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Effect of Grouping of Evidence Types on Learning About Interactions

Between Observed and Unobserved Causes
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When a cause interacts with unobserved factors to produce an effect, the contingency between the
observed cause and effect cannot be taken at face value to infer causality. Yet it would be computa-
tionally intractable to consider all possible unobserved, interacting factors. Nonetheless, 6 experiments
found that people can learn about an unobserved cause participating in an interaction with an observed
cause when the unobserved cause is stable over time. Participants observed periods in which a cause and
effect were associated followed by periods of the opposite association (“grouped condition”). Rather than
concluding a complete lack of causality, participants inferred that the observed cause does influence the
effect (Experiment 1), and they gave higher causal strength estimates when there were longer periods
during which the observed cause appeared to influence the effect (Experiment 2). Consistent with these
results, when the trials were grouped, participants inferred that the observed cause interacted with an
unobserved cause (Experiments 3 and 4). Indeed, participants could even make precise predictions about
the pattern of interaction (Experiments 5 and 6). Implications for theories of causal reasoning are

discussed.
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Many events are produced through interactions involving multiple
factors. For instance, John’s driving to work this morning depends not
only on his turning the ignition key but also on the presence of oxygen
in the air, gas in the fuel tank, and the battery being charged. Fur-
thermore, it depends upon all factors that contributed to the existence
and functioning of John and his car up to that moment, such as John’s
salary being sufficient for him to own a car.

Understanding specific ways in which causes interact can be
crucial. For instance, Waldmann (2007) examined cases in which
multiple causes average or add up to produce an effect. Suppose
that one observes that Drug A alone increases a person’s heart rate
by 20 beats per minute compared with normal and observes that
the combination of Drug A and Drug B increases a person’s heart
rate by 20 beats per minute compared with normal. If one believes
that the effect of drugs combine additively, one may infer that
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Drug B does not influence heart rate at all, whereas if one believes
the effect of drugs combine by averaging, one may infer that the
second drug still has causal efficacy in influencing heart rate. In a
classic article, Kelley (1972) described multiple necessary and
multiple sufficient cause schemata, which aid in various causal
inferences involving multiple causes.

While understanding how multiple causal factors interact is
crucial for causal inference, people cannot reason or learn about all
possible causal interactions, not just because it is beyond their
computational limitations but also because only a fraction of the
interacting causes are observable. There have been normative
accounts for computing the causal strength of interacting causes
(e.g., Novick & Cheng, 2004), but such accounts are based on
observing how interacting causes behave and cannot capture many
real-life situations in which interacting causes are unobservable or
initially unattended.

Few previous studies have examined whether people make
inferences about how unobserved causes interact with observed
causes. Instead, previous models of causal learning made simpli-
fied assumptions about how unobserved and observed causes
combine. The goal of the current study is to empirically demon-
strate that under certain conditions people deviate from these
traditional assumptions and learn that observed and unobserved
causes may interact in complicated ways.

The outline of this introduction is as follows. We first briefly
review the two most prominent assumptions that previous models
have made about the relationship between observed and unob-
served causes. Then we describe a case in which observed and
unobserved causes interact in a different way. Finally, we describe
conditions in which people would infer unusual (or nontraditional
in the causal learning literature) causal interactions, despite the
interacting cause being unobserved.



LEARNING ABOUT INTERACTIONS WITH UNOBSERVED CAUSES

Assumptions About How Observed and Unobserved
Causes Combine

There are two prominent assumptions made by existing theories
of causal learning in terms of how unobserved causes interact with
observed causes.

Additivity, or Linear Integration Function

Some models of causal learning have assumed that causes
combine additively (e.g., Jenkins & Ward, 1965; Rescorla &
Wagner, 1972). For example, if two cues each have associative
strengths of .5, when presented simultaneously, the Rescorla-
Wagner algorithm, not assuming a configural cue, suggests that the
subject would predict the probability of the outcome to be the sum
of the associative strengths of the individual elements, 1. This
algorithm treats unobserved causes the same way: A background
cue, which is often interpreted as the sum of all unobserved causes
(Hagmayer & Waldman, 2007; Shanks, 1989), contributes to the
total associative strength in an additive manner. Griffiths and
Tenenbaum (2005) have demonstrated that another model of
causal strength, AP (Jenkins & Ward, 1965), is the maximum
likelihood estimate of causal strength if one observed cause and
one unobserved cause combine linearly.

Noisy-OR and Noisy-AND-NOT Integration Function

Other models have assumed a “noisy-OR” integration (e.g.,
Cheng, 1997; Pearl, 1988, 2000), which essentially describes sit-
uations involving multiple sufficient causes. In noisy-OR, the
presence of an effect is determined by the union of independent
causes. Thus, the likelihood that an effect occurs is the sum of the
likelihood that an observed cause, C, produces the effect and the
likelihood that all other alternative (observed or unobserved)
causes, A, produce the effect, minus the likelihood that C and A
together produce the effect. Likewise, a noisy-AND-NOT integra-
tion has been used for inhibitory causes. (See Novick & Cheng,
2004, for probabilistic conjunctive causal interactions among mul-
tiple observed causes.)

Reasoning About Other Combinations?

So far, we briefly reviewed many models of causal learning that
assume that unobserved causes combine with observed causes
either through additive or noisy-OR functions. There are two
limitations to this approach. First, one of the most intuitive ways
that observed and unobserved causes may interact is neither addi-
tive nor noisy-OR; instead, an unobserved cause may be a neces-
sary enabling condition for the observed cause. For instance, if a
car battery is uncharged (unobserved enabling condition), the car
will not start, even if the ignition key is turned (observed cause).
It is likely that people understand that all observed causes have
enabling conditions, suggesting that people know other ways that
causes combine."

Second, it is also unlikely that people assume that all observed
and unobserved causes combine in the same way. The three types
of interactions we discussed so far (i.e., additive, noisy-OR, and
multiple necessary) are all plausible forms of interactions among
causes, and it seems quite implausible that people only use one of
these three. Indeed, when it comes to observed causes, recent
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studies have uncovered that people can flexibly learn that different
causes combine through different functions (Beckers, De Houwer,
Pineflo, & Miller, 2005; Lu, Rojas, Beckers, & Yuille, 2008; Lucas
& Griffiths, 2010). Yuille and Lu (2008) have developed a “gram-
mar” to express the form of any probabilistic logical combination
of causes.

Given that there are several plausible ways in which observed
and unobserved causes can interact and that people flexibly learn
these different combinations involving observed causes, it seems
possible that people would also flexibly learn different ways that
observed and unobserved causes combine. Nonetheless, it is also
possible that people may not be able to flexibly learn different
ways that observed and unobserved causes combine. Learning
interactions between one observed and one unobserved causes is
more difficult than with two observed causes, because the state of
the unobserved cause needs to be inferred. Thus, whether people
can infer how observed and unobserved causes interact warrants
empirical study.

To demonstrate that people can flexibly infer specific ways in
which observed and unobserved causes combine, we investigated
the “biconditional” interaction between an observed and an unob-
served cause as a paradigm case. Given the extensive research on
linear and noisy-OR interactions and the fact that biconditional
interactions are fairly complicated, it is unlikely that people would
use the biconditional interaction as a default assumption for how
causes combine. Thus, if people do learn about biconditional
interactions, it would suggest that people make novel inferences
about how observed and unobserved causes interact. In the next
section, we describe the biconditional interaction in more detail.

The Biconditional Interaction

Consider a case of two causes (C, and C,) and an effect (E),
which can take the values O or 1. In a biconditional interaction
(analogous to an XOR relation and negative patterning),> E = 1 if
both causes have the same value (i.e., C, = C, = 1,0or C, = C, =
0), and E = 0 if the two causes have different values (i.e., C;, = 0
and C, = 1,or C; = 1 and C, = 0).

The biconditional interaction has a unique property compared
with the linear and noisy-OR integration functions. According to
the other two functions, the probability of an effect is different
given alternative states of the observed cause (e.g., C = 1 or C =
0).> But if two causes combine through a biconditional relation-
ship, this is not necessarily true. As demonstrated in the extended
example below, this property of the biconditional interaction poses
challenges for causal inference.

One famous interaction example in the psychology literature is
the relationship between parenting styles and child development
(see Darling & Steinberg, 1993, for a review). “Authoritative”

! Research from the animal-conditioning literature has investigated sim-
ilar cases. For example, an “occasion-setting” cue may signal periods of
time during which another cue is paired with an outcome. And “positive-
patterning” describes situations when an outcome only occurs if two cues
are simultaneously present.

2 Because 0 and 1 reflect alternative states of the causes and effects in
this article, the biconditional interaction can also be described as an XOR
interaction and negative patterning with the 0 and 1 values exchanged.

3 This is true for noisy-OR with the caveat of ceiling and floor effects.
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parents give emotional support, set high standards, and allow
autonomy, whereas “authoritarian” parents require strict adherence
to rules. Within middle-class, European American families, au-
thoritative parenting leads to the most academic success. Yet
within minority populations, authoritarian parenting often leads to
the most academic success. The pattern of results can be summa-
rized in Figure 1, which reports the outcomes of 50 European
American (white cells) and 50 minority (gray cells) families, each
with 25 authoritative and 25 authoritarian families. If we know that
race is a relevant variable, we can look within the different colored
cells and notice the opposite relationships between parenting style
and academic success for the two populations, easily identifying
the interaction.

However, when one of the interacting causes is unknown, in-
teractions of this sort pose a problem for causal inference. For
example, consider Figure 1 again pretending that race information
is unknown (i.e., by ignoring the shades of the cells). Since race is
not observed, it is impossible to test for an interaction between race
and parenting style. Furthermore, the probability of academic
success is the same given the two forms of parenting, suggesting
that parenting style is not a cause of academic success.

In sum, if people do not consider that an observed cause inter-
acts with an unobserved cause, they may make incorrect infer-
ences.* Yet it is difficult to always consider interactions with
unobserved causes. For example, researchers initially found a
correlation between authoritative parenting and academic success
using a sample primarily composed of European American fami-
lies (Baumrind, 1967). However, because there was no a priori
reason to test whether race interacted with parenting style, this
interaction was only discovered later (Baumrind, 1972).

Learning a Biconditional Interaction When an
Unobserved Factor Is Stable

Although discovering a biconditional interaction involving an
unobserved cause is difficult, we propose that people may over-
come this challenge if the unobserved factor is fairly stable over
time. To understand the influence of stability, we illustrate an
example of a biconditional interaction between two causes of an
effect, where the unobserved cause is either stable or unstable over
time (see Figure 2). Suppose there are two light switches con-
nected to one light, and the light is on if both switches are up or
down, but the light is off if one switch is up, and the other is down.
In this scenario, an observer can only see one of the switches and
the light, and the contingency between the switch and the light is
presented to the observer in the order in which the events take
place. Even if the observer is unaware of one of the switches, he
or she may be able to use temporal information to infer an
interaction with an unobserved factor if it is fairly stable.

Academic Success

Yes No
Authoritative 25 25
Authoritarian 25 25

Figure 1. Hypothetical parenting on academic achievement data. Note:
White cells reflect European American families, and gray cells reflect
minority families.
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Grouped Ungrouped Trial Summary
Steps|1|2|3|4|5|6/|7]|8 112]13]4]15]|6]7]8 Light
Switch|0]1]0]1]1]0]|1]0 ofif1fofof1f1f0 - 1 0
Lightjoj1{0[1]0(1]0]1 0]|0]1[1]0|0f1]1 21 2 2

upi1j1)1j1j0j0jojo 1]0]1]0]1]0]1]0 L%OZ 2
Figure 2. Double light switch scenario. Note: For the switch, 0 = “down”

and 1 = “up.” For the light, 0 = “off” and 1 = “on.” “U” is an unobserved
biconditional interacting factor. Cells are white for the groups composed of
(C=1,E=1)and (C = 0, E = 0) trials. Cells are gray for the groups
composed of (C = 1, E = 0) and (C = 0, E = 1) trials.

For example, suppose you enter a room for the first time and
observe that when you flip a switch up, a light goes on, and when
you flip it down, the light goes off, as illustrated in Steps 1-4 of
the “Grouped” table in Figure 2. If you assume that other potential
causes of the light are fairly stable and did not happen to change
at the same instant you flipped your switch, you would infer that
the observed switch influences the light. At Step 5, however, the
light turns off without anyone touching the observed switch, be-
cause an unobserved cause (U) in Figure 2 changed. (For instance,
another person may have pulled down the second switch unbe-
knownst to you.) Afterward, when the observed switch is down,
the light is on, and the light is off when the switch is up (Steps
5-8). From this scenario, you might be very confident that your
switch influences the light; there were two long periods when the
status of the switch correlated with the status of the light. In
addition, because the light mysteriously turned off, and because
the two periods had opposite associations between the switch and
light, you might infer an unobserved factor that interacts with your
switch, explaining the overall zero contingency between the switch
and light. Stated in a different way, if people understand that the
observed cause interacts with an unobserved cause to produce an
effect, they may still think that the observed cause influences the
effect despite a lack of overall contingency.

However, if the unobserved interacting factor is unstable and
changes frequently, inferring the interaction may be much harder.
Suppose the same data we just discussed are rearranged as in the
Figure 2 “Ungrouped” table, such that U changed frequently.
Initially, the switch is down and the light is off (Step 1). In Step 2
the switch is flipped up, but the light still stays off. In order to
believe that the switch is causally efficacious, one must infer that
at the moment the switch was flipped, an unobserved factor coin-
cidentally changed and counteracted the effect of the observed
switch, as specified under column “U” (unobserved interacting
factor). Then, in Step 3, the light turns on without flipping the
switch, and so on. Thus, for the situation shown in Figure 2
Ungrouped, it would be extremely difficult to infer the switch to be
causally efficacious; the switch cannot be the sole cause of the
light because there is zero contingency with the light. Furthermore,
it would be difficult to infer it as part of an interaction because
doing so would require inferring an unobserved factor operating as
specified under row “U,” which is counterintuitive; the unobserved
interacting factor is highly unstable and (intuitively) exceedingly

* Simpson’s paradox presents a related but distinct problem. In Simp-
son’s paradox, if the learner takes into consideration the second cause, the
learner will make a very different inference than if the second cause is
ignored (Spellman, Price, & Logan, 2001).
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complicated to track. Finally, it is highly coincidental that U
repeatedly changes at the same instant the observed switch was
flipped. Instead, it seems likely that people would infer an unob-
served factor that is entirely responsible for the light.

These two examples were meant to demonstrate that if obser-
vations are organized into groups of trials with the same contin-
gency, reflecting relatively stable background causes (e.g., Fig-
ure 2 Grouped), rather than intermixed, reflecting highly unstable
and coincidental background causes (e.g., Figure 2 Ungrouped),
people may be more likely to infer that an interaction is taking
place and that the observed cause is still efficacious. Alternatively,
if one simply uses the overall contingency between the observed
switch and light, one would conclude that there is no causal
relationship in both the grouped and ungrouped scenarios. As
shown in Figure 2 Trial Summary, there is no contingency between
the observed switch and light, and thus, an unobserved factor could
be entirely responsible for the light and the observed switch could
be irrelevant.

We suggest that in the real world, unobserved causes often are
stable, and assuming stability would be a rational assumption that
would facilitate learning. For example, if you press a button on a
television remote control and the channel changes, you would
likely infer that your button press caused the channel to change and
that that channel change was not caused by some other unobserved
factor that coincidentally changed at the moment you pressed your
button. (If, by chance, your sibling did have a second remote and
pressed other buttons whenever you press a button, they would
likely succeed in confusing you.) Or when you are trying to learn
which foods you are allergic to by trying different foods on
different days, it is safe to assume that your general health condi-
tion remains fairly constant as you try different foods. Thus, if you
do get an allergic reaction, you would likely attribute it to a new
food. Indeed, the temporal assumption that unobserved causes are
fairly stable and do not happen to change at the exact moment as
observed causes is similar to the nontemporal assumption under-
lying the efficacy of interventions in causal learning, that inter-
ventions are independent of other causes of an effect (e.g., Pearl,
2000; Woodward, 2003).

In six experiments, we investigated the role of stability on
inferring an interaction with an unobserved cause. We manipulated
the grouping of observations reflecting stable versus unstable
unobserved causes. In grouped conditions, the trials supporting an
association between one state of the cause and effect (white cells
in Figure 2) were grouped together, and those supporting the
opposite association (gray cells in Figure 2) were grouped together
in a trial-by-trial presentation. In ungrouped conditions, these two
types of observations were intermixed. Although the data are
identical between the two conditions except for different orders,
participants may be more likely to infer an unobserved interacting
factor in the grouped than ungrouped conditions.

In Experiments 1 and 2, we tested whether people would infer
that an observed cause is still causally efficacious in a grouped
condition despite a low correlation between the observed cause
and effect. In the remaining experiments, we examined whether
people appeal to interactions with unobserved causes when
asked to explain the grouped conditions. In Experiment 3, we
tested whether participants would infer an interaction with an
unobserved factor in the grouped condition. In Experiment 4, we
tested whether people indeed consider this unobserved factor to be
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a cause rather than a noncausal cue. In Experiment 5, we tested the
specificity of peoples’ inferences in an interaction—whether peo-
ple’s beliefs in an interaction corresponded to the proposed bicon-
ditional integration function. In Experiment 6, we used a different
paradigm to ensure that the results of Experiment 5 were not due
to memory demands.

Experiment 1

Experiment 1 compared the grouped and ungrouped conditions
across three levels of contingency.

Method

Participants.  Thirty-six undergraduates from Yale Univer-
sity participated, either for payment at $10 per hour or for partial
fulfillment of an introductory psychology course requirement.

Procedure and design. Participants first read a cover story
explaining that they would observe machines with a lever produc-
ing different shaped blocks over time. Participants were instructed
to determine whether the position of the lever affects the shape of
the blocks.

Next, participants saw six scenarios. During each scenario,
participants viewed a video of a lever changing position between
left and right and blocks changing between two shapes (e.g.,
square or triangle; see Figure 3). Each of these binary values are
denoted as 0 and 1 henceforth. For the cause (C), 0 and 1 each
represents that the lever was set to the left and right, respectively.
For the effect (E), 0 and 1 each represents that the machine
produced one of two shapes, respectively. Across the six condi-
tions, different shapes were used, but here we just refer to squares
and triangles for simplicity. Hereon, a (1, 0) trial denotes that C =
1 and E = 0. Each scenario had 16 trials, each of which appeared
for 2 s, followed immediately by the next trial. The six scenarios
were ordered in a Latin square design, such that each of the six
scenarios appeared first for some participants.

The six scenarios were created by crossing two levels of Group-
ing (grouped vs. ungrouped) X three levels of Contingency, AP =
P(E = 1IC =1) — P(E = 1IC = 0) = .25, .5, or .75. The
frequencies of trial types used to create the three levels of contin-
gency are summarized under “Trial Summary” in Figure 4. In each
contingency level, the grouped and ungrouped conditions had the
same set of 16 trials, but they were presented in different orders. In
the grouped conditions, (1, 1) and (0, 0) trials appeared in one
cluster (e.g., Trials 1-10 for Ap = .25 in Figure 4). The (1, 0) and
(0, 1) trials appeared in another cluster (e.g., Trials 11-16 for Ap =
.25 in Figure 4). These two different groups of trials suggest
different associations between the cause and effect during different

Shape of

Lever: Block:

Figure 3. An image of the lever when set to the left and producing a
square block.
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Figure 4.

Summary of stimuli in Experiment 1. Note: “C” represents the cause (lever). “E” represents the effect

(shape of block). “U” represents an unobserved, interacting, biconditional factor not shown to participants. Cells
are white for the groups composed of (1, 1) and (0, 0) trials. Cells are gray for the groups composed of (0, 1)

and (1, 0) trials.

periods. In the ungrouped conditions, the four types of trials were
intermixed. In Figure 4, the “U” rows show what the value of an
unobserved factor would need to be in order to postulate that the
observed cause and unobserved factor participate in a bicondi-
tional relationship to produce the effect. As illustrated in Figure 4,
in the ungrouped conditions, if one inferred an unobserved factor
for a biconditional interaction, it would have to be highly unstable,
which would be very difficult for participants to track and highly
coincidental. However, in the grouped conditions, inferring U
would be more likely, because it would only change once.

Because people often base causal efficacy ratings more on initial
than final trials (e.g., Dennis & Ahn, 2001), the trials were pre-
sented in the reverse order for half the participants. Psychologi-
cally, the main difference in this manipulation was simply when
the change between the two groups of data (white vs. gray cells)
occurred in the grouped conditions. In the order presented in
Figure 4, the change between the two periods occurred in the
second half of the trials (e.g., between Trials 14 and 15 in the Ap =
.75, stable condition). In the reverse orders, the change between
the two periods occurred in the first half of the trials.

After each scenario, participants answered one causal efficacy
question, “To what extent does the lever affect the shape of the
blocks?” on a sliding scale from “The lever did not affect the shape
at all” to “The lever strongly affected the shape of the blocks,”
later recoded to 0—100 for analysis. This question is intended as a
general measure of causal influence including interaction effects,
rather than as a specific measure of simple generative or inhibitory
influence. (See Experiments 3—6 for other measures.) If partici-
pants believed that a cause interacts with an unobserved cause to
produce an effect, they would likely agree that the cause affects the
effect.

Results and Discussion

Participants’ average causal efficacy ratings for the six scenarios
are presented in Figure 5. The pattern of results is consistent
regardless of the order of the six scenarios and regardless of
whether the order of trials within a scenario was reversed; all
analyses collapse across these factors. For all experiments, o was
set at .05, and all p values are two-tailed.

The most dramatic finding is that participants gave much higher
causal efficacy ratings for the grouped than ungrouped conditions.
In a 2 (Grouping) X 3 (Contingency) repeated-measures analysis
of variance (ANOVA), the main effect of grouping was signifi-
cant, F(1, 35) = 75.90, p < .01, Tl,z) = .69. Furthermore, the main
effect of contingency was significant, F(2, 70) = 7.23, p < .01, n§
= .17, and was significant when tested as a linear trend, F(1, 35) =
13.59, p < .01, nﬁ = .28. There was no interaction between
grouping and contingency, F(2, 70) < 1.

Follow-up tests reveal that for each of the three contingencies,
participants gave higher causal efficacy ratings for the grouped
than ungrouped conditions, all #s(35) > 5.48, all ps < .0l. In
addition, even though there was no significant interaction between
grouping and contingency, we performed separate one-way
ANOVAs and linear trend analyses for the grouped and ungrouped
conditions to see which one was driving the effect. There was a
significant main effect of contingency for the ungrouped condition,
F(2,70) = 5.84,p < .01, nﬁ = .143, and this effect was significant
as a linear trend, F(1, 35) = 9.92, p < .01, nﬁ = .221. However,
there was no significant main effect of contingency in the grouped
condition, F(2,70) = 1.93, p = .15, nﬁ = .05, and this effect was
not significant as a linear trend, F(1, 35) = 2.41, p = .13, n}% =
.06. (But note that these two effects are not significantly different.)

100
[1 Grouped [l Ungrouped
75 =
T T -
T . T N 73.4
s0_lod1 629 40.6
28.2
20.4
251 I
0
.25 .50 .75

Contingency: AP

Figure 5. Mean causal strength ratings and standard errors in Experiment
1. "p < .0l
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In summary, Experiment 1 found that participants inferred
higher causal strengths when the data were grouped than un-
grouped, even though participants observed identical trials in the
two conditions. Experiments 3—6 investigate whether people ap-
peal to interactions with unobserved causes when asked to explain
the grouped conditions.

Experiment 2

Experiment 2 extended the findings of Experiment 1 in two
ways. First, Experiment 2 tested the most extreme version of a
biconditional interaction—when there is zero correlation between
the observed cause and effect. By testing whether participants are
willing to infer causality even in the absence of any simple
contingency, Experiment 2 is a more robust test of the phenome-
non demonstrated in Experiment 1.

Second, while Experiment 1 only used two levels of grouping,
Experiment 2 employed four levels of grouping to examine
whether participants’ causal attributions are a continuous function
of the amount of grouping. We predicted that people would give
higher causal strength estimates for the observed cause with higher
degrees of stability of the unobserved cause. Thus, the longer the
groups are, the more time there is for participants to accumulate
evidence and become confident that the observed cause does in
fact influence the effect.

Method

Participants. Twenty-four participants from the same popu-
lation as in Experiment 1 completed the study.

Procedure and design. The cover story was the same as in
Experiment 1. There were four conditions, each of which had 16
trials with zero correlation between the observed cause and effect.

The only difference between the four conditions was the order
of the trials. The four conditions comprised a range of average
group length, where a group indicates an uninterrupted stream of
(1, 1) or (0, 0) trials, or an uninterrupted stream of (1, 0) or (0, 1)
trials. The four conditions had an average group length of 1.01,

1.78, 3.20, or 5.33 trials (see Figure 6). Longer groups reflect a
more stable unobserved factor.

All four conditions were presented to each participant, and
the order of the four conditions was counterbalanced between
subjects in a Latin-square design. After each scenario, partici-
pants answered the same causal strength question from Exper-
iment 1.

Results

The pattern of results described below held up when only
looking at the first condition seen by each participant; thus, the
following analyses collapse across different orders of the four
conditions.

As can be seen in Figure 7, there is a monotonic increase in
causal strength ratings with increasing mean group length, despite
that the overall contingency was constant. A repeated-measure
one-way ANOVA confirmed the main effect of mean group
length, F(3, 69) = 11.29, p < .01, ni = .33. Furthermore, testing
a linear contrast revealed that the pattern across conditions can be
described well by a sloped line, F(1, 23) = 32.02, p < .01, nf, =

100
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Mean Group Length in Trials

Figure 7. Mean causal strength ratings and standard errors in Experiment 2.
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.58. In sum, the longer the groups of trials reflecting a more stable
unobserved cause, the higher the causal strength ratings.

There are three important theoretical questions left unanswered
from Experiments 1 and 2: (a) whether people actually infer an
interaction with an unobserved factor; (b) if so, whether this
unobserved factor has to be an unobserved cause; and (c) exactly
how people believe the observed and unobserved causes interact.
These questions are addressed in the Experiments 3—6.

Experiment 3

Do people actually infer an interaction with an unobserved
factor? Experiments 1 and 2 demonstrated that people give higher
causal strength ratings when the data are more grouped, which is
consistent with what people would do, had they inferred an inter-
action with an unobserved stable biconditional cause. In Experi-
ments 1 and 2, however, we asked questions only about the
observed cause. On one hand, asking only about the observed
cause avoids the demand characteristic of alerting participants to
the possibility of an interaction with an unobserved factor. Asking
about the observed cause has also been the most common para-
digm in causal learning experiments (e.g., Cheng, 1997; Jenkins &
Ward, 1965; but see Hagmayer & Waldman, 2007; Luhmann &
Ahn, 2007) highlighting the uniquely high causal strength ratings
in the grouped conditions in Experiments 1 and 2.

On the other hand, since we asked questions only about the
observed causes in Experiments 1 and 2, we cannot determine
whether participants inferred an interaction with an unobserved
cause or whether they believed that the observed cause alone
influenced the effect (a main effect of the observed cause). Par-
ticipants might have inferred higher causal strengths in the
grouped than ungrouped conditions in Experiments 1 and 2 with-
out inferring an interaction with an unobserved factor if they used
a strategy similar to the classic win-stay lose-shift (WSLS) strat-
egy (e.g., Harlow, 1949; Nowak & Sigmund, 1993).° In the
grouped scenario, a learner using WSLS would have long periods
of time believing one hypothesis (when the switch is left the shape
is a square and when the switch is right the shape is a triangle) and
then switch to the opposite hypothesis. Within each of these
relatively long periods of time, the cause appears to influence the
effect. However, in the ungrouped scenario, a learner using WSLS
would have to switch more frequently between the two hypotheses,
and there are never any long periods during which the cause seems
to influence the effect.

Our claim, however, is different from WSLS because we pro-
pose that people switch the hypothesis not just because their
hypothesis is disconfirmed (as in WSLS) but also because they
infer an unobserved interacting cause. In Experiment 3, as an
initial attempt to examine whether people appeal to an interaction
with an unobserved factor to explain the grouped conditions, we
asked at the end of learning the degree to which participants agreed
with three statements: that the observed cause (a) alone influenced
the effect, (b) interacted with other factors, and (c) had no influ-
ence on the effect.®

The predictions follow the same reasoning as those in Experi-
ments 1 and 2. That is, in the grouped condition, participants
would infer an unobserved cause interacting with an observed
cause. Thus, participants would give low ratings on (a) “the
observed cause is the only influence on the effect,” high ratings on
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(b) “the observed cause interacts with other factors,” and low
ratings on (c) “the observed cause has no influence on the effect”
(since it influences through an interaction effect). However, in the
ungrouped condition, participants would not infer an unobserved
cause interacting with an observed cause and would more likely
believe that the observed cause had no influence on the effect,
because there is zero correlation between the two. Thus, partici-
pants would give low ratings on (a) “the observed cause alone
influenced the effect.” Furthermore, participants would give lower
ratings on (b) “the observed cause interacts with other factors” and
higher ratings on (c) “the observed cause has no influence on the
effect” compared with the grouped condition.

Method

Participants. There were 29 participants from the same pop-
ulation as in Experiment 1.

Procedure and design. There were two conditions, grouped
and ungrouped, which had the same 20 trials with zero contin-
gency. Both conditions were presented to all participants in a
counterbalanced order. As before, the only difference between the
conditions was the order of the trials (see Figure 8).

In Experiment 3, we also made some minor modifications in the
cover story to make the stability manipulation more valid. Specif-
ically, the grouped versus ungrouped orders were intended to
manipulate the stability or instability of an unobserved cause over
time, but previously, it was left somewhat ambiguous whether the
trial order corresponded to the actual temporal order of the events.
Also, to convey the maximum amount of stability in the grouped
condition, the machine had to be the same machine over time. That
is, if the machines varied across trials, unobserved causes would
also vary, even in the grouped condition. To clarify the cover story
for participants, that they were observing the behavior of one
machine over time, we included a picture of one machine for the
20 trials within a scenario (see Figure 9). Different pictures were
used for the grouped and ungrouped conditions.

After each scenario, to understand the relationship between their
beliefs about the interaction and the main effects of the observed
cause, participants rated their agreement with three statements
from 1 (absolutely disagree) to 9 (absolutely agree). The state-
ments were as follows:

1. “The lever alone influenced the shape of the blocks.”

2. “A combination of the lever and some other factor influ-
enced the shape of the blocks.””

5 We thank an anonymous reviewer for this suggestion.

¢ We are not necessarily claiming from this study that people make such
inference to an unobserved cause during learning. See the General Discus-
sion for more discussion on this issue.

7 It is likely that our participants would not know the precise meaning of the
word “interaction,” so we used “combination” for simplicity. Experiments 5
and 6 clarify exactly how participants thought that the two causes combined.
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3. “The lever had no influence on the shape of the blocks.”®

These three statements can be interpreted in terms of the three
possible causal structures as shown in Figure 10. Statement 1
reflects a structure in which only C causes E. Statement 2 reflects
a causal structure in which both C and U cause E. Statement 3
reflects a causal structure in which only U causes E. Note that no
two of these questions are exact opposites of one another. In
general, the more a person agrees with one, the less he or she
should agree with the other two, so they are partially dependent.
These questions are designed to allow participants to show which
of the three options they agree more with, and participants may
potentially be agnostic across the three.

Results

The pattern of results was consistent regardless of the order of
the conditions; thus, the following analyses collapse across order.
Because the three dependent variables were somewhat dependent
upon one another, a doubly repeated measures general linear
model was performed (see Kerr, Hall, & Kozub, 2002, for an
introduction). There was a significant multivariate difference in a
linear combination of the three dependent variables across the
grouped versus ungrouped conditions, F(3,26) = 5.91, p < .01, n}%
= .41. Since there was a significant difference, the three state-
ments are analyzed in turn below. Given that we report the results
of nine 7 tests, we also performed a Bonferroni adjustment of the
alpha level. All the significant results reported below are still
significant after the Bonferroni adjustment.

Statement 1: Lever alone influenced shape. In the grouped
conditions, almost every time the cause changed, the effect also
changed. However, participants predominantly disagreed that the
lever alone influenced the shape in both conditions (see Fig-
ure 10a). One-sample ¢ tests revealed that the means of both
conditions were significantly less than the middle of the scale (5):
for grouped, #(28) = 7.42, p < .01; for ungrouped, #(28) = 6.97,
p < .01. In addition, a paired ¢ test revealed that there was no

Shape
of Block:

i— N

Image of one trial in Experiment 3.

Machine: Lever:

Figure 9.

significant difference between the grouped and ungrouped condi-
tions, #(28) < 1. These results demonstrate that people do not
simply infer that the observed cause is entirely responsible for the
effect in the groped conditions. Statements 2 and 3 clarify their
inferences.

Statement 2: Combination of lever and other factor influ-
enced shape. Participants inferred an interaction with an unob-
served factor much more in the grouped than ungrouped condition,
#(28) = 4.20, p < .01 (see Figure 10b). In the grouped condition,
participants agreed with this statement; the mean was significantly
above the middle of the scale, #(28) = 6.50, p < .01. However,
when an unobserved biconditional cause is very unstable, it is
much more difficult to infer an interaction. Participants in the
ungrouped condition were ambivalent about this statement; the
mean was not significantly different from the middle of the scale,
1(28) < 1.

Statement 3: Lever had no influence on shape.  Participants
were much more likely to infer that the lever had no influence on
shape in the ungrouped than grouped condition, #(28) = 3.64, p <
.01 (see Figure 10c). In the grouped condition, participants signif-
icantly disagreed that the lever had no influence shape; the mean
was below the middle of the scale, #28) = 3.95, p < .0l. This is
presumably because they believed that the lever influenced the
shape through an interaction as demonstrated with their judgments
on Statement 2. But in the ungrouped condition, there was less
reason to believe that the lever influenced shape; after all, there
was zero correlation between the observed cause and effect.

Participants in the ungrouped condition were ambivalent about
this statement; the mean was not significantly different from the
middle of the scale, #(28) = 1.00, p = .33. This finding replicates
the results of Experiments 1 and 2 with opposite wording of the
question.

In sum, Experiment 3 demonstrated three points. First, people
do not simply infer a stronger main effect of the observed cause in
grouped than ungrouped conditions. Second, people have some
understanding that an unobserved factor can flip the contingency
between an observed cause and effect and use such an interaction
to explain the grouped data. Third, people did not explain the

8 Afterward, participants predicted the shape of the block given that the
lever was set to the left/right. These questions tested hypotheses that are
better addressed by Experiments 5 and 6. We do not think they had any
effect on the current results as the findings are consistent with a between-
subjects analysis of questions answered prior to the unreported questions.
Thus, they are not further discussed.
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ungrouped data with an interaction, which is a possible explanation
if they admitted the possibility of the unobserved factor being
unstable. This suggests that they believe that unobserved factors
are fairly stable and don’t happen to coincidentally change at the
same instant as an observed cause. These findings do not neces-
sarily imply that people inferred an unobserved interacting cause
in Experiments 1 and 2, although it is consistent with such an
interpretation. This is discussed further in the General Discussion.

Experiment 4

The results from Experiment 3 suggest that in the grouped
condition people inferred that the observed cause interacted with
another unobserved factor to produce the effect. One limitation of
Experiment 3, however, is that the only possible option for an
interaction effect was to presume that the unobserved factor was a
cause. A majority of participants might have chosen this option
simply because this option refers to an interaction effect, even
though they might not have necessarily agreed that the unobserved
interacting factor was a cause. Perhaps when participants agreed
that the lever and some unobserved factor influenced the shape,
they merely used the unobserved factor as a nominal label for the
alternating periods of contingency but did not believe that the
unobserved factor was the cause of the two periods.

In Experiment 4, we tested whether people specifically under-
stand the unobserved factor as a cause. In two conditions, partic-
ipants were told about a machine and were asked whether they
thought the machine was responsible for producing the toy blocks,
or whether another machine was responsible. In both conditions,
the observed machine had one lever and potentially produced one
block. Most critically, in both conditions, the contingency between
the lever and block was grouped into periods. However, in the
“two potential causes condition” (see Figure 11a), the machine had
a second unobserved lever (U), whereas in the “one potential
cause” condition (see Figure 11b), the machine was described as
having only one control mechanism. In order to make the unob-
served factor as salient in the one potential cause condition as in
the two potential causes condition while keeping it noncausal in
the one potential cause condition, we described U as a second
unobserved block. If people simply treat U as an associative cue
and do not distinguish between causes and effects, then they would
not distinguish between these two conditions (see, e.g., Waldmann,

1996; Waldmann, Holyoak, & Fratianne, 1995, for similar manip-
ulations and predictions derived for the associative account). How-
ever, if people think that the grouped pattern of data can only be
explained by a second unobserved cause that interacts with the
observed cause, then they would more likely believe that the

a
Machine MQR o
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L Lever A Machines
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Lever Machines
KB Block A
A
ape
Figure 11. Stimuli from Experiment 4. Note: A is from the “two potential

causes” condition, in which the machine had a second lever in an unknown
position. B is from the “one potential cause” condition, in which the
machine only had one lever and two blocks were produced, but the shape
of Block B was unknown. In both conditions, participants chose to attribute
the blocks to the target machine or one of the other machines.
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machine in the two potential causes condition produced the blocks
than the machine in the one potential cause condition. Restated, the
grouped pattern can be explained by another unobserved lever but
not by another unobserved block (or any other noncausal factor).

Method

Participants.  Thirty-nine people were recruited through Am-
azon Mechanical Turk to participate in an online experiment
administered through Qualtrics online survey software. Partici-
pants were paid one dollar for approximately 6 min of time.
Participants were, on average, 36 years old (SD = 13), 21 were
female, all but one had a high-school degree, and 24 had a college
degree or higher. One participant skipped one of the two dependent
variable questions, and his data were omitted from these demo-
graphics and the results below.

Procedure and design. Participants worked with both the
two potential causes and the one potential cause conditions in a
counterbalanced order. Within each condition, participants were
first asked to pretend that they work in a factory with several
machines that produce toy blocks. Then they were introduced to
the particular machine. In the two potential causes condition (see
Figure 11a), participants were told that Machine MQR had two
levers, Levers A and B, but they could not see the position of
Lever B. The unknown position of Lever B was visually repre-
sented by the lever being semitransparent and simultaneously in
both the up and down positions. Each day the factory produced one
block, either a triangle or cylinder. In the one potential cause
condition (see Figure 11b), participants were told that Machine
LNS had only one lever. In order to facilitate reasoning about an
unknown factor that is not a cause in the one potential cause
condition, participants were further told that each day the factory
produces two blocks, A and B, although B was unobserved. The
unknown shape of Block B was visually represented by a semi-
transparent cylinder and triangle appearing next to each other. In
sum, in both conditions, U was unobserved, but in one case, it was
framed as another cause (Lever B) and in another it was framed as
another effect (Block B).

Participants then observed a sequence of 20 trials, described
as 20 consecutive days. Each day was represented by a picture
like those in Figures 11a and 11b; the observed lever could be
up or down and the observed block could be a triangle or
cylinder. Participants never knew the state of the unobserved
cue. All 20 pictures were presented on one webpage in a
column, numbered by the day. Participants were told that they
could scroll up and down through the days and were asked to
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look through the 20 days in order. In both conditions, the data
for the 20 days was the same as that in the grouped condition in
Experiment 3 (see Figure 8).

At the bottom of the webpage below the 20 pictures, participants
were asked, “Do you think that Machine X produced the blocks, or
do you think that another machine produced the blocks? Please
remember that all the blocks over the 20 days were either produced
by Machine X, or all were produced by another machine,” where
X was MQR or LNS in the two conditions, respectively. Partici-
pants selected their choice on a scale from 0 (Machine X produced
the blocks) to 100 (Another machine produced the blocks). We
used this new question of which machine was responsible for
producing the blocks because it still captures causal efficacy but
also more clearly captures the interaction effect. If people merely
use U to label the alternating periods of contingency, then in both
conditions, they could agree that the target machine was respon-
sible for producing the observed block. Alternatively, if people
infer that an unobserved cause U must interact with the observed
cause, then they would be more likely to answer that the machine
in the two potential causes condition produced the block, because
the two levers can interact. People should be less likely to answer
that the machine in the one potential cause condition produced the
block, because there is no other possible cause to interact in the
machine.

Results

The pattern of results holds regardless of the order that partic-
ipants worked with the two conditions, so we collapsed across
order. Participants in the two potential causes condition were more
likely to conclude that the target machine produced the shape
(M = 45, SD = 30) than were participants in the one potential
cause condition (M = 63, SD = 33), #(38) = 2.35, p = .02. That
is, despite that both conditions had the identical grouped sequence,
participants thought that the sequence of data was more likely
produced by a machine with two potentially interacting causes
than to a machine in which such interaction was not feasible. In
sum, combining the results of Experiments 3 and 4, people believe
that the grouped pattern of data is explained by an interaction with
a second unobserved cause, not merely an associative cue.

Experiment 5

The purpose of Experiment 5 was to determine more precisely
people’s inferences of how observed and unobserved causes inter-
act to produce an effect. Do people just have vague notions that
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Figure 12. The signature patterns of five ways that C and U could combine.
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observed causes can interact with unobserved factors, or do they
actually believe that observed and unobserved causes combine
through a biconditional integration function?

To study this question, we had participants predict the effect
given the four combinations of the two states of the observed and
unobserved causes, as shown in the legend of Figure 12. Similar to
Experiments 1-3, participants observed a series of trials with a
lever producing different shapes of blocks. On the last trial, a
second lever, the previously unobserved factor, was revealed. On
this last trial, participants saw the states of both levers and the
effect; C = 1, U = 1, and E = 1. From this last trial, participants
could work backward to predict what shape would have been
produced under the other combinations of the two levers based on
their inference of how the two causes combine.

Figure 12 displays five likely ways that participants might think
that C and U combine. First, C may be the only cause that has a
main effect such that £ = 1 if C = 1, and E = 0 if C = 0,
regardless of U. Second, U may be the only cause that has a main
effect such that E = 1if U = 1, and E = 0 if U = 0, regardless
of C. Third, C and U could combine through a conjunction (mul-
tiple necessary causes), in which case E = l only if C = U = 1.
Fourth, C and U might also combine in a “noisy-OR” or “linear”
fashion. Both of these parameterizations are probabilistic, and they
suggest that £ = 1 is most likely if both C = 1 and U = 1, less
likely if either C = 1 or U = 1, and E = 1 is least likely if C =
0 and U = 0. Many models of causal learning have assumed a
linear or noisy-OR interaction (see the introduction). Fifth, C and
U might combine through a biconditional relationship such that
E=1iftC=U=1orif C=U = 0, but otherwise E = 0.

If participants in the grouped condition in Experiments 1-3
actually thought that C and U combined through a biconditional
relationship, then the pattern of their predictions would resemble
the Biconditional in Figure 12 rather than the other plausible
combinations. In contrast, participants in the ungrouped condition
in Experiment 3 agreed more that the observed factor had no
influence on the effect, suggesting that an unobserved factor is
primarily responsible. If so, participants’ responses would resem-
ble those outlined in Figure 12, Main Effect of U. Such findings
would demonstrate that people can learn that observed and unob-
served causes may combine through unusual interactions such as a
biconditional interaction and that people can make specific pre-
dictions about how they interact.

However, there are other plausible outcomes. People in both the
grouped and ungrouped conditions may infer that the observed Lever
C has a weak main effect (AP was .33 for Experiment 5). Or they

could infer in both conditions that U is primarily responsible, or some
combination like linear or noisy-OR. Or people in both conditions
could infer that C and U interact in a biconditional interaction. After
all, in both the grouped and ungrouped conditions sometimes when
the lever was left, it produced a square and right produced a triangle,
and sometimes the opposite occurred. Experiment 5 provides the most
explicit test of whether people infer a biconditional interaction and do
so primarily in the grouped condition.

Method

Participants. There were 16 participants from the same pop-
ulation as in Experiments 1-3.

Procedure and design. There were two conditions: grouped
and ungrouped. Both conditions had 24 trials and a AP of .33. The
only difference between the two conditions was the order of the
trials (see Figure 13). All participants received both conditions in
a counterbalanced order.

Each scenario initially proceeded like Experiments 1-3: Partic-
ipants observed a lever being flipped between the left and right
positions, and they observed the shape of blocks produced by the
machine. While the 24th trial was still visible, a second lever was
revealed. Participants were instructed that the revealed lever “may
have influenced the shape of the block for the previous 24 trials.”

In order to assess how participants thought that the two levers
interacted to produce the shape of block, participants answered four
counterfactual questions about the 24th trial.” Specifically, partici-
pants read, “Suppose on the 24th trial, the levers were set like this,”
and were shown pictures of the four combinations of the states of the
two levers. For each of the four combinations, they were asked, “Do
you think that the machine would produce a Square or Triangle?”

Results

The primary comparison of interest was whether participants’ pre-
dictions resembled the biconditional integration function more in the
grouped than ungrouped conditions. Figure 14 presents the means for
the four prediction questions separated by the grouped and ungrouped
conditions. As can be easily seen from Figure 14, the pattern of results
from the grouped condition resembles the biconditional predictions of
Figure 12, whereas the pattern from the ungrouped condition resem-
bles predictions of a main effect of the unobserved factor.

? We asked about the 24th trial in order to hold the context from the data
observations constant as much as possible.
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A 2 (Grouping; grouped vs. ungrouped) X 4 (Prediction Ques-
tions) repeated-measures ANOVA tested for differences between
the conditions. There was a significant main effect of the four
prediction questions, F(3, 45) = 11.32, p < .01, nf, = .43, but no
main effect of grouping, F(1, 15) < .01. Most important, there was
a significant interaction between grouping and the prediction ques-
tions, F(1.93, 28.88) = 5.12, p = .01, n> = .26,'° suggesting that
participants believed the observed and unobserved causes com-
bined in different ways for the grouped and ungrouped conditions.

Follow-up tests were preformed to look for differences between
participants’ predictions on particular questions in the grouped vs.
ungrouped conditions. Compared with the other three combina-
tions in Figure 12, the biconditional interaction function is the only
one that predicts £ = 1 when C = U = 0; all the other strategies
predict that E = 0 when C = U = 0. Participants’ predictions for
this question were higher (i.e., closer to the biconditional predic-
tion) in the grouped than ungrouped condition, #(15) = 2.45, p =
.03. The prediction for when C = 0 and U = 1 also provides an
informative contrast. For this question, a main effect of U is the
only combination out of the four in Figure 12 that predicts £ = 1.
For this question, participants gave higher ratings (i.e., closer to
the main effect of U prediction) for the ungrouped than grouped
condition, #(15) = 2.17, p = .05.

Another analysis was conducted to examine whether the overall
pattern of participants’ predictions resembled the biconditional
integration function more in the grouped than ungrouped condi-
tions. This analysis can be formalized by computing sum square
error (SSE), the sum of the squared differences between a partic-
ipant’s four predictions compared with the four predictions made
by the biconditional combination in Figure 12. The formula below
represents SSE for a particular participant,where X is a given score
and 3 is the biconditional prediction on question i.

SSE = E (X, — Bi)2~

i=1

The SSE was calculated for each participant separately for the
grouped and ungrouped conditions. On average, SSE was lower in
the grouped (M = 41.38, SD = 36.33) than ungrouped (M =
71.56, SD = 26.57) conditions, #(15) = 3.59, p < .01.

In sum, the overall pattern of participants’ four predictions was
closer to the biconditional in the grouped than ungrouped condition.
This experiment provides further evidence that people can learn that
observed and unobserved causes can combine in nontraditional ways;
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our participants simultaneously understood that sometimes the lever
produced one outcome, and other times it produced the opposite, and
they attributed this difference to the unobserved lever.

Experiment 6

The purpose of Experiment 6 was to rule out the possibility that
participants had different memories for the events in the grouped and
ungrouped conditions and that these different memories were respon-
sible for the different inferences. It is possible that participants in the
grouped condition could more easily chunk the trials of one contin-
gency together, potentially resulting in a different memory of the
trials. In Experiment 6, the trials were presented on index cards, and
participants had access to all the trials while answering the questions
predicting whether £ would be present or absent, thus eliminating any
memory demands. While Experiment 4, which presented all trials on
a single webpage that could be scrolled up and down, already partially
ruled out the memory difference as a potential alternative account,
Experiment 6 attempts to bolster this finding by using the dependent
measures used in Experiment 5.

Method

Participants. There were 29 participants from the same pop-
ulation as in Experiments 1, 2, 3, and 5.

Procedure and design. There were two conditions: grouped
and ungrouped. Both conditions had the same 36 trials and a AP of
zero. The only difference between the grouped and ungrouped
conditions was the order of the trials (see Figure 15). A different
set of trials was used from Experiment 5 to test the more extreme
case of zero contingency. We also presented more trials to allow
participants to gather more evidence, given that memory limitation
would not be an issue in this experiment. All participants received
both conditions in a counterbalanced order.

The instructions were slightly modified from Experiment 5 in
two ways. First, instead of referring to trials, we called each trial
a “day” of observing the machine, which was intended to make the
packet of 36 index cards easier to understand. (The same modifi-
cation was made in Experiment 4, which also presented all the
trials simultaneously.) Participants were told that “from day to day,
each lever may stay at the same position or may flip to the other
position, and the shape of the block may stay the same or change.”
In addition, participants were told from the beginning of the
scenario about the second lever. This instruction was added be-
cause of concern that perhaps participants in Experiment 6 only
attributed the change in contingency between the observed cause
and effect to the revealed lever after the fact. In the current
experiment, participants were told, “Each machine has two levers,
Lever A and Lever B, and produces two shapes of blocks. ..
However, for the 36 days, you are only able to observe Lever A;
Lever B is hidden.” Thus, participants could view the unobserved
lever as a potential cause throughout the experiment.

Then participants worked through a packet of 36 index cards
comprising the 36 days. In order to reduce any memory de-
mands, participants were told that they could read through the

19 Mauchly’s test indicated that the assumption of sphericity was vio-
lated, x2 = 12.71, p = .03; therefore, the degrees of freedom were
corrected using the Greenhouse-Geisser estimates of sphericity, € = .62.
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Figure 15. Summary of stimuli in Experiment 6. Note: “C” represents the cause (lever). “E” represents the
effect (shape of block). “U” represents an unobserved, interacting, biconditional factor not shown to participants.
Cells are white for the groups composed of (1, 1) and (0, 0) trials. Cells are gray for the groups composed of

(0, 1) and (1, 0) trials.

packet of cards as many times as they want, can flip back and
forth between the days and can look at the packet while an-
swering the questions. The cards were 13.97 cm tall by 21.59
cm wide. Each card had the number of the day, pictures of both
levers, and the shape produced. The picture of the observed
lever was either left or right. The position of the unobserved
lever was denoted with a question mark.

After working through the 36th index card, participants saw one
more card revealing that on Day 36, Lever B was set to the right.
Then participants proceeded on to the same set of questions as in
Experiment 5 in which they predicted the shape produced from the
four combinations of the two levers.

Results

A 2 (Grouping; grouped vs. ungrouped) X 4 (Prediction Ques-
tions) repeated-measures ANOVA tested for differences between
the conditions (see Figure 16)."' There was a significant main
effect of the four prediction questions, F(2.17, 60.98) = 56.15,
p < .01, ”r]i = .67, but no main effect of grouping, F(1, 28) = .11.
There was a significant interaction between grouping and the
prediction questions, F(1.77, 49.70) = 3.76, p = .04, nﬁ = .26,
suggesting that participants believed the observed and unobserved
causes combined in different ways for the grouped and ungrouped
conditions.

The most critical test was whether the grouped and ungrouped
conditions differed on the C = U = 0 question. Compared with the
other four combinations in Figure 12, the biconditional interaction
function is the only one that predicts E = 1 when C = U = 0; all
the other strategies predict that E = 0 when C = U = 0. Partic-
ipants’ predictions for this question were higher (i.e., closer to the
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Figure 16. Mean ratings on prediction questions and standard errors in
Experiment 6.

biconditional prediction) in the grouped than ungrouped condition,
1(28) = 2.52, p = .02.

In addition, when C = U = 1, participants gave higher scores
for the grouped than ungrouped condition, #(28) = 2.15, p = .04.
This could reflect general uncertainty if participants believed that
the effect was harder to predict in the ungrouped condition. (Note
that on the last trial, which was still available for participants to
view as they answered the questions, participants saw that C =
U = E = 1. Thus, if they believe that C and U explain E, then they
should give high responses for E, as they did in the grouped
condition. However, if they felt that C and U do not explain E, and
E is determined by other unknown causes, then they would be
more ambivalent as they were in the ungrouped condition.) There
were no significant differences for the other two questions (15 <
1.49, ps > .15).

We performed the same SSE analysis as described in Experi-
ment 5. On average, SSE was significantly lower in the grouped
(M = 45.93, SD = 38.53) than ungrouped (M = 65.34, SD =
40.35) conditions, #(28) = 2.03, p = .05. This suggests that the
overall pattern was closer to the biconditional interaction in the
grouped than ungrouped condition.

In sum, the results suggest that memory demands were unlikely
to be a factor driving the different inferences in Experiment 5.
Even when memory demands were minimized by allowing partic-
ipants access to all the trials while answering the questions, par-
ticipants still inferred a biconditional interaction more in the
grouped than ungrouped condition. This experiment also replicated
the basic effect of inferring a biconditional interaction using a
different set of trials and a different presentation format.

General Discussion

We began this article by asking whether people can learn
nontraditional causal interactions between observed and unob-
served factors. In particular, we investigated whether people are
able to learn a “biconditional” interaction between an observed and
unobserved cause. Because it is unlikely that people would use the
biconditional interaction as a default assumption for how causes

' Mauchly’s test indicated that the assumption of sphericity was vio-
lated, x> = 19.65, p < .01 for the four predictions, and x* = 32.89, p <
.01 for the interaction. Therefore the degrees of freedom were corrected
using the Greenhouse-Geisser estimates of sphericity, € = .72 for the four
predictions, and € = .59 for the interaction.
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combine, if people do learn about such interactions, it would
suggest that they engage in sophisticated learning about how
observed and unobserved causes interact. In contrast, many exist-
ing theories of causal learning suggest that people make simplify-
ing assumptions that unobserved factors do not interact with ob-
served causes and instead combine through a noisy-OR function
(e.g., Cheng, 1997) or combine linearly (e.g., Rescorla & Wagner,
1972).

Nonetheless, these experiments demonstrated that people can
learn about biconditional interactions and make specific inferences
about unobserved interacting causes if the unobserved causes are
stable. In grouped conditions, the trials supporting an association
between one state of the cause and effect were grouped together,
and those supporting the opposite association were grouped to-
gether in a trial-by-trial presentation. Such a pattern could arise in
the real world from a relatively stable unobserved interacting cause
that occasionally changes state. In ungrouped conditions, these two
types of observations were intermixed. Such a pattern would arise
from an unobserved interacting cause that frequently and coinci-
dentally changes at the same instant as the observed cause, which
would be less plausible. We predicted that participants would be
more likely to infer a biconditional interaction in grouped than
ungrouped conditions.

In Experiment 1, participants gave higher causal strength judg-
ments for the observed cause in grouped than ungrouped condi-
tions. In Experiment 2, participants judged the cause to be more
efficacious to the extent that the data were more grouped. In fact,
even when there was zero correlation between a cause and effect,
participants judged the causal strength to be as high as 60 out of
100. Such responses are sensible, because when an observed cause
interacts with an unobserved cause through a biconditional inter-
action, there may be a weak or zero correlation between the
observed cause and effect, even if it truly is a cause (but see the
alternative explanations below).

Experiment 3 more directly demonstrated that participants were
more likely to believe that the observed cause interacted with an
unobserved factor to produce an effect in a grouped than un-
grouped condition. Experiment 4 further demonstrated that partic-
ipants thought of the unobserved factor as a cause, not just an
associative cue; they were more likely to believe that a machine
with two causes could produce the grouped pattern of data than a
machine with only one cause and another noncausal cue.

Participants in Experiment 5 inferred precisely how the ob-
served and unobserved causes combine to produce the effect, and
these inferences more frequently corresponded to the proposed
biconditional integration function in the grouped than ungrouped
condition. Experiment 6 ruled out the possibility that participants
inferred a biconditional integration function merely because of
different memories in the two conditions.

Challenges for Existing Models

Existing models fail to explain the current results. “Rule-based”
models, based on measures such as AP, compute causal strengths
by aggregating over all observations regardless of order (see
Hattori & Oaksford, 2007, for a comprehensive review of 41 such
models). That is, such models are simply not intended to explain
any order effects, including the difference between the ungrouped
and grouped conditions found in the current experiments.
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There are “trial-by-trial” models that continually update their
causal efficacy estimate after each trial. Yet they also fail to
explain the current results in their current form (e.g. Luhmann &
Ahn, 2007; Rescorla & Wagner, 1972). For example, if we run the
Rescorla-Wagner learning algorithm (Rescorla & Wagner, 1972)
without making any assumptions about unobserved causes, using
only the ever-present background cue, then the model would never
settle down with a strong associative strength between the ob-
served cause and the outcome in the grouped condition. During
some groups ([1, 1] and [0, O] trials), the model would increase the
causal efficacy estimate, and during the opposite groups ([1, 0] and
[0, 1] trials), it would decrease the causal efficacy estimate. Con-
sequently, if the data were grouped, the association between C and
E would cycle between positive and negative values indefinitely.

Of course, many trial-by-trial, associative models with com-
pound cues can learn biconditional interactions between two ob-
served cues and an outcome (e.g., positive and negative patterning;
Pearce, 2002; Pearce & Bouton, 2001; Wagner & Rescorla, 1972).
Thus, one natural way to model the current experiments is to turn
the unobserved cause into an observed cause, by inferring that it is
present or absent exactly how U was specified in the stimuli
figures. For instance, whenever (C = 1 and £ = 1) or (C = 0 and
E = 0), then U = 1, and whenever (C = 0and E = 0) or (C = 1
and E = 0), then U = 0. In this case, such associative models
would learn that there is an association between the observed cause
and effect. That is, we are not suggesting that the Rescorla-Wagner
model or other associative models can never learn biconditional
interactions per se. Most important, however, what is needed is an
account of how people infer the unobserved cause and under what
conditions, which is what the current results are about. Such
inferences can be added to these associative models but are not
predicted a priori.'?

To summarize, the current results provide new challenges to the
existing models of causal induction. Stronger causal attributions in

'2 There are at least two other aspects of the current study that pose
problems in directly applying many existing models. First, some models
like Rescorla-Wagner (Rescorla & Wagner, 1972) treat cues differently if
they are present versus absent. Specifically, Rescorla-Wagner only updates
the association strength of a cue if it is present on a given trial. However,
in the current experiments, the cause (lever) was either left or right, not
present versus absent, so it is unclear how exactly to model these scenarios.
Second, without positive and negative states, the relationship between the
cause and effect cannot be described as “generative” or “inhibitory” or
“positive” or “negative.” Yet almost all models of causal learning infer
causal strength on a scale from a negative relationship to a positive
relationship. In the current experiments, however, the dependent measure
was on a scale from the cause did not affect the effect at all to the cause
strongly affected the effect. We asked this question because it is possible
to agree that a cause affects an effect even if it is through an interaction
with an unobserved cause. Taking the absolute value of the output from
existing models also does not solve this problem. For “rule-based models”
the final causal strength would be zero in the grouped conditions of
Experiment 2, but people inferred high causal strengths. For trial-by trial
models, the absolute value solution could produce a high final causal
strength for some of the grouped stimuli used in the current study given
some parameter values. However, for other sets of stimuli used here and
other parameter values, the absolute value of the final associative strengths
are still close to zero. In sum, there does not appear to be an obvious and
principled way to circumvent these issues.
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the grouped compared with the ungrouped condition add to a
growing number of order effects that the rule-based models are
incapable of explaining. The associative models may be able to
model the current results by making just the right kinds of repre-
sentational assumptions about unobserved factors, but they cannot
predict or explain these assumptions about unobserved causes.

Unresolved Issues Regarding Inferences About the
Unobserved Cause

We have proposed that learners make inferences about an un-
observed cause, which interacts with the observed cause. This
proposal appears to best explain why participants gave so much
higher causal strength ratings in the grouped than ungrouped
conditions in Experiments 1 and 2. The participants in the grouped
conditions would have believed that an unobserved factor inter-
acted with the observed factor to produce an effect. In Experiment
3, participants indeed were more likely to agree that a combination
of the observed cause and some other factor influenced the effect
in the grouped than ungrouped condition. In Experiments 5 and 6,
when an unobserved cause was revealed, participants were more
likely to infer a biconditional interaction in the grouped than
ungrouped conditions. Yet there are a number of unresolved issues
in terms of the details of when such inferences are made. We
discuss two possibilities: (a) people retroactively infer an unob-
served cause (e.g., when they were prompted about the possibility
of an unobserved cause), and (b) people spontaneously infer un-
observed cause online while they are making observations.

The first possibility is that learners reason about an unobserved
cause retroactively, after observing all the learning trials and/or
only when they were alerted about the possibility of an unobserved
cause (as in Experiments 3, 5, and 6). Without such a prompt,
people may not have spontaneously inferred an unobserved cause.
Thus, according to this position, the results from Experiments 3, 5,
and 6, which demonstrate that people infer a biconditional inter-
action with an unobserved cause, are experimental artifacts of
forcing them to think about an unobserved cause. Furthermore, the
higher causal strength ratings found in the grouped condition in
Experiments 1 and 2 were not obtained because people inferred an
unobserved cause but, rather, because they might have used an
alternative reasoning process such as the win-stay lose-shift strat-
egy explained in the introduction to Experiment 3. Namely, in the
grouped conditions of Experiments 1 and 2, there were long
periods of time in which participants were often able to predict the
outcome (shape of the block) based on the cause (position of the
lever), and it is this steady period, rather than spontaneous infer-
ences about an unobserved cause, that led people to give stronger
causal strength judgments.

Alternatively, people might have spontaneously reasoned about
an unobserved biconditional cause while observing the learning
trials. We believe that there are three points that are suggestive that
participants in these studies may have reasoned about the unob-
served cause online. First, previous research has found that people
spontaneously reason about unobserved causes and their dynamic
inferences about unobserved causes that changed during learning
influence their inferences about observed causes (Hagmayer &
Waldmann, 2007; Luhmann & Ahn, 2007, 2011; Rottman, Ahn, &
Luhmann, 2011). Although that research involved scenarios de-
signed to favor a noisy-OR interpretation of how the observed and
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unobserved causes interact, it seems at least possible that people
would reason dynamically about biconditional unobserved causes
as well. Second, intuitively, we believe that it is easier to reason
about unobserved causes while learning. For example, if the lever
is set to the left and the machine produced a square, and then the
machine starts to produce a triangle, it seems easier to explain
away this anomalous change in the effect by inferring a change in
an unobserved cause. It would be highly cognitively demanding
for a reasoner, upon being asked about an unobserved cause, to
retroactively retrieve all the previous trials and make inferences
about an unobserved cause from memory. Third, if people only
reason about the unobserved cause after observing all the trials, it
is unclear why they would infer a biconditional interacting cause.
Instead, when there was a weak or zero contingency between the
observed cause and effect, it would be logical to just infer an
unobserved cause that entirely explains the effect and conclude
that the observed cause has no influence on the effect.

Yet the current experiments fall short of providing a definitive
answer to these two possibilities, because in the current experi-
ments, we asked questions about the unobserved cause only after
the end of the learning trials. Future research investigating whether
and how people reason about unobserved biconditional causes
dynamically may provide additional insights into the reasoning
processes examined here.

Rationality of Inferring an Unobserved Interacting
Cause

Is inferring an interaction with unobserved causes in grouped
conditions rational? On one hand, inferring an unobserved cause
may appear to be an irrational form of motivated reasoning. For
example, in a grouped condition, a cause may initially appear to
generate an effect and later appear to inhibit the effect. Concocting
an unobserved factor that flips the relationship between the ob-
served cause and effect could simply be a way to perpetuate the
initial hypothesis (e.g., the cause generated the effect) in the face
of contrary evidence.

On the other hand, inferring an unobserved, interacting factor in
grouped conditions may be rational. In grouped conditions with
zero contingency, if the observed cause is truly unrelated to the
effect, why would it display such long periods during which it
appeared to influence the effect? Grouped conditions likely appear
too coincidental for people to conclude that the observed cause is
unrelated to the effect. Furthermore, when the contingency re-
verses after some time, it would be rational to have some kind of
explanation for the reversal. Inferring a stable unobserved inter-
acting cause appears to be a parsimonious reason why the pattern
of data had long groups of trials with the same contingency and
why the pattern reverses for other long groups of trials.

Similar reasoning can explain why people do not infer an
unobserved, interacting cause in the ungrouped conditions. In the
ungrouped conditions, inferring an unobserved interacting bicon-
ditional factor would require the unobserved cause to frequently
change ar the same time that the observed cause changes, negating
the effect of the observed cause. For example, in the double light
switch example (see Figure 2, Ungrouped), from Step 1 to Step 2,
both the observed and unobserved switches get flipped simultane-
ously, resulting in the light staying off. Inferring an unobserved
interacting factor in an ungrouped condition requires many more
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of these coincidences than in a grouped condition. For example, in
the condition with shortest groups in Experiment 2 (see Figure 6),
the observed lever was flipped 15 times, and inferring an unob-
served interacting factor would require it to change simultaneously
14 out of these 15 times. In contrast, in the condition with the
longest groups in Experiment 2 (see Figure 6), the observed lever
was flipped 15 times, but an unobserved biconditional factor
would only change simultaneously twice. Thus, inferring an un-
observed interacting factor in an ungrouped condition may seem
too coincidental and unlikely. Similar theories involving coinci-
dences have been used to explain inference in other domains such
as explanation (Hacking, 1983), vision (Barlow, 1985; Binford,
1981; Feldman, 1997; Knill & Richards, 1996; Witkin & Tenen-
baum, 1983), and word learning (Xu & Tenenbuam, 2007; also see
Griffiths & Tenenbaum, 2007).

Some researchers have recently proposed a theoretical account
of renewal in animal learning similar to our account of inferring
unobserved interacting causes (Gershman, Blei, & Niv, 2010;
Redish, Jensen, Johnson, & Kurth-Nelson, 2007).'*> In renewal
experiments, an animal initially experiences a contingency be-
tween a cue and outcome, then experiences a second phase during
which there is no longer a contingency between the cue and
outcome, and finally experiences a third phase with the initial
contingency. Animals acquire an association in the first phase,
then “extinguish” the association in the second phase and quickly
reacquire the association in the third phase. Most theories of
learning suggest that in the second phase, the animal unlearns the
initial association, but they cannot explain why the initial associ-
ation is often more quickly relearned in the third phase than the
initial acquisition. The new theories propose that when an animal
has high prediction error, such as at the beginning of the second
phase, the animal may infer a new “state.” Instead of unlearning
the initial association, extinction involves learning about this new
state and how it is different from the initial state. When the animal
then experiences the third phase with the contingency between the
cue and outcome, the animal infers that it is back in the initial state,
and thus, the animal quickly renews the association. This theoret-
ical account is similar to ours in that an unobserved state or cause
must be inferred, and this unobserved factor moderates the con-
tingency between the observed cue and outcome. However, it is
unclear how these theories would handle Experiment 4, in which
framing U as a cause versus effect influences the inferred interac-
tion.

Reasoning With Causal Scenarios That Unfold
Over Time

One important general point made by the current experiments is
that people fluently reason about causal phenomena that occur
over time. Many standard theories of causal learning were meant
to handle scenarios with “independent” or ‘“between-subjects”
events (e.g., a person taking or not taking medicine and developing
or not developing heart disease). Even in studies that present trials
sequentially, each trial typically presents a separate case, and the
trials are often randomized. In the current study, one machine with
one lever is repeatedly tested across a period of time (a “within-
machine” or “repeated-measures” scenario). Tracking transitions
between trials allows for rich inferences. For example, if a lever is
flipped, and there is simultaneously a change in the shape of block,
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this suggests that the lever produced the change in the shape. If a
lever is flipped, but the machine continues to produce the same
shape of block, this suggests that the lever does not influence the
shape of the block. In formal statistics, we use different procedures
for independent and dependent data. One intriguing possibility is
that people also engage in different processes when reasoning
about independent versus dependent data (e.g., Rottman, 2011;
Rottman & Ahn, 2009b; Rottman & Keil, 2011).

An important direction for future research is to study how
people reason with other causal phenomena that unfold over time.
For example, it has been proposed that when predicting sequences
of binary events over time (e.g., whether a basketball player will
make or miss his next shot based on whether he made the prior
shot), people use complex theories involving the nature of the
underlying mechanisms involved (Oskarsson, Van Boven, Mc-
Clelland, & Hastie, 2009). Exploring how people reason with
temporal causal phenomena will help inform theories of causal
reasoning more generally.

Conclusions

In everyday causal reasoning, unobserved and observed causes
frequently interact in ways complicating causal inference. The current
article demonstrated how people use the temporal sequence of events
to learn about complicated interactions between observed and unob-
served causes. However, existing models of causal learning cannot
make such inferences because they are not appropriately sensitive to
the sequence of trials. Future research is needed to explore how
people reason about other kinds of interactions and how to incorporate
this reasoning into a general model of human causal learning.

'3 We thank Dr. Allan Wagner for directing us to this literature.
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