Computational Thinking for Lawyers

Kevin D. Ashley
Professor of Law and Intelligent Systems
University of Pittsburgh
ashley@pitt.edu
Computational Thinking for Lawyers

1. Debugging the (legal) code by
 a) Resolving logical ambiguities (i.e., normalization)
 b) Evaluating proposed rule with test cases
 ■ e.g., real and hypothetical counterexamples, exceptions

2. Algorithms, flowcharts, process models
 ■ to explain complex legal structures and processes
 ■ e.g., debugging proposed rule with test case,
 ■ statutory interpretation, predicting outcomes, structured arguments

3. Computer tools for conceptual/logical queries
 ■ not Boolean queries with key words but
 ■ conceptual hypotheses to test against data;
 ■ need legal IR/AI systems that process conceptual queries intelligently
1. Debugging legal rules by: a) normalizing

- Syntactic ambiguity almost always present and unintentional.
- Technical issue: "scope" of a logical operator
- For example:
 - No person may send an unsolicited email from within WA State to an address the sender knows is held by a WA State resident and that contains a commercial message and contains a misrepresentation in the subject line or transmission path.

- Is an email in violation if it contains a misrepresentation but no commercial message??

 - Not in violation if:

\[
\begin{align*}
\text{AND} & \quad \text{NOT commercial} \\
\text{AND} & \quad \text{NOT misrepresentation}
\end{align*}
\]

\[v.\]

\[
\begin{align*}
\text{NOT} & \quad \text{AND} \\
\text{commercial} & \quad \text{misrepresentation}
\end{align*}
\]
1. Debugging legal rule: b) with test case

- **Proposed rule:**
 - IF unsolicited email sent from within WA State to WA State resident AND
 - Contains commercial message OR contains misrepresentation
 - THEN violation.

- **Suppose:**
 - Test Case: X sends unsolicited commercial email from Spokane to Seattle and message goes via Portland, OR.

- **Rule too broad**
 - regulates interstate commerce
 - contrary to another rule, Commerce Clause of U.S. Constitution
 - Federal law trumps state law
2. Algorithms, flowcharts, process models:
 e.g., Debugging with Test Case*

→ 1. Propose rule for deciding current fact situation (cfs):
 - Construct a rule that leads to a favorable decision in the cfs and
 - is consistent with applicable underlying legal principles/policies and important past cases,
 - and give reasons.

← 2. Pose test case to probe if rule is too broad:
 - Find/construct a test case that:
 - emphasizes some normatively relevant aspect of the cfs and
 - to which the proposed rule applies and assigns the same result as to the cfs, but
 - where, given legal principles/policies, the result in test case is normatively wrong.

→ 3. Respond to test case:
 (3.a) Justify the proposed rule:
 - Analogize the test case and the cfs and
 - argue that they both should have the result assigned by the proposed rule. Or

 (3.b) Modify the proposed rule:
 - Distinguish the test case from the cfs, argue that they should have different results and that
 the proposed rule yields the right result in the cfs, and
 - add a condition or limit a concept definition so that the narrowed rule still applies to the cfs but
 does not apply to, or leads to a different result for, the test case. Or

 (3.c) Abandon the proposed rule and return to 1.

*Ashley, Lynch, Pinkwart, Aleven, 2008
3. Computer tools to support conceptual/logical queries

- Given process model
 - (e.g., debugging with test case)

- If need a test case
 - (e.g., to probe rule as too broad)

- search for example that:
 - emphasizes some normatively relevant aspect of the cfs and
 - to which proposed rule applies and assigns same result as to cfs, but
 - where, given legal principles/policies, that result is normatively wrong in
 the example.

- i.e., case where
 - state anti-spam statute:
 - held invalid due to supervening rule, or
 - that deals with intrastate addresses held invalid, or
 - held invalid under Commerce Clause
Caution!

- Legal problem solving is highly context-dependent in ways that may not be anticipated.
- Be cautious about recommending computational thinking to law students
 - in case it leads to them to focus more on a mechanical application of a pre-defined method rather than on
 - the context of and opportunities in the problem to-be-solved.
2. Algorithms, flowcharts, process models: e.g., statutory interpretation*

A. In interpreting statutory provision, consider 3 types of argument:
 1. linguistic arguments
 2. systemic arguments
 3. teleological-evaluative arguments.

B. Accept as *prima facie* justified a clear interpretation
 i. at level 1 unless there is some reason to proceed to level 2;
 ii. where level 2 invoked for sufficient reason, accept as prima facie a clear interpretation at level 2 unless there is reason to move to level 3.
 iii. if at level 3, accept as justified only the interpretation best supported by the whole range of applicable arguments.

C. Take account of arguments from intention and other transcategorical arguments (if any)
 • as grounds which may be relevant for departing from the above prima facie ordering.

2. Algorithms, flowcharts, process models:
e.g., case-based legal prediction*

Input: Current fact situation

1. Identify legal issues

2. For each issue determine favored party:
 - If factors favor same side, return side, else
 - Perform evidential reasoning with cases:
 - If cases found with issue-related factors
 - Test hypothesis that majority side should win
 - Explain-away counterexamples
 - Otherwise, Broaden-Query

3. Combine analysis from issues

Output: Predicted outcome and explanation

Brüninghaus & Ashley ICAIL-03