this	chapter	has	focused	on	how	people	learn	about	atemporal	causal	
networks	in	which	each	observation	is	assumed	to	be	temporally	independent.	In	the	
example	at	the	beginning	of	the	chapter	about	cardiovascular	disease,	each	observation	
captured	the	age,	sex,	smoking	status,	diabetes	status,	and	other	variables	of	an	individual	
patient.	The	causal	link	between	smoking	and	cardiovascular	disease,	for	example,	implies	
that	across	patients,	those	who	smoke	are	more	likely	to	have	cardiovascular	disease.	
	 However,	often	it	is	important	to	understand	how	variables	change	over	time.	For	
example,	a	physician	treating	patients	with	cardiovascular	disease	is	probably	less	
interested	in	population-level	effects,	and	instead	is	more	interested	in	understanding	how	
a	change	in	smoking	would	influence	an	individual	patient’s	risk	of	developing	
cardiovascular	disease.		
	 Temporal	versions	of	CBNs	can	be	used	to	represent	learning	and	reasoning	about	
changes	over	time	(Ghahramani,	1998;	Murphy,	2002	also	see	Rehder,	this	volume	b).	
Temporal	CBNs	are	very	similar	to	standard	CBNs,	except	each	variable	is	represented	by	a	
series	of	nodes	for	each	time	point	t.	The	causal	structure	is	often	assumed	to	be	the	same	
across	time,	in	which	case	the	causal	structure	is	repeated	at	each	time	point.	Additionally,	
often	variables	are	assumed	to	be	influenced	by	their	past	state;	positive	autocorrelation	
means	that	if	the	variable	was	high	at	time	t,	it	is	likely	to	be	high	at	t+1.	
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Figure	4:	A	Temporal	CBN	

	
	
	 For	example,	Figure	4	shows	a	causal	network	representing	the	influence	of	using	an	
antihypertensive	on	blood	pressure.	1	represents	using	an	antihypertensive	or	high	blood	
pressure,	whereas	0	represents	not	using	an	antihypertensive	or	having	normal	blood	
pressure.	Instead	of	just	having	one	node	that	represents	using	an	antihypertensive	and	
another	for	blood	pressure,	now	the	structure	is	repeated	at	each	time	point.	Additionally,	
the	autocorrelation	can	be	seen	with	the	horizontal	arrows.	All	things	being	equal,	if	a	
patient’s	blood	pressure	is	high,	it	will	tend	to	stay	high	for	periods	of	time.	Likewise,	if	a	
patient	starts	using	an	antihypertensive,	they	might	continue	to	use	it	for	a	while.		

Like	all	CBNs,	temporal	CBNs	follow	the	same	rules	and	conventions.	Here	instead	of	
using	i	nodes	to	represent	interventions,	I	used	text	to	explain	the	intervention	(e.g.,	a	
physician	prescribed	an	antihypertensive).	The	interventions	are	the	reason	that	some	of	
the	vertical	and	horizontal	arrows	are	removed	in	Figure	4	because	an	intervention	
modifies	the	causal	structure.	The	Markov	condition	still	holds	in	exactly	the	same	way	as	
in	temporal	CBNs.	For	example,	a	patient’s	blood	pressure	(BP)	at	age	73	is	influenced	by	
his	BP	at	72,	but	his	BP	at	71	does	not	have	an	influence	on	his	BP	at	73	above	and	beyond	
his	BP	at	age	72.		
	 Causal	learning	from	interventions	works	in	essentially	the	same	way	in	temporal	
and	atemporal	causal	systems.	In	Figure	4	it	is	easy	to	learn	that	using	an	antihypertensive	
influences	blood	pressure,	not	the	reverse.	When	the	drug	is	started,	the	patient’s	BP	
decreases,	and	when	the	drug	is	stopped,	the	patient’s	BP	increases.	But	when	another	
intervention	(e.g.,	exercising)	changes	the	patient’s	blood	pressure,	it	does	not	have	an	
effect	on	whether	the	patient	uses	a	statin.		
	 One	interesting	aspect	about	temporal	causal	systems,	is	that	is	possible	to	infer	the	
direction	of	a	causal	relationship	from	observations,	which	is	not	possible	with	atemporal	
systems.	Consider	the	data	in	Figure	5;	the	direction	of	the	causal	relation	is	not	shown	in	
the	figure.	There	is	an	asymmetry	in	the	data;	sometimes	X	and	Y	change	together,	and	
sometimes	Y	changes	without	X	changing,	but	X	never	changes	without	Y	changing.	
Colleagues	and	I	have	found	that	both	adults	and	children	notice	this	asymmetry	and	use	it	
to	infer	that	X	causes	Y	(Rottman	&	Keil,	2012;	Rottman,	Kominsky,	&	Keil,	2014;	Soo	&	
Rottman,	2014).	The	logic	is	that	Y	sometimes	changes	on	its	own,	implying	that	whatever	
caused	Y	to	change	did	not	carry	over	to	X;	Y	does	not	influence	X.	Furthermore,	sometimes	
X	and	Y	change	together.	Since	we	already	believe	that	Y	does	not	influence	X,	one	way	to	
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explain	the	simultaneous	change	in	X	and	Y	is	that	a	change	in	X	caused	the	change	in	Y.2	
This	is	one	way	in	which	human	causal	learning	seems	more	akin	to	learning	temporal	CBN	
rather	than	an	atemporal	CBN;	the	temporal	aspect	of	this	data	is	critical	for	inferring	the	
causal	direction.	
	
Figure	5:	Example	of	Learning	Causal	Direction	from	Temporal	Data	

		
A	number	of	other	phenomena	fit	well	into	the	temporal	CBN	framework.	Consider	

the	data	in	Figure	6	Observed	Data.	In	this	situation,	subjects	know	that	C	is	a	potential	
cause	of	E,	not	the	reverse	and	the	goal	is	to	judge	the	extent	that	C	influences	E.	Overall	
there	is	actually	zero	correlation	between	C	and	E.	The	faithfulness	assumption	states	that	
the	only	independencies	in	the	data	arise	through	the	Markov	assumption.	If	C	and	E	are	
unconditionally	independent,	it	means	that	C	cannot	be	a	direct	cause	of	E.	Instead,	another	
possibility	(Possible	Structure	1	in	Figure	6)	is	that	some	unobserved	third	variable	U	is	
entirely	responsible	for	E.	

	
Figure	6:		Learning	about	an	Interaction	with	an	Unobserved	Factor	

	 	
However,	when	faced	with	data	like	in	Figure	6,	people	do	not	conclude	that	C	is	

unrelated	to	E;	instead	they	notice	that	there	are	periods	of	time	in	which	C	has	a	positive	
influence	on	E	(Times	0-3),	and	other	periods	of	time	in	which	C	has	a	negative	influence	on	
E	(Times	4-7).	They	subsequently	tend	to	infer	that	C	does	actually	have	a	strong	influence	
on	E,	but	that	there	is	some	unobserved	factor	that	is	fairly	stable	over	time,	and	C	and	the	
unobserved	factor	(U)	interact	to	produce	E	(Rottman	&	Ahn,	2011).	This	explanation	is	
																																																								
2	Technically,	the	reason	why	it	is	possible	to	learn	the	direction	of	the	causal	relation	is		
the	autocorrelation,	the	belief	that	Yt→Yt+1	and	that	Xt→	Xt+1.	Thus,	the	learner	is	really	
discriminating	between	[Yt→Yt+1←Xt+1←Xt]	and	[Yt→Yt+1→Xt+1←Xt],	which	are	in	different	
Markov	equivalence	classes.	I	thank	David	Danks	for	pointing	this	out.	
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represented	in	Figure	6	Possible	Structure	2.	In	this	structure,	both	C	and	U	influence	E,	and	
there	is	an	ark	between	the	two	links,	which	represents	an	interaction;	in	this	case	the	
interaction	is	a	perfect	cross-over	such	that	E	is	1	if	both	C	and	U	are	1	or	both	are	0.	The	
reason	people	appear	to	make	this	inference	about	the	crossover	interaction	with	an	
unobserved	cause	rather	than	inferring	that	C	is	unrelated	to	E	is	because	the	data	are	
grouped	into	distinct	periods	such	that	there	are	periods	during	which	there	is	sometimes	
a	positive	relation	and	other	times	a	negative	relation	between	C	and	E.	This	allows	the	
reasoner	to	infer	that	some	unobserved	factor	U	must	account	for	the	switch.	If	the	same	8	
trials	were	randomized	then	people	tend	to	infer	that	only	U	is	a	cause	of	E,	not	C.	This	
inference	again	suggests	that	people	tend	to	represent	causal	systems	as	temporally	
extended	(that	variables	such	as	U	tend	to	be	autocorrelated)	rather	than	atemporal	(see	
Rottman	&	Ahn,	2009,	for	another	example).		

Elsewhere,	colleagues	and	I	have	argued	(Rottman	et	al.,	2014)	that	many	of	the	
causal	learning	phenomena	that	have	been	used	as	evidence	that	people	learn	about	causal	
relations	in	ways	akin	to	CBNs	are	even	better	explained	by	temporal	CBNs.	For	example,	
one	study	found	that	children	can	learn	about	bidirectional	causal	relations	in	which	two	
variables	both	cause	each	other	(Schulz,	Gopnik,	&	Glymour,	2007).	Bidirectional	causal	
structures	can	only	be	represented	through	temporal,	not	atemporal	causal	networks	
(Griffiths	&	Tenenbaum,	2009;	Rottman	et	al.,	2014).	
	 In	conclusion,	there	is	growing	evidence	that,	at	least	in	certain	situations,	people	
appear	to	be	learning	something	similar	to	a	temporal	causal	network,	and	the	temporal	
aspect	of	reasoning	allows	them	to	infer	quite	sophisticated	causal	relations	that	would	
otherwise	be	impossible	to	learn.	
2.2	Learning	about	the	Integration	Function	
	 Another	aspect	of	a	CBN	that	must	be	learned	in	addition	to	the	structure	is	the	
integration	function;	the	way	that	multiple	causes	combine	to	influence	an	effect	(also	see	
Griffiths,	this	volume,	Rehder,	this	volume	a	and	b).	For	example,	in	regression,	the	
predictors	are	typically	assumed	to	combine	linearly.	The	CBN	framework	allows	for	the	
possibility	that	causes	can	potentially	combine	in	any	conceivable	way,	and	humans	are	
extremely	flexible	as	well.	For	example,	Waldmann	(2007)	demonstrated	that	people	
naturally	reason	about	causes	that	are	additive	(e.g.,	the	effect	of	taking	two	medicines	is	
the	sum	of	the	two	individual	effects)	and	averages	(e.g.,	the	taste	of	two	chemicals	mixed	
together	is	the	average	of	the	two).	Furthermore,	people	use	background	knowledge	(e.g.,	
about	medicines	and	taste)	to	decide	which	type	of	integration	function	is	more	plausible	in	
a	given	situation.		
	 Most	research	on	causal	learning	has	focused	on	binary	variables.	The	most	
prominent	integration	function	for	binary	variables,	called	Noisy-OR,	describes	situations	
in	which	there	are	multiple	generative	causes	(Cheng,	1997;	Pearl,	1988).	It	stipulates	that	
the	probability	of	the	effect	being	absent	is	equal	to	the	probability	that	all	the	causes	
happen	to	simultaneously	fail	to	produce	the	effect.	If	there	are	two	causes,	each	of	which	
produce	the	effect	50%	of	the	time	on	their	own	(a	causal	strength	of	.5),	then	both	would	
fail	simultaneously	25%	of	the	time;	the	effect	should	occur	75%	of	the	time.	If	there	are	
three	causes,	each	of	which	produces	the	effect	50%	of	the	time,	then	all	three	would	
simultaneously	fail	53	=	12.5%	of	the	time;	the	effect	would	be	present	87.5%	of	the	time.	
An	analogous	integration	function	called	Noisy-And-Not	can	be	used	to	describe	inhibitory	
causes	that	combine	in	a	similar	fashion.	It	is	not	difficult	to	imagine	other	sorts	of	
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integration	functions,	and	the	following	studies	have	examined	how	people	learn	about	the	
integration	function	from	data.	
	 Beckers	et	al.	(2005;	see	also	the	chapter	in	this	volume	by	Boddez,	De	Houwer,	&	
Beckers)	studied	how	beliefs	about	the	integration	function	influence	learning.	In	one	study	
participants	first	learned	about	two	causes,	G	and	H,	both	of	which	produce	an	outcome	of	1	
one	their	own.	In	the	“additive”	condition	they	saw	that	G	and	H	together	produce	an	
outcome	of	2,	which	is	consistent	with	an	integration	function	in	which	two	causes	add	
together.	In	another	condition	they	saw	that	G	and	H	together	produce	an	outcome	of	1.	
This	is	inconsistent	with	the	notion	that	the	two	causes	add	together;	instead	it	suggests	
some	sort	of	“sub-additive”	integration	function	in	which	the	effect	can	never	be	higher	
than	1.	Subsequently	participants	in	both	conditions	experienced	a	blocking	paradigm	in	
which	they	learn	that	A	by	itself	produces	an	outcome	of	1,	and	A	plus	X	produces	an	
outcome	of	1.	In	the	subadditive	condition	participants	still	thought	that	X	might	be	a	cause	
because	they	believed	that	the	effect	could	never	go	higher	than	1.	In	contrast,	in	the	
additive	condition	they	concluded	that	X	was	not	a	cause;	if	it	was,	then	presumably	the	
effect	would	have	been	2.		

Lucas	and	Griffith	(Lucas	&	Griffiths,	2010)	investigated	a	similar	phenomenon,	that	
initial	training	about	how	causes	combine	influences	whether	subjects	interpret	that	a	
variable	is	a	cause	or	not.	They	first	presented	people	with	data	that	suggested	that	the	
causes	worked	conjunctively	(multiple	causes	were	needed	to	be	present	for	the	effect	to	
occur),	or	through	the	noisy-OR	function	(a	single	cause	was	sometimes	sufficient	to	
produce	the	effect).	Afterwards,	participants	saw	a	cause	D	never	produce	the	effect,	and	
saw	that	two	causes	in	combination,	D	and	F,	produced	the	effect.	Participants	in	the	
conjunctive	condition	tended	to	conclude	that	both	D	and	F	were	causes,	whereas	
participants	in	the	noisy-OR	condition	tended	to	infer	that	only	F	was	a	cause.	

In	sum,	these	results	show	that	people	quickly	and	flexibly	learn	about	how	causes	
combine	to	produce	an	effect	and	the	integration	rule	that	they	learn	dramatically	
influences	subsequent	reasoning	about	the	causal	system.	
2.3	Learning	Causal	Strength	
	 So	far	this	chapter	has	focused	on	how	people	learn	causal	structure,	and	to	a	lesser	
extent	integration	functions.	One	other	important	component	of	causal	relations	is	causal	
strength,	our	internal	measurement	of	how	important	a	cause	is.	For	example,	if	a	medicine	
works	very	well	to	reduce	a	symptom,	it	has	high	causal	strength,	but	if	it	does	not	reduce	
the	symptom	at	all	it	has	zero	causal	strength.	
	 Prior	to	the	CBN	framework,	theories	of	causal	strength	learning	were	based	on	
simple	measures	of	the	contingency	between	the	cause	and	effect.	For	example,	the	ΔP	
model	computes	the	strength	of	the	influence	of	a	cause	(C)	on	an	effect	(E)	by	the	extent	of	
the	difference	in	the	probability	of	the	effect	when	the	cause	is	present	vs.	absent;	
P(e=1|c=1)-P(e=1|c=0)	(Cheng	&	Novick,	1992;	Jenkins	&	Ward,	1965).	This	same	contrast	
is	calculated	at	asymptote	by	one	of	the	most	influential	models	conditioning	as	a	way	to	
capture	how	strongly	a	cue	and	outcome	become	associated	by	an	animal	(Danks,	2003;	
Rescorla	&	Wagner,	1972).	This	same	model	has	also	been	proposed	as	a	model	of	causal	
learning,	the	idea	being	that	the	stronger	that	a	cue	is	associated	with	an	outcome,	the	
stronger	that	humans	would	infer	that	the	cue	causes	the	outcome	(David	R	Shanks	&	
Dickinson,	1987).	
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With	the	introduction	of	the	CBN	framework	a	number	of	theories	of	causal	learning	
were	proposed	that	incorporate	different	sorts	of	top-down	causal	beliefs	into	the	learning	
process.	A	number	of	other	chapters	discuss	causal	strength	learning	including	those	by	
Griffiths,	Cheng	and	Lu,	and	Perales,	Catena,	Maldonado	and	Cándido.	Thus,	I	briefly	discuss	
the	connections	between	the	CBN	framework	and	theories	of	causal	strength	learning,	
while	leaving	the	details	to	those	other	chapters.	
2.3.1	Elemental	Causal	Induction:	Learning	Causal	Strength	Between	Two	Variables	
	 One	of	the	most	important	developments	of	models	of	causal	strength	learning	is	the	
Power-PC	model	(Cheng,	1997).	This	model	builds	off	the	ΔP	model	by	incorporating	causal	
beliefs	and	assumptions.	This	model	assumes	that	one	generative	cause	combines	through	
the	Noisy-OR	integration	function	with	another	unobserved	cause.	For	example,	imagine	
that	the	effect	E	occurs	25%	of	the	time	without	the	observed	cause	C;	P(e=1|c=0)=.25.	We	
can	attribute	this	25%	to	some	background	cause	that	has	a	strength	of	.25.	Further,	
imagine	that	the	observed	cause	has	a	strength	of	2/3.	When	the	observed	cause	is	present,	
the	effect	should	occur	75%	of	the	time	if	C	and	the	background	cause	combine	through	a	
noisy-OR	function;	P(e=1|c=1)=.75.	(The	effect	would	fail	with	a	probability	of	1/3×3/4	=	
¼).		

Cheng	used	this	sort	of	logic,	in	reverse,	to	deduce	that	if	an	observed	cause	
combines	with	a	background	cause	through	a	noisy-OR	integration	function,	the	correct	
way	to	calculate	causal	strength	involves	dividing	ΔP	by	P(e=0|c=0).	Consider	now	the	
probabilities	just	presented,	without	knowing	the	causal	strength:	P(e=1|c=1)=.75	and	
P(e=1|c=0)=.25.	According	to	ΔP,	the	causal	strength	is	.5;	the	causes	raises	the	probability	
of	the	effect	by	.5.	According	to	Power-PC,	the	causal	strength	of	C	is	(.75-.25)/(1-.25)=.67;	
the	cause	increases	the	effect	by	2/3rds	(from	.25	to	.75).	In	sum,	by	specifying	a	set	of	
prior	beliefs	about	the	causal	relation,	Cheng	specified	how	causal	strength	should	be	
induced	given	those	beliefs.	
	 Another	influential	development	to	causal	strength	learning	is	the	Causal	Support	
model.	Griffiths	and	Tenenbaum	(2005)	proposed	that	when	people	estimate	causal	
strength,	what	they	are	actually	doing	is	not	judging	the	magnitude	of	the	influence	of	the	
cause	on	the	effect,	similar	to	effect	sizes	in	inferential	statistics,	but	rather	judging	the	
extent	to	which	there	is	evidence	that	there	is	any	causal	relation	or	not,	similar	to	the	
function	of	a	p-value	in	hypothesis	testing.	At	a	theoretical	level,	this	model	is	calculated	by	
determining	the	relative	likelihood	that	the	true	causal	structure	is	[C→E←U],	that	both	C	
and	an	unobserved	factor	U	influence	E	vs.	that	the	true	causal	structure	is	[C;	E←U],	that	C	
does	not	influence	E	and	E	is	determined	by	an	unobserved	factor	U.	Thus,	causal	support	
treats	causal	strength	learning	as	discriminating	between	two	possible	causal	structures,	
one	in	which	C	actually	is	a	cause	of	E,	and	one	in	which	C	is	not	a	cause	of	E.	

Causal	Support	has	a	number	of	behavioral	implications,	but	the	most	obvious	one	
and	easiest	to	think	about	is	sample	size.	Whereas	ΔP	and	Power-PC	are	unaffected	by	
sample	size,	Causal	Support	is	influenced	by	sample	size.	Going	back	to	the	analogy	of	
Causal	Support	as	a	p-value	whereas	ΔP	and	Power-PC	are	effect	size	measures,	if	there	is	a	
large	enough	sample	size	it	is	possible	to	have	a	very	low	p-value	(confident	that	there	is	a	
causal	relation)	even	if	the	effect	size	is	small.		
	 In	sum,	Power	PC	and	Causal	Support	were	both	motivated	by	understanding	
causality	through	a	CBN	perspective,	involving	top-down	beliefs	about	how	an	observed	
cause	combines	with	other	unobserved	factors.	
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2.3.2	Inferring	Causal	Strength:	Controlling	for	Other	Causes	
	 The	previous	section	focused	on	how	people	infer	causal	strength	given	
observations	of	just	a	single	cause	and	effect,	elemental	causal	induction.	However,	often	
there	are	more	than	two	variables.	When	inferring	the	strength	of	one	cause	on	an	effect	it	
is	important	to	control	for	certain	types	of	third	variables	(and	not	others),	depending	on	
the	causal	structure.	Consider	Figure	1.	When	studying	the	strength	of	the	effect	of	a	new	
drug	on	cardiovascular	disease,	it	is	important	to	control	for	age	and	smoking	habits,	either	
statistically	or	through	the	design	of	the	study.	One	should	not	control	for	statin	use	
because	it	is	not	a	direct	cause	of	cardiovascular	disease.		
	
Figure	7:	Possible	Third	Variables	when	Learning	the	Causal	Relation	from	C	to	E	

	
	
	 More	generally,	consider	trying	to	learn	if	there	is	a	causal	link	from	a	potential	
cause	C	to	a	potential	effect	E,	and	if	so,	how	strong	the	relation	is.	Figure	7	presents	8	
different	third	variables	(S-Z);	the	question	is	which	of	these	variables	should	be	controlled	
for.	For	readers	familiar	with	multiple	regression,	you	can	think	of	C	as	one	predictor	in	the	
regression	that	you	are	primarily	interested	in,	and	E	is	the	outcome	variable.	The	question	
about	controlling	for	alternative	variables	is	which	of	these	variables	should	be	included	as	
predictors	or	covariates	in	the	analysis?	The	following	bullets	systematically	explain	each	
of	the	third	factors	and	whether	it	should	be	controlled	for	when	inferring	the	strength	of	C	
on	E:	

• V	and	X	are	confounds	and	must	be	controlled	for	when	inferring	the	relation	of	C	on	
E.	If	they	are	not	controlled	for	there	would	be	a	spurious	correlation	between	C	and	
E	even	if	there	is	no	causal	relation	between	C	and	E.	(X	represents	the	case	when	
some	unobserved	factor	causes	both	C	and	X.)	

• W	represents	an	alternative	mechanism	from	C	to	E.	In	order	to	test	whether	there	
is	a	direct	influence	of	C	on	E	above	and	beyond	W	it	must	be	controlled	for.	

• Y	is	a	noise	variable.	Accounting	for	it	increases	our	power	to	detect	a	relation	
between	C	and	E.		

• U	and	Z	should	not	be	controlled	for.	The	logic	is	a	bit	opaque	(Eells,	1991,	p.	203),	
but	consider	the	simple	case	that	E	deterministically	causes	Z	such	that	they	are	
perfectly	correlated.	Controlling	for	Z	explains	all	the	variance	in	E,	and	there	will	be	
no	left	over	variance	for	C	to	explain.	Controlling	for	Z	and	U	can	distort	the	
apparent	relation	between	C	and	E.		

• S	and	T	never	need	to	be	controlled	for.	With	large	sample	sizes	it	does	not	matter	if	
S	and	T	are	controlled	for	or	not	when	inferring	the	influence	of	C	on	E.	The	reason	is	
that	even	though	S	and	T	are	correlated	with	C,	since	S	and	T	are	screened	off	from	E	
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(S	and	T	are	independent	of	E	after	controlling	for	C),	they	will	not	have	any	
predictive	power	in	a	regression	above	and	beyond	C.	However,	with	small	sample	
sizes,	most	likely	S	and	T	will	not	be	perfectly	uncorrelated	with	E	controlling	for	C,	
in	which	case	they	can	change	the	estimated	influence	of	C	on	E.	Thus,	they	should	
not	be	controlled	for.	
	

	 In	sum,	the	overall	rule	is	that	when	inferring	the	strength	of	a	relation	of	C	on	E,	
third	variables	that	are	believed	to	be	potential	direct	causes	of	E	should	be	controlled	for;	
other	variables	should	not	be	controlled	(Cartwright,	1989;	Eells,	1991;	Pearl,	1996).	This	
rule	nicely	dovetails	with	how	causal	structures	are	defined;	each	variable	is	modeled	using	
a	conditional	probability	distribution	incorporating	all	of	its	direct	causes.	
	 Remarkably,	a	variety	of	research	suggests	that	people	have	the	ability	to	
appropriately	control	for	third	variables	when	inferring	causal	strength.	In	fact,	research	
on	this	topic	was	the	first	research	on	whether	people	intuitively	use	beliefs	about	causal	
structure	when	reasoning	about	causality	(Waldmann	&	Holyoak,	1992;	Waldmann,	1996,	
2000).	Michael	Waldmann	and	colleagues	called	this	theory	the	Causal	Model	theory;	the	
idea	was	that	when	inferring	causal	strength,	people	use	background	knowledge	about	the	
causal	structure	(“model”)	to	determine	which	variables	to	control	for.	In	the	first	study	on	
this	topic,	a	scenario	with	three	variables	X,	Y,	and	Z	was	set	up.	Based	on	the	cover	story	
the	three	variables	were	either	causally	related	in	a	common	effect	structure	[X→Y←Z]	or	in	
a	common	cause	structure	[X←Y→Z].	In	the	common	effect	condition	[X→Y←Z],	the	goal	for	
participants	was	to	decide	the	extent	to	which	X	and	Z	were	causes	of	Y;	normatively	people	
should	control	for	alternative	causes	(e.g.,	control	for	X	when	determining	whether	Z	is	a	
cause	of	Y).	In	the	common	cause	condition	[X←Y→Z],	the	goal	for	participants	was	to	
decide	the	extent	to	which	X	and	Z	are	effects	of	Y;	normatively	these	two	decisions	should	
be	made	separately	(e.g.,	one	should	ignore	X	when	determining	the	influence	of	Y	on	Z).		
	 After	the	cover	story	manipulating	the	believed	causal	structure,	participants	first	
experienced	a	set	of	data	in	which	X	and	Y	were	perfectly	correlated;	Z	was	not	displayed.	
This	training	made	it	seem	that	there	is	a	strong	causal	relation	between	X	and	Y.	Then	they	
experienced	a	set	of	data	in	which	X,	Y,	and	Z	were	all	perfectly	correlated;	now	Z	is	a	
redundant	predictor	of	Y	because	X	is	entirely	sufficient	to	predict	Y.	In	sum,	participants	
experienced	the	exact	same	data,	and	the	only	difference	between	the	two	conditions	was	
their	belief	about	the	causal	structure.		
	 In	the	common	effect	condition	[X→Y←Z],	participants	controlled	for	X	when	
interpreting	whether	Z	was	a	cause	of	Y,	and	consequently	concluded	that	Z	is	not	a	cause	
of	Y	because	X	is	entirely	sufficient	to	predict	whether	Y	was	present	or	absent.	In	contrast,	
in	the	common	cause	condition	[X←Y→Z],	participants	did	not	control	for	X,	and	concluded	
that	Y	was	a	cause	of	both	X	and	Z.	

Subsequently,	a	number	of	other	studies	have	also	shown	that	people	control	for	
alternative	causes	(V-Y	in	Figure	7)	of	the	main	effect	and	not	alternative	effects	of	the	main	
cause	(T	in	Figure	7)	(Goodie,	Williams,	&	Crooks,	2003;	Spellman,	Price,	&	Logan,	2001;	
Waldmann,	2000).	There	is	even	work	suggesting	that	people	do	not	control	for	variables	
like	S	and	Z	(Waldmann	&	Hagmayer,	2001);	however,	there	has	not	been	research	on	
whether	people	control	for	variables	like	U.		

In	sum,	when	learning	about	a	causal	relation	between	C	and	E,	people	have	some	
core	intuitions	to	control	for	variables	that	they	believe	to	be	alternative	causes	of	E,	and	
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not	other	roles,	which	is	critical	for	correct	causal	learning	(Glymour,	2001).	This	research	
is	some	of	the	most	dramatic	showing	how	top-down	beliefs	about	causal	structure	
influence	learning,	and	consequently	is	some	of	the	strongest	evidence	that	human	causal	
reasoning	involves	structured	directional	representations	beyond	just	associations	
between	variables	(Waldmann,	1996).	
3	Reasoning	with	the	Causal	Structure	
	 So	far	this	chapter	has	focused	on	how	people	learn	about	a	causal	network;	the	
structure	of	the	network,	the	parameters	or	causal	strengths,	and	the	functional	form.	The	
remainder	of	the	chapter	is	how	people	use	this	knowledge	(see	also	Oaksford	and	Chater,	
this	volume).	Going	back	to	Figure	1,	one	might	desire	to	explain	whether	a	person’s	
cardiovascular	disease	was	caused	by	his	age,	or	his	smoking.	One	might	desire	to	predict	
whether	his	cardiovascular	disease	will	get	worse	as	he	ages.	And	one	might	desire	to	know	
which	intervention,	stopping	smoking	or	starting	to	take	a	statin	would	have	the	largest	
influence	on	his	cardiovascular	disease	in	order	to	choose	the	action	with	the	greatest	
rewards.		
	 Though	this	second	half	of	the	chapter	focuses	on	reasoning	about	the	causal	
network	rather	than	learning,	it	is	impossible	to	completely	divorce	learning	and	
reasoning.	In	the	real	world	we	learn	about	causal	relations	both	from	first-hand	
experience	with	data	(e.g.,	did	starting	the	statin	lower	my	blood	pressure)	and	also	from	
communicated	knowledge	(e.g.,	from	family	members,	teachers,	doctors,	newspaper	
articles).	Research	in	psychology	has	used	both	personal	experience	and	communicated	
knowledge,	often	in	combination,	to	teach	subjects	about	the	causal	structure	before	they	
reason	about	the	structure.	Typically	words	and	pictures	are	used	to	convey	the	causal	
structure	to	participants,	although	the	structural	information	is	sometimes	conveyed	
through	or	supplemented	with	experienced	data.	If	the	participants	learn	anything	about	
the	parameters	(causal	strengths)	of	the	causal	structure,	it	is	usually	conveyed	through	
data-driven	experience,	though	sometimes	the	parameters	are	conveyed	textually.	The	
integration	function	is	often	not	mentioned	at	all,	though	sometimes	it	is	mentioned.	

One	of	the	challenges	with	studying	how	well	people	reason	about	causal	structures	
is	that	apparent	flaws	in	reasoning	can	either	be	explained	as	reasoning	biases,	or	as	poor,	
biased,	or	insufficient	learning	about	the	causal	structure.	It	is	not	clear	how	to	cleanly	
differentiate	the	two	because	checking	that	the	causal	structure	is	learned	appropriately	
involves	questions	that	are	typically	viewed	as	reasoning	about	the	causal	structure.	This	
sets	up	a	difficult	situation	because	any	observed	reasoning	bias	can	potentially	be	
explained	away	by	claiming	that	the	researcher	failed	to	sufficiently	convey	the	causal	
structure	to	the	participants.	Here	I	do	not	try	to	solve	this	problem,	but	instead	just	
present	the	empirical	findings	of	how	closely	reasoning	appears	to	fit	with	the	causal	
structures	presented	to	subjects.	These	conclusions	are	based	on	a	much	more	thorough	
analysis	of	the	literature	than	can	be	presented	here	(Rottman	&	Hastie,	2014),	though	this	
chapter	includes	some	newly	published	evidence.	
3.1	Reasoning	based	on	Observations	vs.	Interventions	
	 In	Section	2,	I	explained	how	the	CBN	framework	treats	observations	and	
interventions	very	differently	for	learning	a	causal	structure.	Interventions	change	the	
causal	structure	by	removing	links	from	variables	that	were	previously	causes	of	the	
manipulated	variable.	For	example,	given	the	structure	X→Y→Z,	if	Y	is	intervened	upon,	Y	
gets	severed	from	X	resulting	in	[X;	Y→Z].	Under	an	intervention	on	Y,	X	would	be	
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statistically	independent	or	uncorrelated	from	Y,	even	though	Z	would	still	be	dependent	
upon	Y.		
	 Practically,	given	the	structure	X→Y→Z,	if	a	reasoner	can	observe	the	state	of	Y,	they	
can	make	a	prediction	about	both	X	and	Z.	In	the	types	of	situations	typically	studied	in	the	
lab	with	binary	variables	and	positive	causal	relations,	if	Y	is	observed	as	1,	then	X	and	Z	
are	both	likely	to	be	1	as	well.	However,	if	a	reasoner	intervenes	on	Y	and	sets	its	value	to	1,	
then	Z	is	likely	to	be	1,	but	this	intervention	would	have	no	influence	on	X,	so	the	best	
estimate	of	X	is	simply	its	base	rate.	In	sum,	interventions	only	influence	variables	down-
stream	from	the	manipulated	variable,	not	up-stream	(but	see	Hiddleston,	2005	for	an	
alternative	approach,	and	also	see	the	chapter	by	Over	on	whether	“if...	then”	conditionals	
are	interpreted	as	interventions).	
	 A	number	of	researchers	have	found	that	people	discriminate	between	observations	
and	interventions	when	making	inferences	based	on	a	causal	structure.	Sloman	and	
Lagnado	(2005)	set	up	simple	verbal	descriptions	in	which	one	event	(X)	causes	the	other	
(Y),	and	found	that	when	Y	was	observed	to	have	a	particular	value,	X	would	be	inferred	to	
have	the	same	value,	but	when	Y	was	intervened	upon	to	have	a	particular	value,	X	was	
inferred	to	have	its	normal	default	value.	In	sum,	when	it	was	made	very	clear	whether	
there	was	an	observation	vs.	an	intervention,	subjects’	judgments	largely	followed	the	
prescriptions	of	the	CBN	framework.	In	contrast,	when	more	ambiguous	language	is	used	
such	that	the	value	of	a	variable	could	be	known	either	through	an	observation	or	an	
intervention,	then	the	responses	looked	more	muddy	(see	also	Rips,	2010).	
	 Another	set	of	studies	took	this	basic	finding	a	step	further	by	demonstrating	that	
this	difference	between	interventions	vs.	observations	also	holds	in	contexts	in	which	
participants	are	told	the	causal	structure	and	then	learn	the	parameters	(e.g.,	the	base	rates	
and	the	causal	strengths)	from	experience.	Consider	a	set	of	studies	that	investigated	
reasoning	on	a	diamond	structure	[X←W→Y	and	X→Z←Y]	(Meder,	Hagmayer,	&	Waldmann,	
2008,	2009;	Waldmann	&	Hagmayer,	2005).	These	studies	are	unique	for	involving	more	
than	three	variables,	and	also	for	having	two	causal	routes	W→X→Z	and	W→Y→Z.	Despite	
the	complexities	involved	in	these	studies,	the	participants	showed	remarkable	subtlety	in	
reasoning	about	the	causal	structures,	and	distinguishing	between	interventions	and	
observations	differently.		

Consider	observing	a	low	value	of	X,	and	trying	to	infer	the	value	of	Z.	In	the	
diamond	structure	there	are	two	routes	from	X	to	Z:	X←W→Y→Z	and	X→Z.	Due	to	these	two	
routes	X	and	Z	should	be	strongly	correlated,	and	thus	Z	should	be	quite	low	when	X	is	
observed	to	be	low.	In	contrast,	if	X	is	intervened	upon	and	set	to	a	low	value,	the	route	
X←W→Y→Z	is	destroyed	–	the	link	from	W	to	X	is	cut.	The	X→Z	route	is	still	open,	so	the	
predicted	value	of	Z	is	still	low,	but	it	should	not	be	as	low	as	when	X	is	observed.	In	fact,	
this	is	the	exact	pattern	of	reasoning	that	was	observed;	the	inference	of	Z	after	an	
observation	of	X	was	lower	than	after	an	intervention	on	X.	This	finding	further	suggests	
that	people	reason	about	observations	both	down-stream	and	up-stream,	but	they	reason	
about	interventions	only	down-stream.	This	research	also	shows	how	people	can	reason	
about	observations	and	interventions	on	more	complex	structures.	
	 So	far	this	section	has	focused	on	“perfect”	interventions	in	which	the	intervention	
completely	determines	the	state	of	the	manipulated	variables,	and	completely	severs	all	
other	influences.	However,	often	interventions	are	not	perfect.	For	example,	after	
prescribing	a	patient	an	antihypertensive	to	treat	high	blood	pressure,	the	patient	may	not	
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actually	take	it,	or	may	not	take	it	exactly	as	prescribed	(e.g.,	as	frequently	as	they	should,	
at	the	right	dose).	Furthermore,	even	if	the	patient	does	take	the	medicine	as	prescribed,	
the	medicine	does	not	guarantee	that	all	patients	will	have	a	120/80	blood	pressure.	
Patients	who	initially	had	very	high	blood	pressures	will	probably	still	tend	to	have	higher	
blood	pressures	than	those	who	initially	had	moderately	high	blood	pressures.	Or,	perhaps	
the	medicine	only	succeeds	to	bring	the	blood	pressure	into	a	normal	range	for	a	certain	
percentage	of	patients,	but	not	for	others.	In	these	ways,	taking	an	antihypertensive	is	an	
“imperfect”	intervention	on	blood	pressure;	a	patient’s	blood	pressure	is	not	completely	
determined	by	the	intervention.	In	such	cases	of	imperfect	interventions,	reasoning	up-
stream	is	warranted	to	some	extent,	similar	to	observations.	Unfortunately,	there	has	been	
fairly	little	work	examining	how	people	reason	about	imperfect	interventions	(Meder,	
Gerstenberg,	Hagmayer,	&	Waldmann,	2010;	Meder	&	Hagmayer,	2009).		

In	sum,	the	existing	research	has	found	that	people	do	distinguish	between	
interventions	and	observations	when	reasoning	about	causal	systems,	in	particular	that	
interventions	only	influence	variables	down-stream	from	the	intervened-upon	variable.	An	
important	direction	for	future	research	is	to	examine	how	people	reason	about	imperfect	
interventions.	This	seems	especially	important	given	that	many	of	the	actions	or	
“interventions”	humans	perform	are	not	perfect	interventions.	
3.2	Do	People	Adhere	to	the	Markov	Condition	when	Reasoning	about	Causal	
Structures?	
	 Recall	that	the	Markov	condition	states	that	once	all	the	direct	causes	of	a	variable	Z	
are	controlled	for	or	held	constant,	Z	is	statistically	independent	of	every	variable	in	the	
causal	network	that	is	not	a	direct	or	indirect	effect	of	Z.	For	example,	in	the	structure	
X→Y→Z,	Z	is	conditionally	independent	of	X	once	Y	(the	only	direct	cause	of	Z)	is	held	
constant.	People	have	often	been	found	to	violate	the	Markov	assumption;	their	inferences	
about	the	state	of	Z	are	influenced	by	the	state	of	X	even	when	they	already	know	the	state	
of	Y	(Mayrhofer	&	Waldmann,	2015;	Park	&	Sloman,	2013;	Rehder	&	Burnett,	2005;	
Rehder,	2014;	Rehder,	this	volume	b;	Walsh	&	Sloman,	2008).	Specifically,	people	tend	to	
infer	that	P(z=1|y=1,x=1)	>	P(z=1|y=1,x=0)	even	though	they	should	be	equivalent.	
Likewise,	they	use	Z	when	inferring	X	even	after	knowing	the	state	of	Y.	Going	back	to	
section	2.1.3,	such	a	mistake	could	lead	a	doctor	to	incorrectly	believe	that	ethnicity	has	an	
influence	on	cardiovascular	disease	above	and	beyond	smoking	even	when	the	true	causal	
structure	is	Ethnicity	→	Smoking	→	Cardiovascular	Disease.	
	 There	are	a	variety	of	possible	explanations	for	why	inferences	violate	the	Markov	
condition,	and	most	of	the	explanations	have	attempted	to	find	rationalizations	for	the	
violations,	reasons	that	such	judgments	would	make	sense	according	to	the	CBN	
framework	assuming	some	modification	to	the	structure	due	to	prior	knowledge.	For	
example,	if	subjects	believe	that	there	is	some	other	causal	link	between	X	and	Z	(e.g.,	X→Z,	
X←Z,	or	X←W→Z)	in	addition	to	the	causal	structure	told	to	them	by	the	experimenter	
(X←Y→Z),	such	additional	information	could	justify	their	inferences.	Three	specific	
proposals	are	that	people	infer	an	unobserved	factor	that	inhibits	both	X	and	Z,	an	
unobserved	factor	that	influences	X,	Y,	and	Z,	or	an	intermediary	mechanism	M	such	that	Z	
causes	A,	which	in	turn	causes	X	and	Y.	Different	articles	in	the	list	above	have	supported	
different	accounts.	For	example,	Burnett	and	Rehder	(2005)	argued	for	the	account	in	
which	an	unobserved	factor	influences	X,	Y,	and	Z.	Park	and	Sloman	(2013)	found	that	
people	only	make	the	Markov	violation	when	the	middle	variable	is	present,	not	absent;	
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P(X=1|Y=1,Z=1)	>	P(X=1|Y=1,Z=0)	but	that	P(X=1|Y=0,Z=1)	=	P(X=1|Y=0,Z=0).	This	finding	
is	most	consistent	with	the	account	that	people	infer	an	unobserved	factor	that	inhibits	X	
and	Z.	They	also	found	that	the	size	of	the	Markov	violation	was	larger	when	participants	
believed	that	the	two	effects	(X	and	Z)	are	both	caused	through	the	same	mechanism	(e.g.,	Y	
causes	mechanism	A,	which	in	turn	causes	X	and	Z),	than	through	separate	mechanisms	
(e.g.,	X←A←Y→B→Z,	where	A	and	B	are	the	two	mechanisms	that	explain	how	X	and	Z	are	
each	caused	by	Y).	Mayrhofer	and	Waldmann	(2015)	have	also	found	evidence	that	people	
infer	an	unobserved	inhibitory	factor	that	influences	multiple	effects	of	the	same	cause.	
And	they	further	found	that	the	size	of	the	Markov	violation	was	influenced	by	whether	the	
causes	and	effects	were	described	as	agents	vs.	patients	(e.g.,	cause	“sending”	information	
to	effect	vs.	effect	“reading”	information	from	cause).	

Rehder	(2014)	found	some	support	for	both	the	unobserved	inhibitor	and	the	one	
vs.	two	mechanism	accounts,	though	more	generally	he	found	that	none	of	these	
rationalizations	provide	a	parsimonious	and	comprehensive	explanation	for	all	the	
reasoning	errors.	He	argued	that	it	is	indeed	highly	likely	that	people	embellish	causal	
structures	given	in	experiments	with	additional	nodes	and	links	based	on	their	own	prior	
knowledge.	However,	Rehder	proposed	that	in	addition	to	any	embellishments	due	to	
background	knowledge,	some	judgments	followed	an	associative-style	of	reasoning	that	
does	not	obey	the	Markov	assumption.	He	proposed	taking	an	individual-differences	
approach	to	understanding	why	certain	people	are	more	likely	to	use	an	associative	style	of	
reasoning.		
	 	One	surprising	aspect	about	the	work	on	whether	people	uphold	the	Markov	
condition	is	that	there	have	been	very	few	studies	in	which	people	learn	the	parameters	of	
the	causal	structure	through	trial-by-trial	experience,	and	then	make	judgments.3	Giving	
participants	statistical	experience	with	the	correlations	between	the	variables	provides	
them	with	direct	evidence	that	X	and	Z	are	statistically	independent	given	Y.	Park	and	
Sloman	(2013)	conducted	one	experiment	of	this	sort.	Their	participants	inferred	that	
P(z=1|y=1,x1)	>	P(z=1|y=1,x=0),	though	P(z=1|y=0,x=1)	=	P(z=1|y=0,x=0);	a	violation	of	the	
Markov	condition	only	when	y=1.	As	discussed	above,	this	pattern	actually	fits	the	proposal	
that	people	infer	an	unobserved	inhibitory	cause	of	both	X	and	Y.	However,	the	modified	
structure	with	the	unobserved	inhibitory	cause	is	still	unfaithful	to	the	data	that	they	
observed;	in	the	learning	data	X	and	Z	were	independent	when	y=1.	This	raises	a	question	
for	future	research:	if	being	told	the	structure	and	experiencing	data	faithful	to	the	
structure	is	not	sufficient	to	stamp	out	violations	of	the	Markov	assumption,	what	is?	
3.3	Qualitative	and	Quantitative	Inferences	when	Reasoning	about	Causal	Structures	
	 Rottman	and	Hastie	(2014)	reviewed	inferences	on	many	different	types	of	causal	
structures	including	one	link	[X→Y],	chains	[X→Y→Z],	common	cause	[X←Y→Z]	common	
effect	[X→Y←Z],	and	diamond	[X←W→Y	and	X→Z←Y]	structures.	For	each	of	these	
structures	we	reviewed	evidence	about	how	well	people	make	inferences	on	one	variable	
given	different	observed	combinations	of	the	others	(e.g.,	X	given	knowledge	about	Y,	or	Y	
given	knowledge	of	X	and	Z,	etc.).	
																																																								
3	In	the	sections	above	on	learning	causal	structures,	when	the	true	structure	is	X→Y→Z,	
people	tend	to	also	infer	the	link	X→Z,	suggesting	that	they	are	not	fully	aware	of	the	
conditional	independence.	This	section	focuses	on	reasoning	about	the	causal	structure	
rather	than	learning,	though	of	course	they	are	related.	
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We	concluded	that	for	almost	all	the	causal	structures	(see	the	section	below	on	
explaining	away	for	an	exception)	the	inferences	tend	to	go	in	the	right	direction.	For	
example,	for	the	chain	[X→Y→Z],	if	both	causal	relations	between	X→Y	and	Y→Z	were	
positive	or	both	were	negative,	people	tended	to	infer	a	positive	relation	between	X	and	Z.	
But	if	one	of	the	links	was	positive	and	the	other	negative	people	infer	a	negative	causal	
relation	(Baetu	&	Baker,	2009).		

The	previously	mentioned	studies	involving	interventions	and	observations	on	a	
diamond	structure	[X←W→Y	and	X→Z←Y]	also	reveal	how	sensitive	people	are	to	the	
parameters	of	the	structure	(Meder	et	al.,	2008,	2009).	These	studies	systematically	
manipulated	the	base	rates	of	some	of	the	variables,	and	also	the	strengths	of	some	of	the	
causal	links.	Even	though	the	causal	structures	involved	4	variables,	and	the	inference	
required	reasoning	with	two	routes	from	X	to	Z,	all	of	these	manipulations	had	influences	
on	subjects’	inferences	in	the	predicted	directions.	In	sum,	reasoning	habits	often	
correspond	to	the	qualitative	predictions	of	the	CBN	framework.	

Yet,	despite	the	qualitative	correspondence	between	human	inferences	and	the	
normative	judgments	based	on	the	CBN	framework,	the	quantitative	correspondence	is	not	
so	tight.	For	example,	in	one	condition	when	inferring	the	probability	of	Z	given	X	for	the	
study	above,	the	normative	answer	was	12.5%,	yet	subjects	answered	on	average	37%.	
Given	that	50	is	the	middle	of	the	scale,	37%	is	actually	considerably	closer	to	a	default	of	
50%	than	the	normative	answer.	This	pattern	of	conservative	results,	judgments	too	close	
to	the	center	of	the	scale	was	very	common	across	many	studies	reviewed	in	Rottman	and	
Hastie	(2014).	For	example,	for	both	chain	[X→Y→Z]	and	common	cause	[X←Y→Z]	
structures	people	do	typically	infer	a	correlation	between	A	and	C,	however,	often	the	
correlation	is	considerably	weaker	than	the	correlation	in	the	data	that	the	subjects	
observed	(Baetu	&	Baker,	2009;	Bes,	Sloman,	Lucas,	&	Raufaste,	2012;	Hagmayer	&	
Waldmann,	2000;	Park	&	Sloman,	2013).	There	are	multiple	possible	interpretations	of	
such	effects	such	as	response	biases	or	memory	errors	(Costello	&	Watts,	2014;	Hilbert,	
2012)	or	potentially	priors	on	the	parameters	(Lu,	Yuille,	Liljeholm,	Cheng,	&	Holyoak,	
2008;	Yeung	&	Griffiths,	2011).	More	evidence	is	needed	to	understand	why	these	effects	
occur,	and	also	to	understand	the	accuracy	when	reasoning	with	more	than	3	or	4	
variables.	
3.4	Reasoning	about	Explaining	Away	Situations	

The	previous	section	already	addressed	quantitative	inferences	on	causal	networks,	
and	the	conclusion	is	that	for	the	most	part	people	are	fairly	good	at	making	inferences,	
though	there	is	a	conservative	bias.	However,	there	is	one	type	of	inference	called	
explaining	away	that	stands	out	as	particularly	difficult.	Explaining	away	inferences	involve	
judgments	of	P(x=1|y=1,	z=1)	and	P(x=1|y=1,z=0)	on	a	common	effect	structure	[X→Y←Z].	
The	reason	that	explaining	away	inferences	are	so	challenging	is	that	once	the	state	of	Y	is	
known,	X	and	Z	actually	become	negatively	dependent,	so	the	normative	pattern	of	
inference	is	P(x=1|y=1,	z=1)	<	P(x=1|y=1,z=0).	This	is	unlike	any	other	type	of	inference.	
For	example,	on	a	chain	structure	[X→Y→Z],	positive	relations	between	X	and	Y	and	Y	and	Z	
mean	that	there	is	a	positive	relation	between	X	and	Z;	P(x=1|z=1)	>	P(x=1|z=0),	and	
because	of	the	Markov	assumption	P(x=1|y=1,	z=1)	=	P(x=1|y=1,z=0).	

In	terms	of	Figure	1	[smoke	→	cardiovascular	disease	←	age],	explaining	away	could	
involve	inferring	the	probability	that	someone	smokes	given	their	age	and	knowing	that	
they	have	cardiovascular	disease.	Out	of	patients	who	have	cardiovascular	disease,	
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knowing	that	a	given	patient	is	old	means	that	it	is	less	necessary	to	infer	that	they	smoke	
in	order	to	explain	the	cardiovascular	disease;	old	age	“explains	away”	the	cardiovascular	
disease.	If	the	patient	is	young	it	becomes	more	necessary	to	infer	that	they	smoke	-	
otherwise	what	explains	the	cardiovascular	disease?	In	sum,	when	the	two	causes	have	a	
positive	influence	on	the	effect,	the	causes	become	negatively	related	controlling	for	the	
effect.		

Prior	evidence	did	not	decisively	identify	how	well	people	explain	away	(Morris	&	
Larrick,	1995;	Sussman	&	Oppenheimer,	2011).	The	newest	and	clearest	evidence	suggests	
that	people	have	considerable	difficulties	when	making	explaining-away	judgments	
(Rehder,	2014).	Though	sometimes	people	get	the	direction	of	the	inference	correct,	
P(x=1|y=1,	z=1)	<	P(x=1|y=1,z=0),	they	often	are	ambivalent	about	the	direction	of	the	
inference,	and	sometimes	think	that	Z	would	have	a	positive	effect	on	X,	P(x=1|y=1,	z=1)	>	
P(x=1|y=1,z=0).	Rehder	proposed	that	this	type	of	reasoning	is	more	akin	to	an	associative	
spreading-activation	network	than	causal	reasoning.	Reid	Hastie	and	I	have	also	recently	
collected	data	on	explaining	away;	unlike	the	previous	research	we	gave	participants	
learning	data	so	that	they	could	reason	from	experience	rather	than	just	from	the	causal	
structure,	and	so	that	they	also	have	direct	evidence	that	P(x=1|y=1,	z=1)	<	P(x=1|y=1,z=0).	
We	sometimes	found	explaining	away	that	was	much	weaker	than	normatively	predicted	
by	the	CBN	framework,	and	other	times	inference	patterns	in	the	opposite	direction	from	
explaining	away.		

The	challenge	people	have	with	explaining	away	is	somewhat	mysterious.	There	are	
no	other	types	of	causal	inference	that	give	reasoners	so	much	trouble,	yet	at	the	same	time	
explaining	away	has	also	been	touted	as	a	fundamental	strength	of	human	reasoning	
(Jones,	1979;	Kelley,	1972;	Pearl,	1988,	p.	49).	There	are	also	other	results	in	which	
explaining	away	does	occur.	Oppenheimer	et	al.	(2013)	created	stories	to	elicit	explaining	
away.	For	example,	participants	were	told	about	an	animal	with	three	features	–feathers,	
lays	eggs,	and	cannot	fly	–	and	asked	to	rate	how	likely	this	animal	is	to	be	an	ostrich.	Being	
an	ostrich	is	a	plausible	explanation	for	why	this	bird	cannot	fly.	Other	participants	were	
given	the	same	three	features	with	one	additional	feature,	that	it	has	a	broken	wing,	which	
is	an	alternative	cause	for	not	being	able	to	fly.	These	participants	judged	the	likelihood	of	
being	an	ostrich	as	lower	than	the	participants	who	were	not	given	this	feature,	suggesting	
explaining	away	(see	also	Oppenheimer	&	Monin,	2009).	So	sometimes	people	do	get	the	
direction	of	the	inference	correct.4	(This	study	did	not	have	normatively-correct	
quantitative	answers	to	compare	human	inferences	against,	and	it	also	tests	a	comparison	
of	).	

An	additional	complexity	is	that	explaining	away	is	related	to	another	phenomenon.	
Explaining	away	involves	inferring	the	probability	of	X	given	knowledge	of	Y	and	Z	on	the	
structure	[X→Y←Z].	Another	much	studied	topic	is	inferring	the	causal	strength	of	X	on	Y.	
As	already	discussed,	people	know	that	they	must	control	for	Z	when	inferring	the	causal	
																																																								
4	This	study	is	different	from	the	ones	above	in	two	ways.	First,	this	study	did	not	have	a	
normatively	correct	quantitative	answer	to	compare	human	inferences	against.	Second,	
this	study	tests	the	comparison	P(ostrich	|	feathers,	lays	eggs,	cannot	fly,	broken	wing)	vs.	
P(ostrich	|	feathers,	lays	eggs,	cannot	fly),	not	P(ostrich	|	feathers,	lays	eggs,	cannot	fly,	no	
broken	wing).	This	is	analogous	to		P(x=1|y=1,	z=1)	vs.	P(x=1|y=1)	instead	of	
P(x=1|y=1,z=0),	so	it	is	a	slightly	different	comparison.	



	 29	

strength	of	X	on	Y.	However,	when	Z	is	a	very	strong	cause	of	Y,	it	is	not	uncommon	for	
people	to	infer	that	the	strength	of	X	is	very	weak,	weaker	than	it	actually	is;	sometimes	
this	is	called	“discounting”	(Goedert	&	Spellman,	2005).	This	discounting	effect	is	related	to	
explaining	away	in	that	both	phenomena	require	understanding	that	two	causes	are	
competing	to	explain	an	effect.	

In	sum,	there	is	conflicting	evidence	as	to	when,	whether,	and	how	much	people	
explain	away.	Despite	the	fact	that	explaining	away	has	been	studied	for	40	years,	there	is	
still	important	work	to	be	done	to	reconcile	these	findings.		
3.5	Do	Causal	Relations	Bias	Reasoning?	

It	is	a	fairly	common	view	in	psychology	that	it	is	it	is	easier	for	people	to	reason	
from	causes	to	effects	than	from	effects	to	causes	(Pennington	&	Hastie,	1993;	White,	
2006),	and	this	hypothesis	is	supported	by	evidence	that	cause	to	effect	judgments	are	
made	faster	than	effect	to	cause	judgments	(Fernbach	&	Darlow,	2010).	The	question	in	
this	section	is	whether	cognitive	ease	has	an	influence	on	the	inferences	themselves.	

Tversky	and	Kahneman	(1980)	found	that	causal	inferences	are	higher	when	
reasoning	from	causes	to	effects.	Similarly,	Bes	et	al.	(2012)	found	that	when	making	
inferences	on	the	chain	[X→Y→Z],	inferences	of	P(z=1|x=1)	were	higher	than	P(x=1|z=1).	
Additionally,	both	of	these	inferences	were	higher	than	inferences	P(z=1|x=1)	or	
P(x=1|z=1)	on	a	common	cause	[X←Y→Z]	structure.	These	differences	are	especially	
instructive	because	their	participants	received	trial-by-trial	training,	according	to	which	all	
the	inferences	mentioned	above	should	have	been	equivalent.	They	speculate	that	making	
inferences	between	X	and	Z	on	the	common	cause	is	harder	because	one	must	reason	about	
causal	relations	going	in	two	different	directions,	and	this	increased	difficulty	could	lower	
the	final	judgment.	

This	study	reaches	a	very	different	conclusion	than	most	of	the	rest	of	the	articles	
presented	in	this	chapter.	The	conclusion	is	that	strength	of	the	inferences	is	determined	by	
the	ease	of	explaining	how	the	two	variables	are	connected,	and	that	this	cognitive	ease	
overwhelms	the	probabilities	participants	experience.	Even	though	the	explanations	for	
these	findings	appeal	to	causal	structure	and	causal	direction,	they	are	inconsistent	with	
the	CBN	framework;	the	CBN	framework	predicts	that	all	the	inferences	mentioned	above	
would	be	equal	given	the	parameters	used	in	the	study.	

Though	the	effects	of	causal	direction	were	found	consistently	across	three	
experiments,	there	are	other	results	that	do	not	entirely	fit	with	the	story	that	cause-to-
effect	judgments	are	higher	than	effect-to-cause	judgments.	First,	Fernbach	et	al.	(2011,	p.	
13)	failed	to	replicate	the	study	by	Tversky	and	Kahneman	(1980).	More	broadly,	Fernbach	
et	al.	have	found	that	inferences	from	causes	to	effects	tend	to	be	lower	than	the	normative	
standard,	but	inferences	from	effects	to	causes	tend	to	be	roughly	normative	(Fernbach,	
Darlow,	&	Sloman,	2010;	Fernbach	et	al.,	2011;	Fernbach	&	Rehder,	2013;	see	also	Rehder,	
this	volume	b).	The	explanation	is	that	when	reasoning	from	causes	to	effects,	people	
sometimes	forget	that	alternative	causes	could	produce	the	target	effect	aside	from	the	
main	cause,	though	they	do	not	forget	about	alternative	causes	when	reasoning	from	the	
effect	to	a	target	cause.		

There	is	some	tension	between	these	two	sets	of	findings;	Bes	et	al.	found	that	
effect-to-cause	judgments	are	too	low	(lower	than	cause-to-effect	judgments),	whereas	
Fernbach	et	al.	found	that	cause-to-effect	judgments	are	too	low.	However,	these	results	
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cannot	be	directly	compared	because	they	differ	on	a	variety	of	dimensions.5	Fernbach	et	
al.	used	real	world	cover	stories,	asked	participants	their	beliefs	about	the	parameters	of	
the	causal	structure,	and	then	used	those	parameters	to	calculate	the	normative	answers.	
Because	of	this	approach,	Fernbach	et	al.	could	not	directly	compare	the	cause-to-effect	and	
effect-to-cause	inferences	and	instead	compared	each	inference	to	the	normative	standard	
for	that	inference.	6	In	contrast,	Bes	et	al.	(Experiment	3)	gave	participants	trial-by-trial	
learning	data;	because	the	learning	data	were	symmetric	the	cause-to-effect	and	effect-to-
cause	inferences	could	be	directly	compared	(although	the	cover	story	labels	for	the	
variables	were	not	counterbalanced).		

In	sum,	though	it	is	intuitive	that	it	is	easier	to	reason	from	causes	to	effects	rather	
than	vice	versa,	it	is	still	unclear	weather	or	how	cognitive	fluency	and	neglect	of	
alternative	causes	manifest	in	judgments;	it	is	not	clear	exactly	whether	or	when	cause-to-
effect	judgments	are	higher	than	effect-to-cause	judgments.	It	is	especially	important	to	
come	to	consensus	on	these	results,	or	explain	why	different	patterns	of	reasoning	are	
found	in	different	situations,	because	both	of	the	patterns	of	findings	imply	deviations	from	
the	CBN	framework.	
3.6	Alternative	Representations	for	Causal	Reasoning	
	 So	far	this	chapter	has	presented	the	CBN	framework	as	a	single	method	of	learning	
causal	structures	and	making	inferences.	However,	like	most	sophisticated	modeling	tools,	
there	are	actually	many	choices	that	the	modeler	can	make.	Assuming	that	human	cognitive	
representations	of	causality	are	somehow	similar	to	the	representation	of	a	Causal	
Bayesian	network	(directed	representations	of	causality,	parameters	to	capture	the	
strength	of	causal	relations	and	base	rates),	these	choices	correspond	to	different	cognitive	
representations	of	the	task	and	background	knowledge.	An	accurate	description	of	causal	
reasoning	requires	clarifying	the	representations	being	used.	In	the	next	two	sections	I	
discuss	some	representational	options,	and	whether	they	can	be	empirically	distinguished.	

Consider	the	case	that	you	are	told	that	X	and	Z	both	cause	Y	[X→Y←Z],	you	
experience	a	set	of	learning	trials	that	instantiate	the	statistical	relations	between	these	
variables,	and	are	subsequently	asked	to	infer	P(x=1|y=1,z=1).	Figure	8	details	four	
possible	processes	for	making	the	judgment.		

The	first	route,	the	dashed	line,	involves	making	the	inference	directly	from	the	
experienced	data.	Whenever	a	learner	experiences	data	that	instantiates	the	causal	
structure	it	is	possible	to	come	to	the	correct	inference	by	focusing	on	the	experienced	data	
																																																								
5	I	thank	Michael	Waldmann	for	highlighting	these	differences.	
6	Assuming	a	world	in	which	causes	and	effects	have	the	same	base	rates,	on	average,	
Fernbach	et	al.’s	findings	imply	that	cause-to-effect	judgments	would	be	lower	than	effect-
to-cause	judgments.	However,	Fernbach	et	al.	actually	assume	a	world	in	which	effects	have	
higher	base	rates	than	causes	on	average.	Fernbach	et	al.	(2011,	p.	13)	claim	that	a	
normative	CBN	analysis	shows	that	inferences	of	P(effect=1|cause=1)	should	be	higher	
than	P(cause=1|effect=1)	65%	of	the	time	when	integrating	across	the	entire	parameter	
space	with	uniform	priors.	The	reason	for	this	finding	is	due	to	the	fact	that	they	assumed	
that	there	are	alternative	factors	that	can	generate	effects	but	not	inhibit	effects.	This	same	
analysis	shows	that	even	though	causes	have	a	base	rate	.5	on	average,	effects	have	a	base	
rate	of	.625.	So	their	analysis	is	only	appropriate	in	worlds	in	which	there	are	no	inhibitory	
factors.	
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and	ignoring	the	causal	structure.	For	example,	in	order	to	calculate	P(x=1|y=1,z=1),	a	
reasoner	just	needs	to	remember	the	total	number	of	observations	in	which	all	three	
variables	were	1,	P(x=1,y=1,z=1),	and	divide	this	by	the	total	number	of	observations	in	
which	y=1	and	z=1	ignoring	X,	N(y=1,z=1);	see	Figure	8.	This	reasoning	process	can	be	
thought	of	as	similar	to	exemplar	models	of	categorization;	inference	is	performed	by	
recalling	specific	exemplars.	
	 The	remaining	three	options	all	involve	elaborating	the	causal	structure	with	
different	kinds	of	parameters,	and	inference	is	performed	through	a	computation	on	the	
parameters.	Though	in	some	ways	the	inference	itself	seems	more	complicated,	the	
cognitive	benefit	is	that	the	learner	only	needs	to	store	the	structure	and	the	parameters,	
not	all	the	individual	instances.	The	difference	between	these	three	options	is	how	they	
represent	the	conditional	probability	distribution	of	Y,	the	probability	of	Y	given	the	causes	
X	and	Z.	This	conditional	probability	distribution	is	denoted	as	P(Y=y|X=x,Z=z),	which	
means	the	probability	that	Y	is	in	a	particular	state	(y	=	0	or	1),	given	that	X	and	Z	are	each	
in	particular	states,	x	and	z.	

Representation	1,	involves	calculating	the	conditional	probability	distribution	
P(Y=y|X=x,Z=z)	directly	from	the	experienced	data.	For	example,	the	probability	that	y=1	
given	that	x=1	and	z=1,	is	calculated	directly	from	rows	1	and	3	from	the	experience	table.	
Inference	can	then	proceed	through	simple	probability	theory	(Figure	8).	Heckerman	
(1998)	provides	a	tutorial	on	this	approach,	and	provides	citations	to	other	exact	and	
approximate	inference	algorithms.	
	 Representation	2	does	not	directly	represent	the	conditional	probability	
distribution	P(Y=y|X=x,	Z=z),	but	instead	assumes	that	people	spontaneously	infer	causal	
strengths	from	the	learning	data.	SX→Y	and	SZ→Y	refer	to	the	strength	of	X	on	Y	and	Z	on	Y,	
respectively.	The	most	popular	way	to	represent	causal	strengths	in	the	normative	
psychological	literature	is	using	causal	power	theory,	which	assumes	that	causes	combine	
through	a	Noisy-OR	function	(Cheng,	1997;	Novick	&	Cheng,	2004	also	see	Sections	2.2	and	
2.3).	This	approach	also	requires	the	learner	to	estimate	the	probability	that	the	effect	is	
present	without	any	of	its	causes,	P(Y=1|x=0,z=0).	The	causal	strengths	and	the	functional	
form	(Noisy-OR)	subsequently	allow	a	reasoner	to	deduce	the	conditional	distribution	
P(Y=y|X=x,Z=z),	which	would	be	used	for	making	the	inference	P(x=1|y=1,z=1).	The	critical	
difference	between	Representation	1	vs.	2	is	that	Representation	2	embodies	the	
assumption	that	X	and	Z	combine	through	a	Noisy-OR	function	and	do	not	interact	(Novick	
&	Cheng,	2004);	the	Noisy-OR	assumption	is	the	reason	why	Representation	2	has	only	5	
parameters	instead	of	the	6	parameters	in	Representation	1.	
	 Representation	3	is	very	similar	to	Representation	2;	however,	instead	of	
representing	the	parameter	P(Y=1|x=0,z=0),	an	additional	background	cause	B	is	added	
that	explains	the	cases	when	Y=1	but	X	and	Z	are	0.	In	Figure	8,	B	is	assumed	to	always	be	
present,	and	to	have	a	strength	of	1/3.	

The	question	raised	by	these	four	options	is	whether	some	sort	of	representation	of	
causal	structure	and	strength	mediates	the	process	of	making	an	inference	based	on	
experienced	data,	or	whether	the	inference	is	made	directly	from	the	experienced	data	
(dashed	line).	If	indeed	some	sort	of	causal	structure	representation	mediates	the	
inference,	which	form	of	representation	gets	used?	All	four	approaches	make	the	exact	
same	predictions,	so	they	are	difficult	to	distinguish	empirically.	
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	 I	do	not	know	of	any	studies	that	address	the	first	question,	whether	a	causal	
structure	representation	mediates	the	process	of	making	an	inference	based	on	experience	
data.	However,	there	are	some	studies	that	have	attempted	to	distinguish	the	nature	of	the	
CBN	representation,	specifically	the	difference	between	Representations	2	vs.	3.	
	
Figure	8:	Four	Possible	Processes	for	Making	an	Inference	

	
Note:	N	refers	to	the	number	of	trials	of	observations	of	a	particular	type.	
	
	 		

Krynski	and	Tenenbaum	(2007)	studied	how	well	people	make	inferences	on	the	
famous	mammogram	problem.	In	this	problem,	participants	are	told	that	breast	cancer	

0 0 0 8
0 1 60

400 1
6110
401 0

1 30 1
8011

1 911
#ZYX

X

Y

Z

P(y=1|x=1,z=1)=3/4
P(y=1|x=1,z=0)=2/3
P(y=1|x=0,z=1)=1/2
P(y=1|x=0,z=0)=1/3

P(x=1)=.5 P(z=1)=.5

Functional Form = Noisy OR, no interaction
P(y=1|X=x,Z=z)=
    1-(1-SX→Y)x(1-SZ→Y)z(1-SB→Y)

X

Y

Z
P(x=1)=.5 P(z=1)=.5

B

SB→Y
=1/3

SZ→Y
=1/4SX→Y

=1/2

P(b=1)=1

P(y=1|x=0,z=0)=1/3,
Functional Form = Noisy OR, no interaction
P(y=1|X=x,Z=z)=
    1-(1-SX→Y)x(1-SZ→Y)z(1-P(y=1|x=0,z=0))

X

Y

Z
P(x=1)=.5 P(z=1)=.5

SZ→Y
=1/4

SX→Y
=1/2

CBN Representation 1:
Conditional distribution is 
represented as a table of all 
combinations of the causes.

CBN Representation 2: Conditional 
distribution is represented as the Noisy-OR 
functional form combining causal strengths 
for known causes, and a parameter for Y 
when all known causes are absent.

CBN Representation 3: Conditional 
distribution is represented as the Noisy-OR 
functional form combining causal strengths. 
Reasoner infers a background cause B if Y 
is present without X or Z.

Joint Probability Distribution:
The memory for the number of 
observations of each type of 
event. When there are three 
binary variables, there are 8 
possible event types.

P(x=1|y=1,z=1) = P(x=1,y=1,z=1) / P(y=1,z=1)
                         = P(x=1,y=1,z=1) / (P(x=1,y=1,z=1) + P(x=0,y=1,z=1))
                         = P(y=1|x=1,z=1)P(x=1)P(z=1) / (P(y=1|x=1,z=1)P(x=1)P(z=1) + P(y=1|x=0,z=1)P(x=0)P(z=1))
                         = 3/4*1/2*1/2 / (3/4*1/2*1/2 + 1/2*1/2*1/2) = 3/5

P(x=1|y=1,z=1) = N(x=1,y=1,z=1) / N(y=1,z=1)
                         = N(x=1,y=1,z=1) / (N(x=1,y=1,z=1) + N(x=0,y=1,z=1))
                         = 9/(9+6) = 3/5

X

Y

Z

Causal Structure:

Given information: Reasoner is told the causal structure and receives trial-by-trial 
experience of the multivariate distribution, which can be summarized as a joint 
probability table. Reasoner is asked to infer P(x=1|y=1,z=1).



	 33	

(cause)	almost	always	results	in	a	positive	mammogram	test	(effect),	and	they	are	told	the	
base	rate	of	breast	cancer.	They	are	also	told	that	mammograms	have	false	positives	6%	of	
the	time.	Critically,	this	false	positive	rate	is	framed	either	as	inherent	randomness	
(Representation	2,	which	has	a	parameter	to	represent	the	probability	of	the	effect	when	
the	known	cause	is	absent),	or	due	to	a	benign	cyst	(an	explicit	background	cause	like	in	
Representation	3).	Krynski	and	Tenenbaum	found	that	participants’	judgments	about	the	
probability	of	breast	cancer	given	a	positive	mammogram	were	considerably	more	
accurate	when	the	false	positive	rate	was	framed	as	being	caused	by	a	benign	cyst,	
suggesting	that	Representation	3	may	be	the	most	intuitive.		

A	number	of	recent	studies	help	to	clarify	this	finding	by	Krynski	and	Tenenbaum.	
First,	though	this	facilitation	of	Bayesian	responding	by	a	causal	framing	has	sometimes	
been	found,	the	effect	has	not	always	been	consistent	(Hayes	et	al.,	2015;	Hayes,	Newell,	&	
Hawkins,	2013;	McNair	&	Feeney,	2014,	2015).	There	appear	to	be	two	main	reasons	for	
the	inconsistency.	First,	the	causal	framing	has	a	bigger	influence	for	participants	who	have	
higher	mathematical	abilities	(McNair	&	Feeney,	2015).	Second,	the	facilitation	effect	is	
often	seen	in	a	reduction	in	extreme	overestimations	(called	base	rate	‘neglect’);	however,	
the	final	judgments	are	often	lower,	closer	to	the	normative	response,	but	still	not	quite	
‘normative’	(McNair	&	Feeney,	2014).	A	plausible	explanation	for	this	effect	was	put	forth	
by	Hayes,	Hawkins,	and	Newell	(2015;	2014),	who	found	that	the	causal	framing	increases	
the	perceived	relevance	of	the	false	positive	information.	They	concluded	that	the	causal	
framing	mainly	has	an	influence	on	the	attention	paid	to	the	false	positive	rate	and	possible	
the	construction	of	a	representation	of	the	problem,	but	does	not	necessarily	help	
participants	to	actually	use	the	false	positive	rate	in	a	normative	way	when	calculating	the	
posterior	inference.		

In	sum,	it	seems	like	having	explicit	alternative	causes	(Representation	3)	may	
facilitate	accurate	causal	inference.	That	said,	this	finding	raises	a	worrying	prospect	that	
causal	reasoning	is	apparently	fragile	enough	that	it	can	be	harmed	by	a	small	framing.	If	
causal	reasoning	is	robust	why	can’t	people	translate	between	these	representations	by	
mentally	generating	an	alternative	cause	to	represent	the	false	positive	rate?	

More	broadly,	the	purpose	of	this	analysis	in	Figure	8	was	to	show	that	the	CBN	
framework	can	be	instantiated	in	multiple	possible	ways.	Different	articles	present	
different	versions.	Even	though	they	all	make	similar	if	not	identical	predictions,	these	
alternative	versions	present	different	cognitive	processes	involved	in	making	the	inference.	
In	order	to	move	from	a	computational-level	theory	to	an	algorithmic-level	theory	it	will	be	
necessary	to	further	clarify	the	representations	and	inference	process.	It	is	especially	
critical	to	clarify	whether	a	causal	structure	representation	mediates	causal	inference	when	
a	reasoner	has	experienced	learning	data	because	in	such	instances	it	is	possible	to	make	
inferences	directly	from	the	remembered	experiences	without	thinking	about	the	causal	
structure	at	all.	
3.7	Even	More	Complicated	Alternative	Models	for	Causal	Reasoning	
	 The	previous	section	discussed	four	possible	implementations	of	the	CBN	
framework.	However,	in	reality	there	are	many	more	possibilities.	A	fully	Bayesian	
treatment	of	learning	and	inference	allows	for	a	way	for	prior	knowledge	to	influence	the	
learning	and	inference	processes.	In	regards	to	a	causal	structure,	there	are	three	possible	
roles	of	prior	information;	prior	beliefs	about	the	network,	about	the	integration	function,	
and	about	the	strengths	or	parameters.	
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	 First,	whereas	Representations	2	and	3	in	Figure	8	both	assume	one	particular	
functional	form,	the	Noisy-OR,	in	reality	learning	is	not	this	simple.	Section	2.2	on	
functional	forms	already	covered	experiments	on	how	people	learn	the	specific	way	in	
which	multiple	causes	combine	to	produce	an	effect,	and	how	this	belief	shapes	further	
learning	and	reasoning	about	the	causal	system.	(Beckers	&	Miller,	2005;	Lucas	&	Griffiths,	
2010;	Waldmann,	2007).	Thus,	a	fully	Bayesian	version	of	Figure	8	would	allow	for	
multiple	possible	integration	functions	and	priors	on	those	functions.	
	 Second,	the	parameters	in	Figure	8	were	calculated	by	using	point	estimates.	For	
example,	the	parameter	P(y=1|x=0,	z=0)	for	Representations	1	and	2,	and	the	SB→Y	
parameter	in	Representation	3,	are	all	given	as	exactly	1/3	in	Figure	8,	which	was	
calculated	by	comparing	rows	6	and	8	in	the	data	table.	If	a	point	estimate	of	the	
parameters	is	used,	then	all	four	approaches	produce	exactly	the	same	inferences.	
Alternatively,	another	option	is	that	people	represent	uncertainty	about	all	of	the	
parameters	based	on	the	amount	of	data	experienced.	If	this	second	approach	is	used,	then	
Representation	1	will	make	somewhat	weaker	inferences	than	Representations	2	and	3,	
because	Representation	1	requires	inferring	an	additional	parameter.	Additionally,	people	
may	have	prior	beliefs	about	causal	strengths	that	may	bias	the	learning	and	inference	
process.	For	example,	Lu	et	al.	argued	that	people	believe	causes	to	be	sparse	and	strong	
(Lu	et	al.,	2008).	Given	the	data	in	Figure	8,	the	sparse	and	strong	priors	pull	the	strengths	
downward;	instead	of	a	strength	of	.50,	the	sparse	and	strong	priors	would	produce	a	
strength	estimate	of	.43	and	with	more	data	the	estimate	gets	closer	to	.50.	In	contrast,	
Yeung	and	Griffiths	(Yeung	&	Griffiths,	2015)	found	that	people	have	priors	such	that	they	
believe	that	most	candidate	causes	are	very	strong.	If	people	had	such	priors	it	would	
result	in	causal	strength	estimates	above	.50.	Priors	on	strength	would	have	a	down-stream	
influence	on	inference;	the	stronger	the	causal	strength	beliefs,	the	stronger	the	inferences	
should	be.		
	 Third,	people	often	have	prior	beliefs	about	the	causal	network.	Lu	et	al.’s	sparse	
and	strong	prior	suggests	that	people	believe	that	fewer	causes	are	more	likely	than	many	
causes	(Lu	et	al.,	2008).	In	a	related	vein,	Meder	et	al.	(2014)	proposed	that	when	
performing	an	inference,	even	if	told	a	causal	structure,	people	may	entertain	the	
possibility	that	another	causal	structure	could	actually	be	the	true	structure,	which	can	
influence	the	judgment.	In	particular,	Meder	et	al.	told	participants	the	structure	[X→Y],	had	
them	observe	contingency	data	so	that	they	could	learn	the	statistical	relation	between	X	
and	Y,	and	then	had	them	make	an	inference	of	P(x=1|y=1).	They	found	evidence	that	when	
the	causal	strength	of	X	on	Y	is	fairly	weak,	people	may	not	believe	the	structure	[X→Y]	and	
instead	entertain	the	possibility	that	X	and	Y	may	be	unrelated.	This	general	approach,	that	
people	may	entertain	the	possibility	that	the	causal	structure	presented	by	the	
experimenter	may	not	actually	be	the	true	causal	structure	has	also	been	used	to	explain	
violations	of	the	Markov	assumption	(see	Section	3.2).	One	problem	with	this	account,	
however,	is	that	when	there	are	more	than	two	variables	it	is	unclear	what	set	of	
alternative	structures	is	entertained,	and	considering	multiple	possibilities	would	quickly	
become	cognitively	unwieldy.	
	 In	sum,	allowing	for	the	possibility	that	people	think	about	multiple	possible	
strengths,	functional	forms,	and	causal	structures	makes	the	CBN	framework	very	flexible,	
and	on	a	case-by-case	level	it	seems	plausible	that	people	may	actually	have	priors	for	any	
of	these	aspects	of	the	network.	However,	incorporating	all	of	these	priors	makes	the	
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reasoning	task	much	harder	than	any	of	the	options	in	Figure	8,	and	it	seems	unlikely	that	
people	are	always	engaged	in	reasoning	with	all	these	priors	simultaneously.	Thus,	it	will	
be	important	to	understand	when	people	make	use	of	the	priors	and	how	well	they	
incorporate	priors	with	observed	data	for	making	inferences.		
4	Final	Questions,	Future	Directions,	and	Conclusions	
	 Throughout	the	chapter	I	have	highlighted	questions	and	future	directions.	In	this	
section	I	repeat	some	of	those	questions	and	add	some	new	ones.	I	believe	that	these	
questions	are	critical	for	having	a	thorough	and	accurate	understanding	of	human	causal	
learning	and	reasoning.	

1) Though	recently	there	have	been	more	attempts	to	explore	other	functional	forms,	
the	vast	majority	of	research	on	the	CBN	framework	has	investigated	binary	
variables	that	combine	through	a	Noisy-OR	function.	There	has	been	very	little	
theorizing	about	what	causal	strength	means,	for	example,	when	causes	and	or	
effects	are	multilevel	(Pacer	&	Griffiths,	2011;	Rottman,	2016;	White,	2001).	For	
example,	is	the	human	interpretation	of	causal	strength	for	multilevel	(e.g.,	
Gaussian)	variables	analogous	to	effect	size	measures	for	linear	regression?	What	is	
the	relation	between	function	learning	and	causal	strength	learning?	Do	people	face	
any	challenges	or	use	different	heuristics	when	learning	causal	structures	from	
multilevel	rather	than	binary	variables?	In	sum,	causal	reasoning	is	extremely	
diverse,	and	it	will	be	critical	to	broaden	our	experimental	paradigms	to	capture	this	
diversity.	

2) One	of	the	goals	of	cognitive	psychology	is	to	understand	the	representations	that	
people	use	for	thought.	As	Figure	8	demonstrates,	there	are	multiple	possible	
representations	for	how	people	reason	about	causal	structures,	and	many	of	these	
representations	make	exactly	the	same	(or	very	similar)	predictions.	Clarifying	
which	sorts	of	representations	are	used	will	help	develop	a	more	precise	descriptive	
account	of	causal	reasoning.	

3) So	far	the	CBN	framework	has	been	framed	as	a	computational-level	theory	of	
human	causal	reasoning.	However,	the	computations	involved	in	inferring	a	causal	
structure	from	data,	or	making	inferences	on	a	network	(e.g.,	Figure	8)	are	very	
complex.	Thus,	an	important	goal	is	to	develop	a	process-level	account	of	how	
people	actually	perform	these	inferences.	A	number	of	theorists	have	proposed	
various	heuristics	for	causal	learning,	which	often	come	close	to	the	optimal	
solution,	and	often	have	equal	or	better	fit	to	participants’	inferences(Bramley	et	al.,	
2015;	Coenen	et	al.,	2015;	Lagnado	&	Sloman,	2004;	Rottman	&	Keil,	2012;	Rottman	
et	al.,	2014;	Steyvers	et	al.,	2003).	Yet	so	far	this	heuristics	approach	has	been	
disconnected	and	has	often	taken	the	back	seat	to	proof	of	concept	demonstrations	
that	the	CBN	framework	can	model	human	learning.	More	attention	to	how	these	
inferences	are	actually	made	through	a	process-level	account	will	help	provide	
psychological	insight	into	this	fascinating	and	complex	reasoning	process.	

4) Lastly,	all	of	the	studies	on	human	causal	reasoning	give	participants	toy	examples	
and	sample	data	in	short	periods	of	time.	It	is	unclear	how	well	this	research	
strategy	captures	actual	causal	reasoning	in	the	real	world,	which	involves	long-
term	accumulation	of	data	and	many	more	variables.	An	ideal	approach	would	be	to	
find	a	real-world	domain	involving	causes	and	effects	that	includes	records	of	
experiences.	For	example,	a	highly	accurate	electronic	medical	records	system	might	
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in	the	future	permit	us	to	track	a	doctor’s	experiences	with	all	the	variables	in	
Figure	1	to	see	if	the	doctor’s	judgments	fit	closely	with	his	or	her	personal	
experiences.	
	

	 The	causal	Bayesian	network	framework	has	entirely	reshaped	the	landscape	of	
research	on	causality	to	the	point	that	it	is	now	rare	see	articles	that	investigate	causal	
learning	without	mentioning	the	CBN	framework.	Whereas	research	on	causal	reasoning	
used	to	be	primarily	about	inferences	between	a	single	cause	and	effect,	now	the	central	
questions	are	about	larger	causal	structures.	Thus,	the	new	focus	is	on	how	people	learn	
the	structure	and	determine	causal	directionality,	how	people	simplify	complex	structures	
into	smaller	units	using	the	Markov	assumption,	and	how	various	beliefs	captured	in	the	
network	such	as	the	integration	function	influence	learning	and	reasoning.	Even	older	
questions	such	as	elemental	causal	learning	have	benefitted	tremendously	from	the	CBN	
framework	by	reinterpreting	strength	as	a	parameter	in	the	causal	network.		

On	the	descriptive	side,	the	most	important	fact	about	human	causal	reasoning	is	
that	humans	are	remarkably	good	causal	reasoners;	we	adeptly	incorporate	many	different	
beliefs	when	learning	and	reasoning	(e.g.,	integration	functions,	autocorrelation,	causal	
directionality),	we	can	learn	about	quite	complicated	causal	relations	(e.g.,	unobserved	
causes	that	interact	with	observed	causes),	and	we	often	do	so	with	remarkably	little	data.	
The	introduction	of	the	CBN	framework	has	revealed	many	of	these	capacities	that	were	
previously	unknown	and	has	also	raised	important	questions	such	as	how	such	as	how	to	
develop	a	process-level	account	of	these	sophisticated	inferences,	how	closely	do	the	
representations	of	the	CBN	framework	map	on	to	the	actual	representations	that	we	use	for	
causal	reasoning,	how	causal	reasoning	occurs	with	more	diverse	sorts	of	stimuli	and	in	
more	naturalistic	environments.	Answering	these	questions	will	not	only	help	us	develop	a	
more	accurate	and	complete	picture	of	human	causal	reasoning	but	may	also	identify	ways	
to	help	people	become	even	better	causal	reasoners.	
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