If you want to talk about main effects, need to distinguish true “main effects”...

...from their insidious cousin that may be masquerading as “main effect” in your model
Outline

• The Problem
• Recap of Coding
• Parameter Testing
• Simple Effects & Main Effects
• More Detailed Explanation
• How to Do Contrast Coding
• Continuous Predictors
Prototypical psychology study: 2 x 2 design
Example Study

- Study **easy** and **difficult** word pairs
 - VIKING—HELMET (*related* and thus *easy*)
 - VIKING—COLLEGE (*unrelated* and thus *hard*)

- Do cued recall task:
 - VIKING---??????

- During test phase, told if an opponent supposedly got the item **correct** or **incorrect**
Easy items are remembered better if the opponent supposedly got them right.

Hard items are remembered better if the opponent got them wrong.
(i.e., performance best in the MISMATCH conditions)

Effect of feedback depends on item type (INTERACTION).

Easy items are remembered better if the opponent supposedly got them right.

Hard items are remembered better if the opponent got them wrong.
(i.e., performance best in the MISMATCH conditions)

Effect of feedback depends on item type (INTERACTION).
Overall, the related (easy) items are also remembered better than the unrelated (hard) items.
No consistent effect of opponent feedback.
The Problem

ANOVA WORLD

- Get test of interaction
- And of 2 main effects

MLM WORLD

- Not in Kansas anymore!
- What to do?
The Problem

• Modeling our outcome variable in a regression equation

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \ldots \]

• Need to code categorical variables into numerical ones

• Consequences for how you interpret hypothesis tests
Outline

• The Problem
• Recap of Coding
• Parameter Testing
• Simple Effects & Main Effects
• More Detailed Explanation
• How to Do Contrast Coding
• Continuous Predictors
ITEM TYPE

<table>
<thead>
<tr>
<th>Related</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrelated</td>
<td>1</td>
</tr>
</tbody>
</table>

OPPONENT FEEDBACK

<table>
<thead>
<tr>
<th>Correct</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect</td>
<td>1</td>
</tr>
</tbody>
</table>

DUMMY CODING a/k/a TREATMENT CODING (R's default)
OPPONENT (A)

Didn't See : 0
Correct : 1
Incorrect : 0

OPPONENT (B)

Didn't See : 0
Correct : 0
Incorrect : 1

ITEM TYPE

<table>
<thead>
<tr>
<th>Related</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrelated</td>
<td>1</td>
</tr>
</tbody>
</table>

Predictor with >2 levels: get more dummy-coded variables

DUMMY CODING a/k/a TREATMENT CODING (R's default)
Dummy Coding

<table>
<thead>
<tr>
<th>ITEM TYPE</th>
<th>Related</th>
<th>Unrelated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Incorrect</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

One level is 1
Other level is 0

Contrast Coding

<table>
<thead>
<tr>
<th>ITEM TYPE</th>
<th>Related</th>
<th>Unrelated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Incorrect</td>
<td>0.5</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

One level is positive
Other level is negative

<table>
<thead>
<tr>
<th>OPPONENT FEEDBACK</th>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Incorrect</td>
<td>0.5</td>
<td>-0.5</td>
</tr>
</tbody>
</table>
Outline

- The Problem
- Recap of Coding
 - Parameter Testing
 - Simple Effects & Main Effects
 - More Detailed Explanation
 - How to Do Contrast Coding
 - Continuous Predictors
Testing a Parameter

How to tell if the opponent's feedback is related to memory?
(e.g. possible main effect: you just try harder when someone else got the item wrong)

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots \]

Feedback
0 = Correct
1 = Incorrect

Item Type
0 = Related
1 = Unrelated

(e.g. possible main effect: you just try harder when someone else got the item wrong)
Testing a Parameter

Compare when feedback = 0...

\[Y = \beta_0 + \beta_1 X_0 + \beta_2 X_2 + \ldots \]

Feedback
0 = Correct
1 = Incorrect

Item Type
0 = Related
1 = Unrelated
Testing a Parameter

... to when feedback = 1

\[Y = \beta_0 + \beta_1 1 + \beta_2 X_2 + \ldots \]

Feedback
0 = Correct
1 = Incorrect

Item Type
0 = Related
1 = Unrelated
Testing a Parameter

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots \]

\(\beta_1 \): “The effect of changing feedback, while holding item type constant”

But, we know there's an interaction ... so it will matter what value we hold item type constant at!

Feedback
0 = Correct
1 = Incorrect

Item Type
0 = Related
1 = Unrelated
Y = β₀ + β₁X₁ +

Feedback
0 = Correct
1 = Incorrect

With dummy coding, item type = 0 represents the RELATED condition.

Testing effect of feedback in just the RELATED condition.
Here, we see Opponent Incorrect > Opponent Correct
But, this test only reflects HALF of the graph!

With dummy coding, item type = 0 represents the RELATED condition.

Testing effect of feedback in just the RELATED condition.

Hold other variable at:

INTERACTION!

But, this test only reflects HALF of the graph!
INTERACTION!

But, this test only reflects HALF of the graph! Feedback effect is different in the other half. Misleading!
Outline

- The Problem
- Recap of Coding
- Parameter Testing
 - Simple Effects & Main Effects
 - More Detailed Explanation
 - How to Do Contrast Coding
 - Continuous Predictors
What is effect of the Feedback variable?

R holds Item Type at 0.

Only reflects Related condition.

Problem: Effect of Feedback depends on the Item Type. (i.e., there's an INTERACTION)
What is the effect of the Feedback variable?

- R holds **Item Type** at 0.
- Averaged between 2 conditions.

Contrast Coding

<table>
<thead>
<tr>
<th>FEEDBACK</th>
<th>ITEM TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>Related</td>
</tr>
<tr>
<td>Incorrect</td>
<td>Unrelated</td>
</tr>
</tbody>
</table>

Test now uses information from both Item Types in testing Feedback. (No main effect here.)
• Dummy Coding -> Simple Effects
 • Consider only *one level* of predictor X_2 in testing predictor X_1

• Contrast Coding -> Main Effects
 • Consider *all levels* of predictor X_2 in testing predictor X_1

• Both are legitimate statistical tests, but they *test different things*
 – *Simple effects* may be *appropriate* if you WANT to only test at one level of predictor X_2
 – e.g. that level is the baseline (“opponent didn't see” condition?)
 – Just make sure that your tests are testing what you say they are!
Some Other Notes...

INTERACTION!

- Coding differences **do not** affect the test of the interaction
- Coding only changes the simple/main effect terms
- Also **doesn't** change overall fit of the model
Some Other Notes...

- If NO interaction, **simple effects** and **main effects** are the **same**
 - X_2 is irrelevant to X_1 effect
 - But note that even if interaction isn't reliable at $\alpha = .05$, there can be a **numerical** interaction
 - Would still be **some** difference between simple effects & main effects
Outline

- The Problem
- Recap of Coding
- Parameter Testing
- Simple Effects & Main Effects
 - More Detailed Explanation
 - How to Do Contrast Coding
 - Continuous Predictors
Dummy Coding

- \(Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 \) (+ random effects, error)
- \(X_1 = 0 \) if related, 1 if unrelated
- \(X_2 = 0 \) if opponent right, 1 if opponent wrong

- Results:
 - Related, Right: \(\beta_0 + \beta_1 (0) + \beta_2 (0) + \beta_{12} (0)(0) \)
 - \(= \beta_0 + \beta_1 (0) + \beta_2 (0) + \beta_{12} (0)(0) \)
 (substituting in 0s for \(X_1 \) and \(X_2 \))
Dummy Coding

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2$ (+ random effects, error)
- $X_1 = 0$ if related, 1 if unrelated
- $X_2 = 0$ if opponent right, 1 if opponent wrong

Results:
- Related, Right: $\beta_0 + \beta_1 (0) + \beta_2 (0) + \beta_{12} (0)(0)$
- Most of this is 0 and drops out
Dummy Coding

- \(Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 \) (+ random effects, error)

- \(X_1 = 0 \) if related, 1 if unrelated
- \(X_2 = 0 \) if opponent right, 1 if opponent wrong

Results:
- Related, Right: \(\beta_0 \)
- Unrelated, Right: \(\beta_0 + \beta_1 \)
- Related, Wrong: \(\beta_0 + \beta_2 \)
- Unrelated, Wrong: \(\beta_0 + \beta_1 + \beta_2 + \beta_{12} \)

If we create the equation for all 4 conditions...
Dummy Coding

- \(Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 \) (+ random effects, error)
- \(X_1 = 0 \) if related, 1 if unrelated
- \(X_2 = 0 \) if opponent right, 1 if opponent wrong
- Results:
 - Related, Right: \(\beta_0 \)
 - Unrelated, Right: \(\beta_0 + \beta_1 \)
 - Related, Wrong: \(\beta_0 + \beta_2 \)
 - Unrelated, Wrong: \(\beta_0 + \beta_1 + \beta_2 + \beta_{12} \)

We see that, here, \(\beta_1 = \) Difference between Related, Right and Unrelated, Right
Contrast Coding

- \(Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 \) (+ random effects, error)
- \(X_1 = -0.5 \) if related, \(0.5 \) if unrelated
- \(X_2 = -0.5 \) if opponent right, \(0.5 \) if opponent wrong

Results:
 - Related, Right: \(\beta_0 - 0.5\beta_1 - 0.5\beta_2 + \beta_{12} (-0.5) (-0.5) \)
 - Unrelated, Right: \(\beta_0 + 0.5\beta_1 - 0.5\beta_2 + \beta_{12} (0.5) (-0.5) \)
 - Related, Wrong: \(\beta_0 - 0.5\beta_1 + 0.5\beta_2 + \beta_{12} (-0.5)(0.5) \)
 - Unrelated, Wrong: \(\beta_0 + 0.5\beta_1 + 0.5\beta_2 + \beta_{12} (0.5)(0.5) \)
Contrast Coding

- \(Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 \) (+ random effects, error)
- \(X_1 = -0.5 \) if related, 0.5 if unrelated
- \(X_2 = -0.5 \) if opponent right, 0.5 if opponent wrong

Results:

- Related, Right: \(\beta_0 - 0.5\beta_1 - 0.5\beta_2 + \beta_{12} (-0.5)(-0.5) \)
- Related, Wrong: \(\beta_0 + 0.5\beta_1 + 0.5\beta_2 + \beta_{12} (-0.5)(0.5) \)
- Unrelated, Right: \(\beta_0 + 0.5\beta_1 - 0.5\beta_2 + \beta_{12} (0.5)(-0.5) \)
- Unrelated, Wrong: \(\beta_0 + 0.5\beta_1 + 0.5\beta_2 + \beta_{12} (0.5)(0.5) \)
Contrast Coding

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 \] (+ random effects, error)

- \(X_1 = -0.5 \) if related, 0.5 if unrelated
- \(X_2 = -0.5 \) if opponent right, 0.5 if opponent wrong

Results:
- Related, Right: \(\beta_0 - 0.5\beta_1 - 0.5\beta_2 + \beta_{12} (-0.5)(-0.5) \)
- Related, Wrong: \(\beta_0 - 0.5\beta_1 + 0.5\beta_2 + \beta_{12} (-0.5)(0.5) \)
- Unrelated, Right: \(\beta_0 + 0.5\beta_1 - 0.5\beta_2 + \beta_{12} (0.5)(-0.5) \)
- Unrelated, Wrong: \(\beta_0 + 0.5\beta_1 + 0.5\beta_2 + \beta_{12} (0.5)(0.5) \)

\(\beta_1 = \text{Difference between 2 related conditions and 2 unrelated conditions} \)
Outline

• The Problem
• Recap of Coding
• Parameter Testing
• Simple Effects & Main Effects
• More Detailed Explanation
• How to Do Contrast Coding
• Continuous Predictors
How to Do Contrast Coding

• SEE your current coding:
 \texttt{contrasts(Dataframe}\$\texttt{Variable)}

• CHANGE your coding:
 \texttt{contrasts(Dataframe}\$\texttt{Variable} = \texttt{c(-0.5,0.5)}

• With more than 2 levels, set \textit{multiple} contrasts:
 \texttt{contrasts(Dataframe}\$\texttt{Variable} = \texttt{cbind(c(-0.33,-0.33,0.66), c(-0.5,0.5,0))}
How to Do Contrast Coding

• To get back to **dummy** coding...

• Could set the coding *manually*

 \[
 \text{contrasts(Dataframe}\$\text{Variable)} = c(0,1)
 \]

• **SHORTCUT!**

 \[
 \text{contrasts(Dataframe}\$\text{Variable)} = \text{contr.treatment}
 \]
Outline

• The Problem
• Recap of Coding
• Parameter Testing
• Simple Effects & Main Effects
• More Detailed Explanation
• How to Do Contrast Coding
• Continuous Predictors
Continuous Predictors

• So far, we've looked at *categorical* predictors
• What about *continuous* predictors?
 – e.g. do *online processing resources* predict use of pitch accenting information in discourse comprehension?
Continuous Predictors

• Again, **by default**, **pitch accent** is evaluated when span score = 0

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots \]

• So **main effect of pitch accent** represents what pitch accent does when you have no working memory
 • May be **uninformative** (as in this case)
 • Nobody has span score of 0
Continuous Predictors

- Alternative: CENTER the continuous predictor
- So 0 is now the mean span score

Subject 23's span score: 4.43
Mean: 5.0

Subject 23's span score: -0.57
Mean: 0.0

- Now, main effect of pitch accent represents what pitch accent does for you if you have average span score

 - "Jane Average"'s pitch accenting effect
 - More informative!
Centering a Variable in R

- **Replace** the original variable with mean-centered version

  ```r
  Dataframe$Variable = Dataframe$Variable - mean(Dataframe$Variable)
  ```

- **Keep** the original variable and create a new mean-centered one called `Variable.c`:

  ```r
  Dataframe$Variable.c = Dataframe$Variable - mean(Dataframe$Variable)
  ```
• **Default**
 - Main effect of predictor X_1 is when predictor X_2 is at 0

• **Mean Centering**
 - Main effect of predictor X_1 is when predictor X_2 is at its mean

• Again...
 - Both are legitimate statistical tests, but they test different things
 - No difference between these 2 when there's no interaction
 - **Doesn't** change the **test of the interaction itself**