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8 8 When and how do people reason about unobserved
causes? 
Benjamin Rottman, Woo‐kyoung Ahn, Christian Luhmann

Assumptions and beliefs about unobserved causes are critical for inferring causal relationships from

observed correlations. For example, an unobserved factor can in�uence two observed variables,

creating a spurious relationship. Or an observed cause may interact with unobserved factors to produce

an e�ect, in which case the contingency between the observed cause and e�ect cannot be taken at face

value to infer causality. This chapter reviews evidence that three types of situations lead people to infer

unobserved causes: after observing single events that occur in the absence of any precipitating causal

event, after observing a systematic pattern among events that cannot be explained by observed causes,

and after observing a previously stable causal relationship change. In all three scenarios people make

sophisticated inferences about unobserved causes to explain the observed data. This chapter discusses

working memory as a requirement for reasoning about unobserved causes and brie�y discuss

implications for models of human causal reasoning.

Abstract

Assumptions and beliefs about unobserved causes are critical for inferring causal relationships

from observed correlations. For example, an unobserved factor can in�uence two observed

variables, creating a spurious relationship. Or an observed cause may interact with unobserved

factors to produce an e�ect, in which case the contingency between the observed cause and e�ect

cannot be taken at face value to infer causality. We review evidence that three types of situations

lead people to infer unobserved causes: after observing single events that occur in the absence of

any precipitating causal event, after observing a systematic pattern among events that cannot be

explained by observed causes, and after observing a previously stable causal relationship change.

In all three scenarios people make sophisticated inferences about unobserved causes to explain the
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observed data. We also discuss working memory as a requirement for reasoning about unobserved

causes and brie�y discuss implications for models of human causal reasoning.

An observed correlation between two events does not imply a direct causal relationship between them. One

reason that is particularly important in developing theories of human causal learning is that unobserved or

unattended cause(s) may account for all or part of the observed correlations.

For instance, an article published in Nature reported that young children who sleep with a nightlight are

much more likely to develop myopia later in life (Quinn, Shin, Maguire, & Stone, 1999). This was interpreted

as implying a causal relationship by the popular press. For instance, CNN reported, even low levels of light

can penetrate the eyelids during sleep, keeping the eyes working when they should be at rest. Taking

precautions during infancy, when eyes are developing at a rapid pace, may ward o� vision trouble later in

life (CNN, May 13, 1999). A later study, however, suggested that a common cause is responsible for this

correlation; myopic parents are more likely to leave a light on for children, and myopic parents are more

likely to have myopic children (Gwiazda, Ong, Held, & Thorn, 2000).

While the above example illustrates how a positive correlation between two variables does not imply that

one causes the other, the opposite can happen as well; we observe no correlation between two events

when, in fact, there is a causal relationship between them. For example, a recent study demonstrated that

pollution and daily temperature range are positively associated in the summer, but negatively associated in

the winter (Gong, Guo, & Ho, 2006). Prior to learning that season plays a causal role, it would appear as if

there is no relationship between pollution and temperature range because there is no correlation, even

though there is an important relationship. Restated, there was a period of time during which an unknown

variable (season) obscured the causal relationship between two observed variables, and the researchers had

to learn about this interaction.

p. 151

Considering these examples, it should be obvious that assumptions and beliefs about unobserved causes are

vital in inferring causal relationships from observed correlations. In some sense, it is remarkable that we

can make any valid causal inferences from observed correlations alone. There can be any number of

unobserved causes at play, and people cannot possibly reason through all possible combinations whenever

they make causal inferences.

This paper examines laypeoples' inferences about unobserved causes. We will �rst elaborate on the

problems involving unobserved causes. Then, we will argue that people actually perform fairly sophisticated

reasoning about unobserved causes, and that such reasoning is engaged due to a certain set of assumptions

that they hold about the world. We also review psychological studies supporting our argument.

Problems with reasoning about unobserved causes

Consider a simple causal reasoning scenario involving a light switch and a light. Suppose you go into a room

for the �rst time, and you observe the light (i.e. on or o�; 1 or 0, respectively in Table 8.1 under Light) across

eight consecutive trials when the switch is up or down (1 or 0 respectively in Table 8.1 under Switch). One

possible causal interpretation is that there is no causal relationship between the observed switch and the

light, and there is an unobserved switch that is entirely responsible for the light's behaviour (see Table 8.1,

‘Entirely Responsible’ column).
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Table 8.1  Light switch example

Trials Observed events Di�erent types of possible unobserved switches

Switch Light Entirely Responsible Biconditional 2 Out of 3 Always Present

1 0 0 0 1 00 1

2 1 0 0 0 00 1

3 1 1 1 1 10 1

4 0 1 1 0 11 1

5 0 0 0 1 10 1

6 1 0 0 0 00 1

7 1 1 1 1 11 1

8 0 1 1 0 11 1

But, there are many other equally plausible possibilities in which the observed switch is causally responsible

for the e�ect in combination with another unobserved switch (see Table 8.1). One is that the observed switch

interacts with another switch through a biconditional interaction such that the light turns on only when the

two switches are either both up or both down. Yet another possibility is that there are two unobserved

switches, and at least two out of three of these switches must be up to make the light turn on. Depending on

whether one believes in the biconditional interaction or two out of three unobserved switches, one's future

intervention to make the light go on would change (e.g. if it is two unobserved switches, keeping the switch

up would maximize the time the light is on, but for a biconditional case, �ipping the switch whenever the

light goes o� would likely maximize the time the light is on).

p. 152

The point of this example is to illustrate that there are so many possible ways that unobserved causes could

interact that it would be impossible for people to consider all of these con�gurations. Does this mean that

people do not spontaneously reason about unobserved causes? The answer must be no, given the obvious

fact that people do make causal inferences based on correlations, and they must make (or act as if they

make) some assumptions about unobserved causes in order to do so. (For instance, inferring that X causes Y

based on a positive correlation between X and Y requires assuming that there is no unobserved, confounding

variable.) The important question, then, is what assumptions and inferences people make about unobserved

causes, and what triggers inferences about unobserved causes given that people cannot always consider all

possible unobserved causes? The current chapter reviews studies from our labs that provide some answers

to these questions.

In the following sections, we �rst brie�y review how existing models of causal learning handle unobserved

causes. Then we argue that people hold assumptions that trigger speci�c inferences about unobserved

causes. We claim that people believe that (i) an event must be caused by another event (causal

determinism), (ii) any systematic pattern or regularity among events must be causally determined, and (iii)

causal relations stay stable across di�erent times and contexts. When causal determinism is violated, when

a systematic pattern is not explained by observed causes, or when causal relations are not stable, we argue

that people infer an unobserved cause to explain the apparent violation of the assumption. Then we present

experimental results suggesting that people do spontaneously make such inferences about unobserved

causes, and describe how such inferences further in�uence the causal inferences people draw from observed

correlations. Finally, we will discuss one cognitive requirement for reasoning about unobserved causes.
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8.1 Unobserved causes in models of human causal learningp. 153

Many models have been developed to explain how people learn the causal strength of a particular cause and

e�ect relationship. Luhmann and Ahn (2007) and Hagmayer and Waldmann (2007) have provided detailed

reviews of how these models handle unobserved causes. Here we provide a brief summary.

One class of models makes no assumptions about unobserved causes, and thus makes no inferences about

unobserved causes. For example, AP (Jenkins & Ward, 1965), an associative measure, estimates causal

strength as the di�erence in probability of the e�ect (E) being present when the cause (C) is present vs.

absent: P(EǀC) − P(Eǀ ~ C). Though Δ P is a very intuitive way of calculating the in�uence of C on E, it runs into

a critical problem; people are more sensitive to certain types of evidence such as when both C and E are

present and are less sensitive to other types of evidence such as when both are absent. Many subsequent

descriptive models have tried to capture this phenomenon by di�erentially weighting the evidence (e.g.

Arkes & Harkness, 1983; Downing, Steinberg, & Ross, 1985; Einhorn & Hogarth, 1986; Nisbett & Ross, 1980;

Schustack & Sternberg, 1981; Shaklee and Tucker, 1980). However, these approaches did not provide a

theoretical explanation for the phenomenon.

Cheng (1997), Novick and Cheng (2004), see also Pearl (2000), provided a parsimonious theoretical

explanation for this phenomenon by appealing to unobserved causes. Cheng argued that di�erential

weighting of evidence is a normative result of accounting for ceiling e�ects, when an unobserved cause

frequently produces the e�ect (see Section 8.4.1 for a discussion). However, Cheng's model requires a

number of assumptions. Speci�cally, for a generative observed cause, unobserved causes are assumed to

interact in a noisy‐or fashion with observed causes, to be generative, not inhibitory, and to be independent

from observed causes. These very strict assumptions limit the applicability of the model and it is not

entirely clear whether people actually make these assumptions (Luhmann & Ahn, 2007; Hagmayer &

Waldmann, 2007; White, 2005, 2009).

A very di�erent approach to unobserved causes makes the straightforward assumption that all unobserved

causes, taken as a whole, are present across all learning trials. For example, the Rescorla‐Wagner model

(Rescorla & Wagner, 1972; Dickinson, 1984) includes a background context node that can be viewed as an

aggregation of all unobserved causes. When an e�ect occurs without the observed cause, this node gains

associative strength, which can be used as an estimate of the causal strength of an unobserved cause.

However, it is easy to see that the consequence of this assumption would be quite unsatisfactory for

reasoners. For example, in Table 8.1, last column, an unobserved cause present on every trial would be

completely unable to explain the light's behaviour; neither the observed switch nor the unobserved cause

correlates with the status of the light and thus the only unsatisfactory conclusion is that the light was

acting randomly without any cause.

p. 154

Some recent models have attempted to explain peoples' sophisticated reasoning about unobserved causes

including (i) inferring whether an unobserved cause is present or absent on a particular trial, and (ii)

inferring the causal strength of an unobserved cause. For example, if an e�ect is observed without an

observed cause, one would likely infer that an unobserved cause is responsible. Furthermore, given that an

observed cause is present, one would more likely infer that an unobserved cause is also present if the e�ect

is present rather than absent (see Hagmayer & Waldmann, 2007, for a detailed explanation of these

examples). One new model, BUCKLE (Luhmann & Ahn, 2007), has been developed speci�cally for these

types of inferences. BUCKLE is explained in the Section 8.2.

In sum, few models have been developed to account for reasoning about unobserved causes, though there

have been some recent attempts to explain how people learn about the presence and causal strength of an

unobserved cause. In the next section, we provide further evidence of reasoning about unobserved causes

that a more comprehensive model should account for.
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8.2.1 Children

Children's beliefs about agency

8.2 Causal determinism about individual events

One of the more primitive assumptions that lay reasoners appear to make is causal determinism, that every

event has a cause and that events cannot occur in the absence of any precipitating causal event.  This

assumption of causal determinism is captured in the causal principle from ancient philosophy; ‘nothing

happens without a cause’ (‘nihil �t sine causa’ Audi, 1995). For someone who believes in causal determinism,

events with no apparent cause should suggest the existence of hidden causes. Much of the empirical work

suggesting that people believe in causal determinism has investigated children's beliefs about agency and

magic, which is reviewed below.

1

A major question in developmental psychology pertains to children's beliefs about agency, the idea that

there are entities with free will (e.g. humans and animals) that are primary sources of causal in�uence. For

example, the motion of animate agents may be assumed to be generated internally and to not require

further explanation (e.g. Wegner, 2002; Leising, Wong, Waldmann, & Blaisdell, 2008). In contrast, the

motion of non‐agents (e.g. billiard balls) must be explained by referring to external causal forces. When an

inanimate object assumed not to have self‐agency appears to move on its own (e.g. a baseball moving like a

bird rather than in an arc), this violation of determinism should be surprising.

p. 155

Saxe, Tenenbaum, & Carey (2005), see also Saxe, Tzelnic, & Carey (2007), tested this reasoning with infants

in the following way. They had infants repeatedly observe a beanbag (a non‐agent) �ying through the air

from one side of a small stage to the other. (Studies with infants often use a ‘habituation’ phase, during

which the infant becomes accustomed to seeing the same event and stops paying attention to the event. In a

later phase, if infants show increased interest, this is taken to imply ‘surprise.’) After an infant was

habituated to this event, he/she was presented with this same event (the beanbag �ying across the stage)

followed by a human hand entering from one side of the stage, either the side from which the beanbag was

launched, or the opposite side. The infants were more ‘surprised’ (spent more time looking at the hand)

when the hand entered from the opposite side of the stage as the beanbag. The reasoning is that when the

hand entered from the same side as the beanbag, the infants could reason backwards that the hand had been

behind the stage all along and could have thrown the beanbag. However, when the hand entered from the

opposite side as the beanbag, there is no cause of the beanbag's motion — the beanbag cannot propel itself

and the hand was on the opposite side. Critically, this result disappeared entirely when the beanbag was

replaced with a puppet (an agent) that appeared to propel itself across the stage without requiring another

agent. In sum, the infants were ‘surprised’ only when an inanimate object appeared to move itself, a

violation of causal determinism, but they were not surprised when an animate object, assumed to have self‐

agency, moved itself.
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Children's beliefs about magic

8.2.2 Adults

Other developmental work has examined circumstances that evoke magical explanations from children (see

Woolley, 1997 for a review). For example, Phelps & Woolley (1994) presented children (ages 4—8) with

several real‐ world objects and asked them about their operation. Children were shown two objects that

were, unbeknownst to the children, magnets of opposing polarity. The children were �rst asked to make a

prediction (e.g. whether one object could move the other without touching it) and then to provide an

explanation once a surprising event occurred (e.g. after one object pushed the other without touching it).

This study revealed that if a child could not explain the event with a physical explanation, he/she tended to

appeal to magic or ‘tricks’ (both of which refer to hidden causes). Thus, children's reliance on magic for

explanation, an inference to the ultimate hidden cause, appears to be strongly driven by events that violate

causal determinism.

p. 156

Luhmann & Ahn (2007) have recently conducted a series of experiments to explore beliefs about causal

determinism in adults. The study was designed to investigate whether adults make signi�cant inferences to

hidden causes and what, if any, in�uence on behavior such simple inferences might have. The study used a

typical causal learning task in which subjects were asked to learn about a pair of potential causes (gray and

white buttons) and their in�uence on a single e�ect (light turning on). Participants observed the

presence/absence of the di�erent events in a trial‐by‐trial manner. On each trial, learners observed the

presence/absence of one cause (whether the gray button in Figure 8.1 was pressed or not) and the

presence/absence of the e�ect (whether the light was on/o�). Unlike typical causal learning experiments,

one of the two causes in our study was ‘hidden’ from subjects (the white button in Figure 8.1). No

information was ever provided to the participants about the presence/absence of the second, hidden cause.

After they completed the trial sequence, participants evaluated the strength of the causal relationship

between the observed cause and the e�ect and the strength of the relationship between the hidden cause

and the e�ect.

Fig. 8.1

Sample unexplained e�ect trial used in Luhmann & Ahn (2007).

To determine whether learners made notable inferences about the hidden cause, we manipulated whether or

not the di�erent sequences included trials that violated causal determinism; trials in which the e�ect was

present but the observed cause was absent (the light was on, but the button was not pressed; Figure 8.1). We

call these trials unexplained e�ects, as e�ects are present in the absence of any observed causes. As shown

in Table 8.2, the ‘unnecessary’ and ‘zero’ conditions included unexplained e�ects, whereas the ‘perfect’ and

‘insu�cient’ conditions did not. Our results demonstrated that sequences that included unexplained

e�ects, or violations of causal determinism, led subjects to believe that the hidden cause was a stronger

(generative) cause than sequences that did not include unexplained e�ects (last column of Table 8.2).p. 157
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Table 8.2  Summary of conditions and mean probability and causal strength estimates of unobserved cause in Luhmann & Ahn
(2007, Experiment 3)*.

* Note: O is the observed cause, and E is the e�ect. ~ represents the absence of an event. Unexplained e�ect (~OE) trials are
shown in bold. Standard errors are in parentheses.

Because violations of causal determinism were prima facie evidence for the operation of an unobserved,

generative cause, we suggested that subjects were using these speci�c occasions as the basis for their causal

strength judgments of the hidden cause.

To validate our explanation, we asked learners on each trial to judge how likely the hidden cause was

present using a scale that ranged from 0 (de�nitely absent) to 10 (de�nitely present, see the fourth column,

Table 8.2). These probability judgments allowed us to directly measure learners' beliefs about the hidden

cause on all four types of trials. As expected, learners believed that the hidden cause was likely present when

causal determinism was violated (~OE trials in bold in the fourth column in Table 8.2). In fact, learners

believed that the hidden cause was more likely to be present on these occasions than on any other type of

trial. Thus, similar to infants, violations of causal determinism lead adults to infer hidden causes.

The �nding that people infer unobserved causes during unexplained e�ects may seem fairly intuitive.

However, this experiment allowed us to uncover additional, potentially less intuitive, and more

sophisticated inferences about hidden causes.

One demonstration of sophisticated reasoning about unobserved causes is that participants' real‐time

judgments about the presence/absence of the unobserved cause explain their judgments of the causal

strength of the unobserved cause. To demonstrate this, we computed Δ P, a measure of covariation,

between the unobserved cause and the e�ect (i.e. P(Eǀ U)–P(Eǀ ~ U)) based on participants' average

probability judgments of the presence of the unobserved cause shown in Table 8.2 (converted to

probabilities that ranged from 0 to 1); they were 0.40, 0.40, 0.10, and 0.19, respectively, for the four

conditions in Table 8.2.  Impressively, these virtual covariations correlate with the subsequent judgments of

the causal strength of the unobserved cause (shown in the last column of Table 8.2). It should be stressed

that these were ‘virtual’ covariation in the sense that it only existed in the heads of the learners. No actual

covariation existed because one of the two potentially covarying events was hidden. Furthermore, subjects

were never asked to estimate the overall covariations between these two events; we computed them over

participants' probability judgments of the presence of the unobserved cause. That is, when the virtual Δ P

between the hidden cause and the e�ect was higher, subjects' causal strength estimate of the hidden cause

p. 158

2
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was higher, and vice versa, as if the ‘virtual’ covariation we computed had been directly observed by

learners.

Even more subtly, each subject's idiosyncratic beliefs about hidden cause‐ e�ect covariation could be used to

estimate his/her own inferences of the causal strength of the unobserved cause. Some subjects believed in

strong covariation between the hidden cause and the e�ect. Other subjects' probability judgments showed

weaker covariation. Remarkably, the individual di�erences in this virtual covariation measure (i.e. Δ P

between the unobserved cause and the e�ect) signi�cantly predicted subjects' subsequent judgments of the

causal strength of the hidden cause in each of the four conditions: rs = 0.48, 0.43, 0.59, and 0.52,

respectively (all ps 〈 0.05, Luhmann & Ahn 2007, unpublished analyses). Those subjects whose inferences

implied strong hidden cause‐e�ect covariation judged the causal relationship to be stronger than those

subjects whose inferences implied weak covariation. This pattern of beliefs suggests particularly elaborate

reasoning about hidden causes.

These data could be also used to evaluate some of the theoretical claims about hidden causes. For example,

as mentioned above, prominent theories of causal inference (e.g. Cheng, 1997) require that hidden causes

occur independently of observed causes; that is, the likelihood of a hidden cause, U, in the presence of an

observed cause, O, is the same as the likelihood of U in the absence of O, P(Uǀ O) = P(Uǀ~O). In contrast,

according to subjects' probability judgments shown in Table 8.2, this requirement was violated in the

majority of situations we tested. The hidden cause was judged to be more likely when the observed cause

was present and less likely when the observed cause was absent (i.e. P(UǀO) 〉 P(Uǀ~O)), as illustrated by the

marginal means of O and ~O in the fourth column of Table 8.2. Nonetheless, subjects were uniformly willing

to estimate the strength of both the hidden and observed cause. This suggests that people might not believe

that independence of hidden causes is a requirement for valid causal inference (Luhmann & Ahn, 2005; see

also Hagmayer & Waldmann, 2007).

p. 159

These data also provide insight into the conditions under which people infer unobserved causes to be

generative or inhibitory. In the previous studies, the unobserved cause was always judged to be generative.

However, Schulz and Sommerville (2006) demonstrated that four‐year‐olds sometimes infer preventative

hidden causes. In their study, children were presented with a cause that produced an e�ect four times. They

then observed eight trials when the cause unreliably produced the e�ect (sometimes the e�ect was present

when the cause was present, sometimes the e�ect was absent when the cause was present). Finally, the

children were shown a button box that the experimenter had hidden during the cause—e�ect sequence.

When asked to prevent the e�ect, children pressed the previously hidden button, indicating that they

thought it was preventative. To summarize, Schulz and Sommerville found that instances when a cause is

present but the e�ect is absent (O~E observations) lead children to infer an inhibitory cause, but Luhmann

and Ahn found that adults inferred a generative cause.

Luhmann and Ahn (2007) reasoned that O~E observations could be interpreted in multiple ways. For

instance, O~E may occur (a) because an unobserved cause prevented the e�ect from happening or (b)

because the observed cause is not entirely su�cient to bring about the e�ect. Thus, if a learner believes that

the observed cause is weak, then the learner does not have to infer that the unobserved cause is inhibitory in

order to account for O~E observations. Indeed, in conditions with O~E observations in the experiment

described above (e.g. the Insu�cient and Zero conditions), learners believed that the observed cause was

relatively weak and the hidden cause was relatively strong and generative (e.g. note the relatively high

causal judgment of the unobserved cause in the Insu�cient cause). However, if people already believe that

the observed cause is strongly generative, they might infer an unobserved inhibitory cause to explain O~E

evidence.

To reconcile our �ndings with those of Schulz and Sommerville (2006), we designed an experiment that

provided pre‐training to learners. This pre‐ training was designed to convince learners that the observed
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8.2.3 BUCKLE: A model of unobserved cause learning

cause was, on its own, a su�cient cause of the e�ect. Once this pre‐training was complete, we then

presented the same Insu�cient condition we used in the experiment described above. In light of the pre‐

training, learners' judgments indicated that they believed that the hidden cause was preventative. This

result suggests an important di�erence between O~E and ~O E . Observations of ~O E are violations of

causal determinism and require inferring a hidden generative cause. In contrast, observations of O~E are

somewhat more ambiguous. If learners entertain the possibility that the observed cause has no causal

in�uence at all, or if they allow for the possibility that the observed cause produces its e�ect unreliably,

then there is no need to appeal to hidden causes at all. Alternatively, if learners believe that the observed

cause reliably produces its e�ect (e.g. the children in Schulz and Sommerville (2006) experiment or the

adults after our pre‐training), then observations of O~E suggest the operation of hidden, preventative

causes.

p. 160

Because existing theories of causal inference were unable to account for these results, Luhmann and Ahn

(2007) proposed an alternative account, instantiated as a computational model called BUCKLE. The basic

operation of BUCKLE involves (1) making inferences about the presence or absence of hidden causes (via

Bayesian inference) and (2) then adjusting beliefs about the causal strength of all causes (both hidden and

observed). These two steps are performed on each trial.

In Step 1, BUCKLE makes use of four pieces of information to estimate the probability that U is present:

whether O and E are present or absent and the causal strengths of O and U that were calculated on the

previous trial. Suppose that the learner observes an O E trial. If the learner believes that O is strong, then

there is little reason to posit that U is present because O could have produced E. The stronger the causal

strength of O, the less likely that U is to be present. However, if O is weak, then U is needed to explain the

presence of E. In fact, if O has zero causal strength, then U must be present, otherwise there is no way to

explain the presence of E. Finally, suppose that the learner observes an ~O E trial. Like the previous case, U

also must be present because O is not present to produce E. These last two examples show how BUCKLE

embodies the assumption of causal determinism; if O is unable to produce E because it is absent or has zero

causal strength, then U must have been present and must have caused it. This sort of reasoning drives

BUCKLE's inference about the presence of U on a given trial.

In Step 2, BUCKLE updates its estimate of the causal strengths of O and U. To do so, BUCKLE �rst predicts

whether E should be present or not based on its current causal strengths of O and U, knowledge about the

presence/absence of O, and its inference about the presence of U (from Step 1). Intuitively, this prediction is

made the following way. Suppose we know that O is absent. Then, the only way E could be present is by U.

Thus, the probability that E would be present is the causal strength of U multiplied by the probability that U

is present. Alternatively, if O is present, the probability of E being present is increased if O is strong, if U is

strong, and if U is likely present. Once BUCKLE has made its prediction about E, BUCKLE calculates the

di�erence between this prediction and knowledge about the actual presence/absence of E. This step is very

similar to the Rescorla and Wagner (1972) model. If BUCKLE under‐predicts E, then the causal strengths of

the present causes are increased. If BUCKLE over‐predicts E, they are decreased.

p. 161

BUCKLE is capable of accounting for the patterns of inferences described above, both the trial‐by‐trial

judgments of the probability of an unobserved cause being present and the causal strength judgments.

Additionally, BUCKLE explains how inferences that people make about unobserved causes interact with

their inferences about observed causes such as order e�ects (Luhmann & Ahn, 2007).

In summary, these studies have shown that when an event occurs that cannot be explained by an observed

cause, people infer an unobserved cause to explain the event. These studies have so far focused on
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8.3.1 Autocorrelation

inferences that people make about single events. In the next section, we will discuss inferences people make

about unobserved causes from patterns of events.

8.3 Causal determinism about systematic patterns among events

We argue that when people perceive a pattern in a sequence of events, they are reluctant to treat it as purely

accidental, and instead they infer that the pattern was planned or produced through a causal mechanism. A

classic example involves the pattern of bombs dropped on London by the Nazis during World War II

(Gilovich, 1991, pp. 19–21; Hastie & Dawes, 2001, pp. 160–161). Even though the locations of the bombings

have since been shown to be statistically random, many British citizens thought they saw clusters of

bombings, and consequently inferred that German bombers deliberately avoided locations where German

spies lived, creating the perceived clustering. This is a perfect example of how people infer an unobserved

cause to explain an observed pattern (even though the pattern is statistically absent).

Perhaps the most basic types of patterns from which people infer a causal mechanism are those studied in

introductory statistics courses: di�erences between the mean scores of two groups and correlations

between two variables. There exists extensive literature about causal learning of this sort (e.g. Cheng, 1997;

Jenkins & Ward, 1965). Here we focus on other patterns from which people are likely to infer an unobserved

cause.

One type of pattern that has been investigated in previous literature is autocorrelation, when a previous

event is statistically correlated with a future event. We will �rst discuss two types of irrational beliefs about

autocorrelation that people have been shown to endorse and later discuss how beliefs about the

underlying unobserved causal mechanisms moderate these fallacies.

p. 162

One famous example of irrational belief in ‘negative autocorrelation’ is called the gambler's fallacy.

Speci�cally, gamblers often believe that if they lost on the previous gamble (e.g. roulette bet), they are ‘due

for a win’ on the next gamble. That is, people sometimes believe that the previous event negatively predicts

the next event. A similar phenomenon occurs with other processes that are expected to be random. For

example, people think that having six boys in a row (BBBBBB) is less likely than a speci�c intermixed

sequence (e.g. GBBGBG) even though both are equally likely. As famously stated in a Dear Abby column, a

woman who just had her eighth girl in a row claimed that ‘this one was supposed to have been a boy’ as if

the previous births negatively in�uenced the chances of the future birth (DEAR ABBY column, reprinted in

Hastie & Dawes, 2001, p. 159).

Consider another fallacy termed ‘hot‐hand.’ This fallacy is named after the belief that basketball players go

through hot streaks of many baskets in a row and cold streaks of many misses in a row. In fact, statistical

analyses have not found even a single basketball player whose streaks deviate from chance; however, hot‐

hand has been found in other sports (Adams, 1995; Dorsey‐Palmateer & Smith, 2004; Gilden & Wilson, 1995;

1996; Smith, 2003).

What mediates whether people believe in hot‐hand or gambler's fallacy? Restated, for a given random series

of events, why do people sometimes infer streaks (positive autocorrelation) and other times infer

alternation (negative autocorrelation)? Burns and Corpus (2004) proposed that inferring positive vs.

negative autocorrelation depends upon the causal mechanism that people believe to have generated the

data. Speci�cally, people believe that some causal mechanisms have ‘momentum’ and cause streaks,

whereas mechanisms that are ‘random’ do not produce streaks. Burns and Corpus presented participants
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8.3.2 Tolerance and sensitization

with scenarios intended to imply either a random mechanism (e.g. roulette wheel) or a mechanism with

momentum (e.g. basketball‐shooting under competition). Participants were told that in a series of 100

events, the frequencies of the two outcomes had been equal, but that the event ended with a streak of one

outcome. In the scenarios that participants believed to be produced by a random mechanism, participants

were more likely to predict that the next event would break the streak (i.e. negative autocorrelation),

whereas in the conditions that participants believed to have been produced by a non‐random mechanism

with momentum, participants were more likely to believe that the next event would continue the streak.

Ayton and Fischer (2004) conducted an experiment demonstrating the reverse e�ect; participants observed

a binary sequence of events and were then asked to choose whether they thought the sequence was produced

by either a mechanism meant to imply randomness (e.g. roulette wheel) or by a mechanism meant to imply

momentum (e.g. basketball shooting). After observing positive/negative autocorrelation within the

sequence of events, people tended to infer non‐random/random mechanisms, respectively. In sum, these

studies show that people infer di�erent unobserved mechanisms based on di�erent observed patterns.

p. 163

These studies have compared two generating procedures, random and streaky mechanisms. One interesting

possibility is that people may also infer a mechanism that frequently alternates. For example, it seems likely

that most people do not go to the same restaurant twice in a row–after going to a restaurant once, one

would probably switch to a di�erent restaurant for diversity. In a series of data that is strongly alternating,

it seems likely that people would infer a third type of mechanism that produces alternating sequences.

A recent study by Rottman and Ahn (2009) demonstrates that people infer a causal mechanism given other

kinds of patterns: tolerance and sensitization. An example of a tolerance scenario is tolerance to co�ee. The

�rst time a person drinks one cup of co�ee he/she may feel very awake. However, after repeatedly drinking

one cup of co�ee, he/she becomes tolerant and one cup of co�ee has little e�ect. The person may then drink

two cups of co�ee and initially feel very alert, but after repeatedly drinking two cups of co�ee, again

becomes tolerant. In sum, tolerance involves a decreasing e�ect over time when the cause is held constant.

Sensitization is essentially the opposite of tolerance; sensitization involves an increasing e�ect over time

when the cause is held constant. For example, many antidepressants require repeated exposure for full

e�ectiveness. Two pills of antidepressant may initially have no e�ect, but after repeated exposure, two pills

may be su�cient to make a person very happy. If the person cuts down to one pill of antidepressant, the

decrease may initially result in a decrease in happiness, but if the person becomes sensitized to the reduced

amount of antidepressant, over time, one pill may become su�cient.

To determine whether people are sensitive to these tolerance/sensitization schemata, Rottman and Ahn

showed participants scenarios in which machines were tested 14 times in a row for their emissions (e.g.

noise, light, heat, or smell). The input to the machines was a lever that could be set to three positions,

analogous to the number of cups of co�ee or number of pills of antidepressant for the scenarios described

above. In one set of ‘ordered’ conditions, the emissions increased (sensitization) or decreased (tolerance)

over repeated use. In another set of ‘unordered’ conditions, there was no temporal pattern so the data

looked random. Figure 8.2 depicts the ordered and unordered versions of both the tolerance and

sensitization conditions.
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Fig. 8.2

Tolerance and sensitization, ordered and unordered conditions.
Note: Dashed lines (not shown to participants) illustrate how the same data were reordered from the ordered to unordered
conditions.

After observing these trials in each condition, participants were asked to ‘rate how con�dent you are that

the lever has the capacity to a�ect’ the 

emission (e.g. noise, light, heat, or smell). Participants gave considerably higher ratings in the ordered

tolerance and sensitization conditions than in the unordered conditions. What is particularly interesting

about the results is that people in both the ordered and unordered conditions saw identical data in terms of

the simple correlation between the lever and the emission (i.e. not considering the temporal dimension).

This is the type of information that has been used as the basis of causal inferences by most traditional causal

induction models, and thus, they would have predicted no di�erence between the two conditions.

p. 164

p. 165
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Furthermore, the overall correlation was zero. Despite this, people in the ordered condition were

moderately con�dent that the lever had causal e�cacy.

One way to explain this �nding appeals to unobserved causes. For example, in the ordered‐tolerance

condition, participants likely inferred a process that occurs within each individual machine such that a

latent inhibitory variable increases over time. This is why the emissions decrease over time. In the ordered‐

sensitization condition, participants likely inferred an unobserved inhibitory cause that decreases over

time, explaining why the emissions increase. It seems unlikely that people would think that time itself

directly in�uences the emissions, however, over time, the machine may become ‘worn in’ and produce less

emission. In this case, the variable responsible for ‘wearing in’ would be the unobserved variable that

inhibits the emissions and is correlated with time.

In this account, people would use the temporal pattern to infer an unobserved cause, and the combination of

the lever and this unobserved cause completely explains the emissions. This explains why participants

judged that the lever in�uences the emissions. After all, in the ordered conditions, the emission is

statistically dependent upon the lever once time or the unobserved cause is taken into account. However,

when there is no temporal pattern as in the unordered condition, there is no reason to infer an unobserved

cause that changes with time. Consequently people have no way to make sense of the in�uence of the lever

and judge it not causally e�cacious.

It is not di�cult to �nd real‐world examples of this reasoning. Ca�eine is an adenosine antagonist; ca�eine

inhibits sleep through blocking adenosine, which promotes sleep. However, over repeated ca�eine

exposure, the number of adenosine receptors increases, making ca�eine less e�ective at blocking them. The

number of adenosine receptors is thus an unobserved cause that changes over time within an individual

person.

The above situations depict repeated treatments on the same machine. To further test whether people

understand the tolerance/sensitization scenarios, we created another set of scenarios in which the

increasing/decreasing patterns occur to many di�erent machines. Going back to the co�ee scenario, one

person's co�ee drinking can in�uence the e�ectiveness of co�ee for that same person at a later time.

However, one person's co�ee drinking should not in�uence the e�ectiveness of co�ee for a di�erent

person at a later time–tolerance to co�ee must happen within one entity. If people only apply the

tolerance/sensitization schemata for one‐entity scenarios, then they should give higher causal e�cacy

ratings for the lever in one‐entity scenarios compared to many‐entity scenarios that depict the exact same

input/output data patterns. In a second experiment designed to test this one‐entity vs. many‐ entity

distinction, we found that people were more con�dent in the causal e�cacy of the lever in the one‐entity

than many‐entities conditions both for sensitization and tolerance.

p. 166

This experiment further clari�es the inferences about the unobserved variable. In this experiment, the data

patterns in the one‐entity and many‐entity conditions were identical for the lever, emissions, and temporal

order. However, it is only in the one‐entity condition that one can plausibly infer a latent process; an

unobserved cause within each individual machine changes and a�ects the emissions even though the

observed cause's strength remains constant. As previously explained, if people infer an unobserved cause in

the one‐entity scenario, the combination of this unobserved variable and the lever completely accounts for

the pattern of emissions, which explains why people rated the lever to be e�cacious. However, it would be

too bizarre to infer a latent process occurring within each individual getting transferred to the person who

happens to drink co�ee next or the machine that happens to be tested next. If people do not infer an

unobserved cause in the many‐entities scenario, the pattern of data between the lever and emission does not

make sense; after all, as is also true in the one‐entity scenario, there is no simple correlation between the

lever and emission. This explains why participants gave lower ratings for the causal e�cacy of the lever in

the many‐entities condition. In sum, this study suggests that inferences about an unobserved cause that
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8.3.3 Developmental origins of beliefs about order

8.3.4 Other types of patterns and discussion

changes over time within one entity in�uenced inferences about the relationship between the observed

cause and e�ect.

The previous studies have focused on cases when adults perceive a pattern and infer an unobserved cause to

explain the pattern. Some previous studies have plotted the development of children's beliefs and inferences

about causal mechanisms. Friedman (2001) found that four‐year‐old children believe that it is plausible for

animate agents to create an ordered pattern from randomness but less plausible for non‐animate causes

(e.g. the wind) to do the same. That is, even without seeing a particular cause occur, four‐year‐olds infer that

one type of unobserved cause is more plausible than another.

Newman, Keil, Kuhlmeier, and Wynn (2010) found similar results among even 12‐month‐old children. They

created scenarios in which the infants initially saw either an ordered or unordered pile of blocks. Then an

opaque barrier occluded the blocks and either a rolling ball or an animate agent (a self‐propelled circular

face) moved behind the occluder, presumably coming in contact with the blocks. Finally, the occluder was

removed displaying either ordered and unordered blocks. The infants were more surprised (looked longer)

when the ball appeared to create order from disorder than disorder from order, but they looked equally long

at the two conditions for the animate agent. In sum, from a fairly early age, children understand that only

animate mechanisms can create ordered patterns and infer an unobserved agent to explain an observed

pattern.

p. 167

The tolerance/sensitization experiments described above made us aware that there might be other types of

patterns that people may use to infer unobserved causes. When making the unordered

tolerance/sensitization conditions (see Figure 8.2), we tried to make the temporal patterns look as random

as possible. However, despite our best e�orts, in informal discussions after the experiment we discovered

that some participants still saw patterns in the data. (See Hastie & Dawes, 2001, p. 355, for an example of the

many possible patterns one might infer from a series of six sequential coin �ips.) Participants saw

increasing or decreasing patterns within subsets of data and interpreted them as meaningful trends (e.g. an

increasing pattern in Trials 10–14 in the tolerance‐unordered condition in Figure 8.2 despite Trials 9 and 13).

Thus, tolerance/sensitization may potentially be triggered for noisier data than what we presented to

participants or subsets of data. Some participants also saw alternating patterns (e.g. Trials 1–5 in the

tolerance‐unordered condition in Figure 8.2) of the form we proposed at the end of Section 8.3.1. Another

type of pattern people would likely infer in other situations is a periodic or sinusoidal pattern. A sinusoidal

pattern is similar to positive autocorrelation in that the previous trial predicts the next trial, but di�erent in

that the period of repetition may be constant which is not necessarily the case for autocorrelation. In all of

these scenarios, we believe that people would likely attribute an observed pattern to an unobserved cause,

which could further in�uence their judgments about observed causes. (But see the last section of this

chapter for a discussion of boundary conditions.)

There are a number of important future directions of this research. First, it would be useful to determine

whether people have a limited set of schemata or patterns they primarily search for when learning new

causal relationships. A limited set or taxonomy of plausible schemata could reduce the complexity of causal

learning given that there are in�nite numbers of possible patterns caused by unobserved variables.

Exploring the diversity of causal schemata may help us better understand the limits of causal learning as

well as how people make generalizations from schemata they know and learn new schemata.
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8.4.1 Causal power–stability across samples

There might also be important individual di�erences in inferring unobserved causes due to pattern

detection. Certain people, for example, paranoid people, may have a higher likelihood of seeing a pattern

where none exists and attributing the pattern to an unobserved cause. Prior experience with certain types of

mechanisms or schemata may also make a person more likely to infer a particular type of mechanism.

p. 168

Finally, though some of these phenomena (e.g. hot‐hand fallacy) have been studied extensively, they are not

usually considered the domain of causal reasoning, but rather decision making. It would be useful to

integrate research about systematic patterns with more traditional causal learning paradigms that have

focused on single events (i.e. the previous section). After all, when observing a new set of data, people are

sensitive to both single events and patterns of events, and a general model of causal learning should

incorporate both.

8.4 Beliefs in stability of causal relations

The previous two sections have suggested that people infer an unobserved cause to understand unexplained

events and systematic patterns of events. In this section, we suggest that people also infer an unobserved

cause if they notice that the relationship between an observed cause and e�ect changes. For example if you

know that a medicine has a particular side e�ect for most people, but �nd a group of people who do not

develop the side e�ect, it would make sense to infer an unobserved cause to explain the di�erence (e.g. the

group has an unusual gene). Restated, it seems likely that people will infer an unobserved cause when a

causal relationship is not stable. We will discuss two types of stability of causal relationships: stability

across di�erent samples and stability over time.

Cheng (Power PC; Cheng, 1997) proposed that when people judge whether X causes Y, people intuitively

estimate causal power, the ‘probability with which [X] in�uences [Y]’ (Buehner, Cheng, & Cli�ord, 2003).

Consider the following scenario: you are testing the side‐e�ects of a new drug and discover that when given

to 100 people without headaches, 50 of these people develop a headache. Suppose you gave the drug to 100

people, 50 of whom already have a headache. How many out of these 100 would have a headache after taking

the drug? According to Power PC theory 75 people would have a headache. In the �rst situation, the

medicine caused 50% of the people to get a headache. In the second scenario, 50 people already have a

headache, and the medicine will cause 50% of the remaining people to get a headache. The base rate percent

of people who already have a headache may vary from situation to situation, but Cheng argues that the

percent of people who do not already have a headache and will get a headache should be constant across

scenarios.

Before moving on, it is useful to understand why Cheng makes this argument, though some readers may

prefer to skip ahead to the results of her experiment. One easy way to calculate causal strength is simply to

subtract the probability of an e�ect (E) occurring in the presence of an observed cause (O) minus the

probability of the e�ect occurring in the absence of the cause: P(EǀO) ‐ P(Eǀ~O) (i.e. ΔP measure mentioned

earlier). However, this calculation has the problem that it is in�uenced by ceiling e�ects. When the base rate

of the e�ect occurring without the cause is greater than zero, the causal strength cannot be the maximum 1

even if the e�ect always occurs in the presence of the cause. To get around this problem, Cheng uses a

number of assumptions to calculate causal power.  First, she assumes that an e�ect can occur for two

reasons: if the observed cause produces the e�ect or if an unobserved cause (U) produces the e�ect (or they

can both produce it simultaneously). This assumption is very useful because it implies that if E occurs in the

absence of O then U must be responsible. Thus the probability of the e�ect occurring in the absence of the

cause, P(Eǀ~O) is an estimate of the frequency that the unobserved was responsible for the e�ect. Second,

p. 169
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8.4.2 Grouping e�ects–stability over time

she assumes that the observed cause occurs independently from unobserved causes, P(OǀU) = P(Oǀ~U), and

that O and U in�uence E independently. These assumptions are also very useful because we now assume that

P(Eǀ~O) is an estimate of how frequently the unobserved cause produces the e�ect in general, even when O is

present. To determine causal power, Δ P is divided by 1 ‐ P(Eǀ~O) which e�ectively normalizes it on the

probability that the unobserved cause produced the e�ect, resulting in the increase in probability of the

e�ect due to the observed cause regardless of unobserved causes.

Causal power = .
P(E|O)−P(E|~O)

−P(E|~O)

The causal power of a particular cause/e�ect relationship is thus supposed to be the same in samples

regardless of unobserved causes (the base rate of E). If di�erent causal powers are observed in di�erent

samples, one likely explanation is that the assumptions about the unobserved causes are violated, and that

the apparent relationship between the observed cause and e�ect is partially due to unobserved causes.

Liljeholm and Cheng (2007) tested whether people believe that the causal power of a speci�c cause is stable

across situations. They created two conditions, each of which had three scenarios like the headache

scenario. In one condition, the three scenarios had the same causal power but di�erent base rates of

headache. In a second condition, the base rate of headache was the same (zero people initially had a

headache) but the causal power was di�erent across the three scenarios. After observing the data for the

three scenarios in each condition, participants answered whether they thought the medicine interacts with

some unobserved factor across the experiments or whether the medicine has the same in�uence across the

three scenarios. Whereas only one third of participants thought the medicine interacted with an unobserved

factor in the causal power constant condition, 86% thought that the medicine interacted with an

unobserved factor in the condition in which causal power varied.

p. 170

In sum, causal power seems to be one way in which people expect causal relations to be stable across

scenarios. When it is not stable, people infer an unobserved cause that interacts with the observed cause and

is responsible for the discrepant causal power estimates. The type of stability of causal relations discussed

here relates to stability across di�erent contexts that are distinguished for learners. That is, Liljeholm and

Cheng (2007) presented participants with three scenarios each framed as an individual study with di�erent

hypothetical patients. In the next studies, participants learned about changing causal relations on their

own.

One of the challenging aspects of causal learning is that there are in�nitely many possible interacting

factors and these interacting factors change over time and context. Sometimes we have a priori beliefs about

possible interacting factors; however, often we do not know about interacting factors, or whether

interacting factors have changed. In this case, we may learn about interacting factors by noticing a

di�erence in a causal relationship over time. When we observe a change in a causal relationship over time,

we will likely conclude that an unobserved interacting factor changed. One critical assumption for making

such an inference is that unobserved factors are stable for long enough periods of time that we can notice

the di�erence.

Consider the following double‐switch scenario that was brie�y discussed at the beginning of this chapter

listed in Table 8.1 as biconditional. Some lights are connected to two switches (e.g. often at opposite ends of a

hallway). There are two important characterizations of this scenario. First, whenever one switch is �ipped

(assuming that the other light switch is not �ipped at exactly the same time), the state of the light will

change. Second, neither of the two switches has an ‘on’ or ‘o�’ position–there is not necessarily any
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correlation between the position of a given switch and the state of the light. Figure 8.3 provides a wiring

diagram of a double light switch. The light will be on whenever the switches make a complete circuit (if both

switches are up or if both switches are down).

Fig. 8.3

Wiring diagram for double light switch scenario.

Suppose you enter a room for the �rst time and discover that when you �ip a switch up, a light goes on, and

when you �ip it down, the light goes o� (grey cells, Steps 1–4 in Table 8.3). If you assume that other

potential causes of the 

light are fairly stable (and do not happen to change at the same moment you �ipped your switch), you would

infer that the switch in�uences the light. Later (Steps 4–5), the light turns o� without anyone touching the

switch (perhaps your daughter �ipped the other switch unknown to you; U in Table 8.3). Afterwards, when

the switch is down, the light is on, and o� when up (Steps 5–8). From this scenario, you might be very

con�dent that your switch in�uences the light; there were two long periods when the status of the switch

correlated with the status of the light. Additionally, because the light mysteriously turned o�, you might

infer an unobserved factor (I in Table 8.3) that interacts with your switch, explaining the overall zero

contingency between the switch and light.

p. 171

p. 172
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Table 8.3  Double light switch, grouped scenario.*

* Note: For Tables 8.3 and 8.4, ʻUʼ represents an unobserved interacting factor and ʻIʼ represents a factor learners are likely
to infer. 0 represents down for the switch and o� for the light, and 1 represents up for the switch and on for the light.

However, inferring the observed switch to be e�cacious depends upon the stability of the unobserved cause.

For example, consider the same data from Table 8.3, rearranged as in Table 8.4. Initially, the switch is down

and the light is o� (Step 1). In Step 2 the switch is �ipped up, but the light still stays o�. In order to believe

that the switch is causally e�cacious, one must infer that at the moment the switch was �ipped, an

unobserved factor coincidentally changed and counteracted the e�ect of the observed switch, as speci�ed

under column ‘U’ (unobserved interacting factor). Then, in Step 3, the light turns on without �ipping the

switch, and so on. Thus, for the situation shown in Table 8.4, it would be extremely di�cult to infer the

switch to be causally e�cacious: The switch cannot be the sole cause of the light because there is zero

contingency with the light. Furthermore, it would be di�cult to infer it as part of an interaction because

doing so would require inferring an unobserved factor operating as speci�ed under column ‘U,’ which is

counterintuitive; the unobserved interacting factor is highly unstable and exceedingly complicated to track.

Instead, the simplest account (intuitively) would be to infer an unobserved factor that is entirely responsible

for turning the light on and o�. Such a factor would be perfectly correlated with the light, as speci�ed under

column ‘I’ (inferred factor). If a learner inferred ‘I’, he/she would likely infer that the switch is not causally

responsible for the light at all.

Table 8.4  Double light switch, ungrouped scenario.

These two examples were meant to demonstrate that if an unobserved cause is relatively stable for periods

of time with a few salient di�erent periods as in Table 8.3, a learner is likely to infer that an interaction is

taking place with an unobserved cause. However, if the scenario is very unstable, as in Table 8.4, then the

learner is less likely to infer an interaction with an unobserved cause. Instead, they would likely infer that

the unobserved cause is not responsible for the e�ect at all.

p. 173

To investigate these inferences, we gave participants a cover‐story about machines that produce blocks of

various shapes (e.g. square or triangle), and asked participants to determine if the position of a lever on the

machines a�ects the shape of the blocks. Participants then observed videos of 20 trials in a continuous
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temporal sequence; from trial to trial, the lever sometimes switched between the left and right position and

the shape of block (e.g. square or triangle) sometimes changed. In all conditions, the lever was statistically

uncorrelated with the shape of the blocks.

Rottman and Ahn (in prep. see Rottman & Ahn 2009, for partial results) manipulated two aspects of the

scenarios. First, we manipulated the grouping of the trials similar to that shown in Tables 8.3 and 8.4. In the

‘grouped’ condition, there were relatively stable periods of time when one shape was associated with one

position of the lever, and other periods when the association �ipped. In the ‘ungrouped’ condition, these

two di�erent associations were more intermixed so that there were no discernable stable periods. If

grouping allows people to infer an unobserved cause that is stable for periods of time and then switches,

people should infer an interacting unobserved cause more in the grouped than ungrouped condition.

Another manipulation of the study was whether the scenario involved only one machine changing over time

or di�erent machines. In the one‐ machine condition, all 20 trials occurred with one machine. That is, in the

one‐machine conditions, the lever on the machine was sometimes �ipped back and forth between left and

right, and the shape of the block produced by the machine sometimes changed over 20 trials. In the many‐

machines conditions, 20 di�erent machines were observed once each: the lever of each machine was set

either to the left or the right, and the machine produced either a square or triangle. Even though the many‐

machine conditions were identical to the one‐machine conditions in every other way, we reasoned that

participants would not make di�erent inferences about the unobserved cause between the grouped vs.

ungrouped conditions. Because each machine is di�erent, we reasoned that participants would not make use

of the temporal grouping information to infer a stable unobserved cause; after all, participants had no

reason why they were presented with the machines in the particular order. If the temporal stability

information was not deemed important and people did not use it to infer stability, there should not be any

di�erence between the grouped and ungrouped conditions for many‐ machines. Such a �nding would

suggest a caveat to the assumption of stability: people only distinguish between stable and unstable

scenarios for inferring interactions with unobserved causes when time is a meaningful variable.p. 174

After observing each scenario, participants rated their agreement with whether ‘A combination of the lever

and some other factor in�uenced the shape of the blocks’ from 1 (‘Absolutely Disagree’) to 9 (‘Absolutely

Agree’) (see Figure 8.4). As expected, in the one‐machine condition, participants inferred an interaction

with an unobserved cause more in the grouped than ungrouped condition. However, in the many‐machine

condition, when time was not a meaningful factor, there was no di�erence between the grouped and

ungrouped conditions in participants' inferences about an interaction with an unobserved cause.  In other

words, only when time is a meaningful variable (i.e. the one‐machine condition), do people use temporal

stability to infer an interaction with an unobserved cause. When time is not meaningful (i.e. the many‐

machine condition), there is no di�erence between grouped and ungrouped conditions.

4

D
ow

nloaded from
 https://academ

ic.oup.com
/book/3313/chapter/144343214 by Falk Library user on 05 O

ctober 2023



Fig. 8.4

Combination of lever and unobserved factor influenced shape.
Note: * paired t‐test, p 〈 0.05,† interaction in repeated‐measures ANOVA, p 〈 0.05.

Inferring that there is an unobserved interacting factor has further implications for peoples' views of the

observed cause. Speci�cally, Rottman & Ahn (2009; Experiment 1) demonstrated that the more grouped

the scenario, the higher the causal strength ratings that participants gave it. Across these two experiments,

when a scenario is grouped, people are able to infer the interacting unobserved cause and still believe that

the observed cause in�uences the e�ect even though there is no correlation between the two. However,

when the scenario is ungrouped, people are less likely to infer an unobserved factor and more likely to infer

that the observed cause is not related to the e�ect (after all, there is zero correlation).

p. 175

One of the important implications of this study is that people spontaneously distinguish between scenarios

with stable unobserved causes and scenarios with unstable unobserved causes, even though both can appear

to have zero correlation between the cause and e�ect. Consider the study brie�y discussed in the

introduction that investigated the role of pollution (observed cause) on daily temperature range (e�ect;

Gong, Guo, & Ho, 2006). The researchers found that pollution decreases daily temperature range during the

winter, but pollution increases daily temperature range during the summer. Summarized, the season �ips

the direction of the in�uence of pollution on diurnal temperature range. This example makes an important

point: the researchers did not know about the interaction with season a priori. At some point, they must

have noticed that the relationship between pollution and weather is �ipped depending on the season, and if

they had overlooked this important factor, the relationship between pollution and diurnal temperature

range would have been obscured and might appear to not exist. By observing a stream of data and noticing

periods of stability, the researchers could uncover that an unpredicted variable (season) plays an important

interacting role.

In summary, these studies suggest that people believe causal relationships to be fairly stable across

contexts, and if they notice a di�erence across samples or times, they posit an unobserved factor to explain

the di�erence. Presumably people would also infer systematic patterns to be stable across di�erent

contexts, and would likewise posit an unobserved factor if they notice a di�erence. For example, if a cause

exhibited tolerance for one sample and sensitization for another, or positive autocorrelation for one sample

and negative autocorrelation for another, people would likely infer an unobserved cause to explain the

di�erence. Additionally, if a cause appeared to switch from a noisy‐or to a biconditional functional

relationship, people would also infer that an unobserved factor changed. In this way, the inferences we have

discussed about single events, patterns of events, and relationships between causes/e�ects can be viewed in

a hierarchy. If an unexplained change occurs anywhere along the hierarchy from the lowest level (single
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events), middle level (patterns of events) or the highest level (relationships between causes/e�ects), people

will infer that an unobserved cause is responsible.

8.5 Working memory–A requirement for reasoning about unobserved
causes

p. 176

We have now discussed a number of situations when people infer unobserved causes. However, reasoning

about unobserved causes is also cognitively challenging. As we have already explained, there are many

possible unobserved and unattended causes, and many ways in which those causes can interact with

observed causes. In this section, we propose that reasoning about unobserved causes requires considerable

working memory capacity. We will now review a particular phenomenon, recency/primacy e�ects, in which

beliefs about unobserved causes play a central role. Then we will demonstrate how working memory

mediates this phenomenon.

Suppose you initially observe a set of data, mostly showing positive covariation between two events,

followed by data mostly showing negative covariation between the same events. For instance, for the �rst

half of the baseball season, you notice that your favorite baseball team was more likely to win when you

were wearing your ‘lucky’ socks, but for the second half of the baseball season, you notice that your team

was more likely to lose when you were wearing your ‘lucky’ socks. Would you consider your socks to be still

lucky? There are many possible strategies a reasonable learner could take to answer this question. One could

average across all of the available data, concluding that the socks have nothing to do with winning.

Alternatively, one could give more weight on the most recent data, concluding that wearing those socks

actually hurts performance. Or one can give more weight on initial data, concluding that wearing those

socks improves performance. It is di�cult to tell which one of these three is the most rational strategy, and

in fact, the experimental results using this paradigm show that people demonstrate all three strategies

(Dennis & Ahn 2001; Glautier, 2008; Lòpez, Shanks, Almaraz, & Fernàndez, 1998; Marsh & Ahn, 2006;

Shanks, Lòpez, Darby, & Dickinson, 1996).

In a recent study, Luhmann and Ahn (in press) found empirical evidence that the con�icting �ndings of

primacy/recency e�ects can be explained by learners' beliefs about unobserved causes. Speci�cally, people

who reason more about unobserved causes tend to show primacy, whereas people who reason less about

unobserved causes tend to show recency e�ects in their causal strength judgments. Learners were presented

with sequences of covariation information involving medications and potential side e�ects. Sequences

always used the same set of observations, but were constructed to present the majority of positive evidence

�rst, followed by the majority of negative evidence (Positive—Negative) or vice versa (Negative—Positive).

Sometimes during the learning sequence, participants were asked to explain why the e�ect did or did not

occur, and at the end of the sequence, learners made causal strength judgments.

Some subjects were particularly likely to explain the outcome of a speci�c trial by appealing to unobserved

causes. For example, consider a learner in the Positive–Negative condition who observed the �rst half of

positive evidence, and then observes some contradictory negative evidence (i.e. a trial when the cause occurs

but the e�ect does not). Participants were then prompted to choose one explanation for why this happened:

‘[the cause] prevented [the e�ect]’, ‘it is pure coincidence that’ [the e�ect] did not occur after [the cause]',

or ‘for some reason, [the cause] failed to cause [the e�ect].’ If the participant appeals to an unobserved

cause, he/she would choose the third option, which subtly references alternative causal in�uences (i.e. ‘for

some reason’). The unobserved cause could have overridden the observed cause and prevented the e�ect,

allowing participants to continue to believe that the observed cause was generative. In fact, participants

who choose this option gave higher causal strength ratings in the Positive–Negative condition. (These

participants exhibited a primacy e�ect because their higher causal strength ratings re�ect the initial

p. 177
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positive contingency.) These results suggest that unexpected covariation information elicits reasoning

about unobserved, alternative causes in some learners. Such reasoning tends to ‘excuse’ the new,

contradictory information and leave the prior causal beliefs relatively untouched.

However, other learners appealed to unobserved causes less and instead used this same con�icting

information to directly modify their causal beliefs. For example, in the Positive—Negative case, upon

encountering the negative evidence, a learner could take this evidence at face value and modify the initial

belief that the cause generates the e�ect to conclude that the cause is not related to the e�ect or even

prevented the e�ect. Such learners subsequently gave lower causal strength estimates (a recency e�ect).

So far, these results suggest that primacy/recency e�ects in causal judgments are related to whether people

appeal to unobserved causes. However, why do some people appeal to unobserved causes more than others?

We hypothesize that one of the reasons is the ease with which learners are able to reason about unobserved

causes that produces these di�erent learning strategies. Marsh and Ahn (2006) demonstrated that learners

with higher verbal working memory capacity were more likely to show a primacy e�ect. Thus, we reasoned

that working memory may facilitate reasoning about unobserved causes, which we know in�uences

primacy/recency in causal strength judgments. To test this hypothesis, Luhmann and Ahn (in press) created

two situations that experimentally manipulated the ease of reasoning about unobserved causes.

First, Luhmann and Ahn (in press) increased the cognitive load during the task, which we predicted would

decrease the ease of reasoning about unobserved causes and produce a recency e�ect. The learners

performed the same task explained above while simultaneously performing a di�cult secondary task

(counting backwards by 3s) This manipulation impaired rea‐ soning about unobserved causes.

Participants took individual trials at face value and modi�ed existing hypotheses. For example, in the

Positive–Negative condition, when faced with the negative evidence, participants simply said that the cause

inhibits the e�ect, presumably because it would be too taxing on working memory to postulate unobserved

causes. Furthermore, participants' overall causal strength judgments showed a recency e�ect.

p. 178

Second, we made it easier for learners to reason about unobserved causes by simply making the unobserved

causes observed. During the second, contradictory half of the event sequence, learners were told that an

alternative cause was present. Note that they were not told that the e�ect occurred because of this

alternative cause (that is, there still is an ambiguity as to what was the true cause of the e�ect). Yet, this

manipulation increased participants' reasoning about unobserved causes and they interpreted information

that contradicted their prior causal beliefs as “something” going wrong, leaving their beliefs relatively

untouched. Furthermore, their overall causal strength judgments showed a primacy e�ect.

In sum, these studies demonstrate that working memory moderates inferences about unobserved causes for

primacy/recency e�ects. Based on these results, it is plausible that working memory would moderate other

inferences about unobserved causes, such as those in the double light switch scenario or perhaps those

discussed in the section on Power PC. Given that reasoning about unobserved causes (e.g. potential

confounds; see Cheng, 1997) is necessary for normative causal inference, future research on the limits and

conditions under which people reason about unobserved causes is particularly important.
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8.6 Conclusions

In this chapter, we demonstrated that people make a number of sophisticated inferences about unobserved

causes. First, people infer an unobserved cause when a single unexplained event happens: children appeal to

magic when they don't have a physical explanation for why one object would move without another object

touching it (Phelps & Woolley, 1994), and adults infer that a hidden button was pressed when a light bulb

illuminates without an observed button being pressed (Luhmann & Ahn, 2007). Second, people infer an

unobserved factor to explain patterns of events that cannot be explained by the observed causes, such as a

series of 10 coin �ips all landing on heads (Ayton & Fischer, 2004), or a person becoming tolerant to ca�eine

(Rottman & Ahn, in press). (In both these scenarios, the mechanism that produced the pattern is not

observed.) Third, people infer an unobserved cause to explain changes in the relationship between a cause

and e�ect, for example, if a cause sometimes generates the e�ect and sometimes inhibits the e�ect

(Rottman & Ahn, 2009).

Though we have not focused much on causal learning models, these experiments suggest some important

implications for the development of future models. Most existing models of causal learning have focused

upon observed causes and make fairly simple assumptions about unobserved causes. For example, existing

models assume that unobserved causes are always present (Rescorla & Wagner, 1972) or are not confounded

with observed causes (e.g. Cheng, 1997; see Luhmann & Ahn, 2007, for a discussion). However, people do

not seem to make these assumptions and instead make dynamic inferences about unobserved causes;

people do not believe that unobserved causes are constant and make sophisticated inferences about the

presence and changes in unobserved causes.

p. 179

Many of the phenomena discussed in the current chapter involve scenarios that unfold over time (i.e.

autocorrelation, tolerance/sensitization, the double light switch scenario, and primacy/recency e�ects), yet

most existing models do not capture time su�ciently. Many in�uential models have been designed

primarily to capture causal phenomena that do not occur over time, and thus they aggregate across all trials

(e.g. Cheng, 1997; Jenkins & Ward, 1965; Gri�ths & Tenenbaum, 2005). As already discussed, in�uential

animal‐learning models that do model learning over time (e.g. Rescorla & Wagner, 1972) often make overly‐

simplistic assumptions about unobserved causes. Bayesian inference has become a particularly common

way to model causal learning, and it proved very useful in BUCKLE. However, as noted by Danks (2007),

‘causal Bayes nets do not currently provide good models of continuous time phenomena, though continuous

time Bayes nets are the subject of ongoing research (Nodelman 2002, 2003)’. We believe that capturing

phenomena that unfold over time should be an important aspect of future models.

We have also demonstrated that when working memory is taxed, people have di�culty reasoning about

unobserved causes (Luhmann & Ahn, in press) Yet, despite the additional cognitive challenge of reasoning

about unobserved causes, we believe that it occurs as a normal part of causal learning. Many of the

previously mentioned studies have demonstrated that people spontaneously reason about unobserved

causes. Furthermore, we have described multiple phenomena in which reasoning about unobserved causes

in�uences the inferences people make about observed causes, the more typically studied form of causal

learning. For example, when people infer that an unobserved cause �ips the relationship between the

observed cause and e�ect (generative vs. preventative), since the interaction explains why there may be

zero overall correlation, people infer that the observed cause still in�uences the e�ect (Rottman & Ahn,

2009).

One general way to summarize these �ndings is that people are always on the lookout for unexplained data

and consequently infer unobserved causes to make sense of the relationship between observed causes and

e�ects. Any attempt to explain causal learning based on overly simplistic and static assumptions about

unobserved causes will not be able to account for the dynamic interplay between observed and unobserved

p. 180
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p. 183

1 Here we distinguish causal determinism, the idea that every event must have a cause, from deterministic causality, the
belief that an e�ect must be present if its cause is present (Goldvarg & Johnson‐Laird, 1994; Koslowski, 1996; Luhmann &
Ahn, 2005).

2 To compute this measure of ΔP, the quantities P(EǀU) and P(Eǀ~U) were derived by applying Bayes rule to the quantities
P(UǀE) and P(U ǀΔ E ) which were computed using learners' trial‐by‐trial likelihood judgments. In this way, the resulting Δ P
measures the extent to which each subject believed the unobserved cause covaried with the e�ect.
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3 See Cheng (1997) for the complete, formal treatment. Note that we use di�erent notation for consistency within this
chapter.

4 As seen in Figure 8.4, participants were more likely to think that there was an interaction with an unobserved cause in the
many‐machines condition than in the one‐machine condition. The reason for this finding is likely because they thought
the di�erent machines interact di�erently with the switch — the di�erent machines is the second interacting factor.
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